Posts by Tiberiu Popoviciu

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables réelles, Mathematica, 8 (1934), pp. 1-85 (in French).

PDF

About this paper

Journal

Mathematica

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

HTML forme du travail (preprint)

ON SOME PROPERTIES OF THE FUNCTIONS OF ONE OR TWO REAL VARIABLES.

Tiberiu Popoviciu,
Former Student of the École Normale Supérieure

by

Request on March 8, 1933.

Introduction.

In function theory, we seek to delve deeper into the study of very general functions that, in some way, resemble known functions. The simplest functions are polynomials, so it is quite natural to study functions to which certain properties of polynomials apply. It is this kind of problem that we address in the first part of this work.

[x1,x2,,xn+1;f]=U(x1,x2,,xn+1;f)V(x1,x2,,xn+1)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\frac{\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n+1};f\right)}{\mathrm{V}\left(x_{1},x_{2},\ldots,x_{n+1}\right)}

OrU(x1,x2,,xn+1;f)\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n+1};f\right)is the order determinantn+1n+1whose general outline is1xixi2xin1f(xi)1x_{i}x_{i}^{2}\ldots x_{i}^{n-1}f\left(x_{i}\right)AndV(x1,x2,,xn+1)==U(x1,x2,,xn+1;xn)\mathrm{V}\left(x_{1},x_{2},\ldots,x_{n+1}\right)==\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n+1};x^{n}\right).

Therenth nthdivided difference of a degié polynomialnnis constantly equal to the same number; this number is zero if the polynomial is of degreen1n-1We examine the functions whose nth divided difference is bounded. We also consider the nth total variation (or the total variation of ordernn) of a function, which is by definition equal to the upper limit of the sum

i=1m1|ΔniJni+1|Δni=[xi,xi+1,,xi+n;f],i=1.2,,mnx1<x2<<xm\begin{gathered}\sum_{i=1}^{m-1}\left|\Delta_{n}^{i}-J_{n}^{i+1}\right|\\ \Delta_{n}^{i}=\left[x_{i},x_{i+1},\ldots,x_{i+n};f\right],\quad i=1,2,\ldots,m-n\\ x_{1}<x_{2}<\cdots<x_{m}\end{gathered}

when varying the pointsx1,x2,,xmx_{1},x_{2},\ldots,x_{m}and their number in all
possible ways over the domain of the function. We will say that the function has a bounded nth variation if its total variation of ordernnis finished. We then study the functions whose(n+1)(n+1)The divided difference does not change sign. We will say that such a function is of ordernn. Forn=0n=0we have monotonic functions and forn=1n=1ordinary convex (or concave) functions. We point out the main properties of these functions and show their relationship with bounded divided nth difference functions and bounded nth variation functions.

If the functionf(x)f(x)is at (n+1n+1jth difference divided by bounds we can obviously determineλ\lambdasuch as the functionf(x)+λxn+1f(x)+\lambda x^{n+1}either of ordernnWe also show that a function with bounded nth variation is the difference of two functions of ordernn.

We also study the differentiation of the functions defined previously, after having completed some of Stieltjes' research on the nth derivative of a function. We examine the limitation of the derivative of a function of ordernndefined within an interval. We thus find that the order functionsnnbehave much like polynomials of degreennat least within a suitably chosen inner interval

In the second part we try to extend to functions of two variables the results obtained for functions of a single variable.

The difference divided by order(m,n)(m,n)off(x,y)f(x,y)for thek==(m+1)(n+1)k==(m+1)(n+1)pointsMi(xi,yi),i=1.2,,kM_{i}\left(x_{i},y_{i}\right),i=1,2,\ldots,kis equal to the quotient

[M1,M2,,Mk;f]m,n=Um,n(M1,M2,,Mk;f)Vm,n(M1,M2,,Mk)\left[\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k};f\right]_{m,n}=\frac{\mathrm{U}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k};f\right)}{\mathrm{V}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k}\right)}

OrUm,n(M1,M2,,Mk;f)\mathrm{U}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k};f\right)is the determinant whose general line is1xixi2ximyixiyiximyiyinxiyinxim1yinf(xi,yi)1x_{i}x_{i}^{2}\ldots\ldots x_{i}^{m}y_{i}x_{i}y_{i}\ldots x_{i}^{m}y_{i}\ldots y_{i}^{n}x_{i}y_{i}^{n}\ldots x_{i}^{m-1}y_{i}^{n}f\left(x_{i},y^{i}\right)AndVm,n(M1,M2,,Mk)=Um,n(M1,M2,,Mk;xmyn)\mathrm{V}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k}\right)=\mathrm{U}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k};x^{m}y^{n}\right)We assume, of course, that the pointsMi\mathrm{M}_{i}are such that the determinantVm,n\mathrm{V}_{m,n}be different from zero.

We study these divided differences and show that a complete analogy can be established between the case of one and the case of two variables.

In the last Chapter we give a generalization of convex functions and doubly convex functions (See P. Montel, Journal de Math. 9th series, t. 7 (1928), p. 29-60) of two variables.

We are pleased to express here our deep gratitude to MP Montel who greatly encouraged us and whose valuable advice was very useful in the writing of this work.

Part one.

ON SOME PROPERTIES OF HIGHER-ORDER CONVEX FUNCTIONS OF A REAL VARIABLE

CHAPTER 1.

-ON THE DIVIDED DIFFERENCES OF THE FUNCTIONS OF A REAL VARIABLE.

§ 1. - Bounded divided difference functions and functions

with horned variation.

  1. 1.

    We consider functionsf(x)f(x)defined, uniform and real of the real variablexxon a linear and bounded set E. To each point of E corresponds a finite and well-defined value forf(x)f(x)We designate by a the left end and bybbthe right end of set E. The pointshasaAndbbare determined regardless of E. We denote byE,E",\mathrm{E}^{\prime},\mathrm{E}^{\prime\prime},\ldots, the successive derived sets of k. We say that a setE1\mathrm{E}_{1}is completely inside E if all its points belong to E and if its endpointshas1,b1a_{1},b_{1}are intercursed within the interval (has,ba,b), (has<has1b1<ba<a_{1}\leq b_{1}<b).

We say that a sequence of points on the axis of the variablexxis - ordered, or that these points are ordered if their abscissas, referred to a fixed origin, are arranged in non-decreasing order. We also assume, unless otherwise stated, that all the points in such a sequence are distinct.

We call the polynomial of smallest degree l (Lagrange-Hermite polynomial)

P(α1)=P(α1,α2,αk;fx)\mathrm{P}\left(\alpha_{1}\right)=\mathrm{P}\left(\alpha_{1},\alpha_{2},\ldots\alpha_{k};f\mid x\right)

satisfying the conditions (1): (accents denote derivations)
( 2 ) Hermite generalized Lagrange's polynomials in his memoir "On Lagrange's interpolation formula". Journal für die Reine und Bangew. Math t. 84 (1878) p. 70.

P(α1)=f(α1)P(αp+1)=f(αp+1)P(αp+q+1)=f(αp+q+1)P(α2)=f(α2)P(αp+2)=f(αp+2)P(αp+q+2)=f(αp+q+2)P(p1)(αp)=f(p1)(αp)P(q1)(αp+q)=f(q1)(αp+q)P(r1)(αp+q+r)=f(r1)(αp+q+r)α1=α2==αp,αp+1=αp+2==αp+q,αp+q+1=αp+q+2==αq+p+r,p+q+r+=k.\begin{array}[]{ccc}\mathrm{P}\left(\alpha_{1}\right)=f\left(\alpha_{1}\right)&\mathrm{P}\left(\alpha_{p+1}\right)=f\left(\alpha_{p+1}\right)&\mathrm{P}\left(\alpha_{p+q+1}\right)=f^{\prime}\left(\alpha_{p+q+1}\right)\ldots\\ \mathrm{P}^{\prime}\left(\alpha_{2}\right)=f^{\prime}\left(\alpha_{2}\right)&\mathrm{P}^{\prime}\left(\alpha_{p+2}\right)=f^{\prime}\left(\alpha_{p+2}\right)&\mathrm{P}^{\prime}\left(\alpha_{p+q+2}\right)=f^{\prime}\left(\alpha_{p+q+2}\right)\ldots\\ \mathrm{P}(p-1)\left(\alpha_{p}\right)=f^{(p-1)}\left(\alpha_{p}\right)&\mathrm{P}^{(q-1)}\left(\alpha_{p+q}\right)=f^{(q-1)}\left(\alpha_{p+q}\right)&\mathrm{P}^{(r-1)}\left(\alpha_{p+q+r}\right)=f^{(r-1)}\left(\alpha_{p+q+r}\right)\\ \alpha_{1}=\alpha_{2}=\ldots=\alpha_{p},&\alpha_{p+1}=\alpha_{p+2}=\ldots=\alpha_{p+q},&\alpha_{p+q+1}=\alpha_{p+q+2}=\ldots=\alpha_{q+p+r},\ldots\\ p+q+r+\cdots=k.\end{array}

We know this polynomial is unique.
Finally, following M. Nörlund (2), we call it the divided difference of order:𝒌\boldsymbol{k}of the functionf(x)f(x)for distinct pointsα1,α2,αk+1\alpha_{1},\alpha_{2},\ldots\alpha_{k+1}the expression defined by the recurrence relation

[α1,α2,,αk+;f]=[α2,α3,,αk+1;f][α1,α2,,αk;f][αk;f]=f(α)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+};f\right]=\frac{\left[\alpha_{2},\alpha_{3},\ldots,\alpha_{k+1};f\right]-\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]}{\left[\alpha_{k};f\right]=f(\alpha)} (1)

The quantity (l) is symmetric with respect to the pointsαi\alpha_{i}and can be expressed in the form of a quotient

[α1,α2,,αk+1;f]=U(α1,α2,,αk+1;f)iV(α1,α2,,αk+1)j\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]=\frac{\mathrm{U}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right)_{i}}{\mathrm{\penalty 10000\ V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)_{j}}

Or

U(α1,α2,,αk+1;f)=|1α1α12α1k1f(α1)1α2α22α2k11αk+1αk+12αk+1k11|\mathrm{U}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right)=\left|\begin{array}[]{cccccc}1&\alpha_{1}&\alpha_{1}^{2}&\ldots&\alpha_{1}^{k-1}&f\left(\alpha_{1}\right)\\ 1&\alpha_{2}&\alpha_{2}^{2}&\ldots&\ldots&\alpha_{2}^{k-1}\\ \ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\ \ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\ 1&\alpha_{k+1}&\alpha_{k+1}^{2}&\ldots&\alpha_{k+1}^{k-1}&\ldots\\ 1&\ldots&\ldots&\ldots\end{array}\right|

And

V(α1,α2,,αk+1)=U(α1,α2,,αk+1;xk)\mathrm{V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)=\mathrm{U}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};x^{k}\right)

is the Van der Monde determinant of quantitiesαi\alpha_{i}From formula
(1) we can deduce others which we will point out as they are used. Note here that
(2)

f(αk+1)P(α1,α2,,αk;f|1ααk+1)=f\left(\alpha_{k+1}\right)-\mathrm{P}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k};\left.f\right|^{\frac{1}{\alpha}}\alpha_{k+1}\right)=

=U(α1,α2,,αk+1;f)V(α1,α2,,αk)=V(α1,α2,,αk+1)V(α1,α2,,αk)α1,α2,,αk+r;f]=\frac{\mathrm{U}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right)}{\mathrm{V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k}\right)}=\frac{\mathrm{V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)}{\mathrm{V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k}\right)}\cdot\left\lfloor\alpha_{1},\alpha_{2},\ldots,\alpha_{k+r};f\right]
It follows that if [α1,α2,,αk+1;f]=0,f(x)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]=0,f(x)takes on E the same values ​​as a polynomial. We then say thatf(x)f(x)is a polynomial function.
2. Consider the divided differences

[x1,x2,,xn+1;f]\left[x_{1},x_{2},\ldots,x_{n+1};f\right]

(2) NE Nöblund “Lessons on Interpolation Series.” p. 2.
on all groups ofn+1n+1distinct points of E. If E contains fewer thann+1n+1points we can indifferently assume that the nth divided difference does not exist or that it is identically zero.

Let's ask

limit¯(onE)|[x1,x2,,xn+1;f]|=Δn[f;E].\varlimsup_{(\operatorname{sur}E)}\cdot\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]\right|=\Delta_{n}[f;E].

This number will be called the nth bound off(x)f(x)onEΔn[f;E]\mathrm{E}\Delta_{n}[f;\mathrm{E}]can also be referred to asΔn[f]\Delta_{n}[f]or evenΔn\Delta_{n}when there is no ambiguity and byΔnfb\Delta_{n}\stackrel{{\scriptstyle b}}\midwhen it is a range (has,ba,b).

We say that the function is bounded divided nth difference on E ifΔn\Delta_{n}It's over.

The casen=0n=0is that of bounded functions;n=1n=1that of functions satisfying an ordinary Lipschitz condition.
3. Considermmordered points

x1,x2,,xmx_{1},x_{2},\ldots,x_{m} (3)
  • and be

Δ˙ki=[xi,xi+1,,xi+k;f]\displaystyle\dot{\Delta}_{k}^{i}=\left[x_{i},x_{i+1},\ldots,x_{i+k};f\right] (4)
ı^=1.2,,mk,k=0,1,2,,m1\displaystyle\hat{\imath}=1,2,\ldots,m-k,\quad k=0,1,2,\ldots,m-1 (i)

the divided differences of a function defined at these points.
The sum

vn=i=1mn1|Δni+1Δni|v_{n}=\sum_{i=1}^{m-n-1}\left|\Delta_{n}^{i+1}-\Delta_{n}^{i}\right| (5)

is the nth variation off(x)f(x)on points (3).
That isf(x)f(x)defined on a set E. The variationsvnv_{n}on all ordered sequences of E have an upper limitVn[f;E]\mathrm{V}_{n}[f;\mathrm{E}]We refer to this number asVn[f],Vn\mathrm{V}_{n}[f],\mathrm{V}_{n}OrVn[f]\mathrm{V}_{n}[f]and we call it the nth total variation off(x)f(x)on E.

We will say that the function is bounded on E with nth variation ifVnV_{n}It's over.

The casen=0n=0is that of ordinary bounded variation functions of Jordan;(3)n=1{}^{(3)};n=1has already been implicitly considered by Mr. De la
( 3 ) For the study of these functions see H. Lebesgue “Lessons on integration … etc."2th 2^{\text{ème }}ed. (1928) p. 96; or even L. Tonelli „Fondamenti di Calcolo della variazioni” t. I, p. 40.

Vallée Poussin ( 4 ) and studied in a general way by M.A. Winternitz()5\left({}^{5}\right).

S. 2. - Properties of functions whose nth difference divided

is bounded.
4. Letα1,α2,,αj;β1,β2,,βj;αj+1=βj+1,αj+2=βj+2,,αk2=βk,k+j\alpha_{1},\alpha_{2},\ldots,\alpha_{j};\beta_{1},\beta_{2},\ldots,\beta_{j};\alpha_{j+1}=\beta_{j+1},\alpha_{j+2}=\beta_{j+2},\ldots,{}_{2}\alpha_{k}=\beta_{k},k+jdistinct points (1jk1\leq j\leq k). We have, according to formula (1)
(αiβi)[α1,α2,,αi,βi,βi+1,,βk;f]=\left(\alpha_{i}-\beta_{i}\right)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{i},\beta_{i},\beta_{i+1},\ldots,\beta_{k};f\right]=

=[α1,α2,,αi,βi+1,,βkj;f][α1,α2,,αi1,βi,,βk;f]j=\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{i},\beta_{i+1},\ldots,\beta_{kj};f\right]-\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{i-1},\beta_{i},\ldots,\beta_{k};f\right]_{j}

Doingi=1.2,,ki=1,2,\ldots,kAdding term by term and removing identically null terms, we deduce the following formula:
(6)[α1,α2,,αk;f][β1,β2,,βk;f]=\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]-\left[\beta_{1},\beta_{2},\ldots,\beta_{k};f\right]=

=i=1j(αiβi)[α1,α2,,αi,βi,βi+1,,βk;f]=\sum_{i=1}^{j}\left(\alpha_{i}-\beta_{i}\right)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{i},\beta_{i},\beta_{i+1},\ldots,\beta_{k};f\right]

(Forj=1j=1we have formula (1) itself).
This formula allows us to write
(7)|[x1,x2,,xn;f]||[x1,x2,,xn;f]|+(i=1n|xixi|)}.HASn[f]\left.\left|\left[x_{1},x_{2},\ldots,x_{n};f\right]\right|\leq\left|\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]\right|+\left(\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right|\right)\right\}.A_{n}[f\mid]

<|[x1,x2,,xn;f]|+n(bhas).Δn[f]<\left|\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]\right|+n(b-a).\Delta_{n}[f]

therefore any function with a bounded divided difference nth is also (n1n-1)th difference divided bounded.

In particular, any bounded divided difference function with nth difference is bounded.

We can also see that the function has a bounded number of derivatives ifn>1n>1 ; it is therefore also continuous in this case.

Continuity also results from the following formula:
(8)|[x1,x2,,xn+1;f][x1,x2,,xn+1;f]|<2nΔn\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]-\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime};f\right]\right|<2n\Delta_{n}. §

δi=max.|xixδi|1()6\delta_{i}=\max.\left|\frac{x_{i}-x^{\prime}}{\delta_{i}}\right|\leq 1\left({}^{6}\right)

(4) Ch. de la Vallée Poussin "Note on the approximation by a polynomial of a function whose derivative has bounded variation"{}^{\text{" }}Bull. Aead. Belgium1908 p. 403.
( 5 ) A. Winternitz "Uber eine Klasse von linearen Funktional Ungleichungen und über konvexe Funktionale 4. Berichte kön, sächsischen Gesellschs der Wissensch. zu Leipzig t. 69 (1917) p. 349.
(6) By the max notation(has1,has2,\left(a_{1},a_{2},\ldots\right.) Ormaxi=1.2,(hasi)\max_{i=1,2,\ldots}\left(a_{i}\right)we designate the largest of the numbershas1,has2,a_{1},a_{2},\ldots. Similar notation for the smallest of these numbers.
δ=\delta=length of the smallest interval containing
the pointsx1,x2,,x,xi,xi+1,,xn+1x_{1},x_{2},\ldots,x,x_{i}^{\prime},x_{i+1}^{\prime},\ldots,x_{n+1}^{\prime}

i=1.2,,n+1i=1,2,\ldots,n+1

Eitherxx^{\prime}a point ofE\mathrm{E}^{\prime}not belonging to E. If, regardless of how the pointxxE tends towardsx,f(x)x^{\prime},f(x)Since the function tends towards the same finite and well-defined limit, we can still say that the function is continuous at the pointxx^{\prime}by takingf(x˙)f(\dot{x})equal to this limit.

There always exists a countable subsetE*\mathrm{E}^{*}of E such thatEE*\mathrm{E}-\mathrm{E}^{*}belongs toE*\mathrm{E}^{*\prime}and that the function continuesf(x)f(x)be completely determined by its values ​​onE*\mathrm{E}^{*}.

Formula (1) also allows us to establish the following:

(αk+1α1)[α1,α2,,αi1,αi+1,,αk+1;f]=\displaystyle\left(\alpha_{k+1}-\alpha_{1}\right)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{i-1},\alpha_{i+1},\ldots,\alpha_{k+1};f\right]= (9)
=\displaystyle= (αiα1)[α1,α2,,αk;f]+(αk+1αi)[α2,α3,,αk+1;f].\displaystyle\left(\alpha_{i}-\alpha_{1}\right)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]+\left(\alpha_{k+1}-\alpha_{i}\right)\left[\alpha_{2},\alpha_{3},\ldots,\alpha_{k+1};f\right].

If the followingα1,α2,,αk+1\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}is ordered, we can see that thedddivided frene[α1,α2,,αL1,αi+1,,αk+1;f]\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{l-1},\alpha_{i+1},\ldots,\alpha_{k+1};f\right]is included between the divided differences[α1,α2,,αk;f],[α2,α3,,αk+1;f]\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right],\left[\alpha_{2},\alpha_{3},\ldots,\alpha_{k+1};f\right].

Eitherα1,α2,,αk+1\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{k+1}^{\prime}a partial sequence extracted from the ordered sequenceα1,α2,,αm\alpha_{1},\alpha_{2},\ldots,\alpha_{m}and such thatα1=α1,αk+1=αm\alpha_{1}^{\prime}=\alpha_{1},\alpha_{k+1}^{\prime}=\alpha_{m}.

By repeatedly applying formula (9) we obtain

[α1,α2,,αk+1;f]=i=1mkHASL[αi,αi+1,,αi+k;f]()7\left[\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{k+1}^{\prime};f\right]=\sum_{i=1}^{m-k}\mathrm{\penalty 10000\ A}_{l}\left[\alpha_{i},\alpha_{i+1},\ldots,\alpha_{i+k};f\right]\left({}^{7}\right) (10)

where theHASi\mathrm{A}_{i}are positive, independent of the functionf(x)f(x), and have a sum equal to 1.

It follows that

mini=1.2,,mk([αi,αi+1,,αi+k;f])[α1,α2,,αk+1;f]maxi=1.2,,mk([αi,αi+1,,αi+k;f])\begin{array}[]{r}\min_{i=1,2,\ldots,m-k}\left(\left[\alpha_{i},\alpha_{i+1},\ldots,\alpha_{i+k};f\right]\right)\leq\left[\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{k+1}^{\prime};f\right]\leq\\ \leq\max_{i=1,2,\ldots,m-k}\left(\left[\alpha_{i},\alpha_{i+1},\ldots,\alpha_{i+k};f\right]\right)\end{array}

( 7 ) It can be noted in general that if the sum

i=1mkHASL[αL,αi+1,,αi+k;f](HASL independents of f(x))\sum_{i=1}^{m-k}\mathrm{\penalty 10000\ A}_{l}\left[\alpha_{l},\alpha_{i+1},\ldots,\alpha_{i+k};f\right]\quad\left(\mathrm{A}_{l}\text{ indépendanls de }f(x)\right)

depends explicitly only onf(α1)1,f(α2),,f(αp)1α1,α2,,αpf\left(\alpha_{1}^{\prime}\right)_{1},f\left(\alpha_{2}^{\prime}\right),\ldots,f\left(\alpha_{p}^{\prime}\right)_{1}\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{p}^{\prime}being a partial sequence ofα1,α2,,αm\alpha_{1},\alpha_{2},\ldots,\alpha_{m}it is necessarily of the form

i=1pkHASi[αi,α+1,,α;i+kf](HAS independents if(x)).\sum_{i=1}^{p-k}\mathrm{\penalty 10000\ A}_{i}^{\prime}\left[\alpha_{i}^{\prime},\alpha^{\prime}+1,\ldots,\alpha^{\prime}{}_{i+k};f\right]\quad\left(\mathrm{A}^{\prime}{}_{i}\text{ indépendants de }f(x)\right).

A special case of formula (10) was used by MA Marchaud in his Thesis "On the derivatives and differences of functions of real variables" (Paris 1927) p. 32.
and

|[α1,α2,,αk+1;f]|maxi=1.2,,mk(|{αL,αi+1,,αi+k;f]|).\left|\left[\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{k+1}^{\prime};f\right]\right|\leq\max_{i=1,2,\ldots,m-k}\left(\left|\left\{\alpha_{l},\alpha_{i+1},\ldots,\alpha_{i+k};f\right]\right|\right).

Suppose that E is an interval and arex1,x2,,xn+1x1,x2,,xn+1,2n+2x_{1},x_{2},\ldots,x_{n+1}x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime},2n+2points of this interval.

Let's suppose thatn>0n>0and let's write

ξi=x1+λxi1+λ,i=1.2,,n+1.\xi_{i}=\frac{x_{1}+\lambda x_{i}^{\prime}}{1+\lambda},\quad i=1,2,\ldots,n+1.

Formula (8) shows that|ξ1,ξ2,,ξn+1;f|\left|\xi_{1},\xi_{2},\ldots,\xi_{n+1};f\right|is a continuous function ofλ\lambdaForλ0\lambda\geq 0, equal forλ=0\lambda=0has[x1,x2,,xn+1;f]\left[x_{1},x_{2},\ldots,x_{n+1};f\right]and forλ=+\lambda=+\inftyhas[x,1x,2,x;n+1f]\left[x^{\prime}{}_{1},x^{\prime}{}_{2},\ldots,x^{\prime}{}_{n+1};f\right].

We can therefore deduce the following property:
If𝐄\mathbf{E}is an intervalϵt\epsilon tif[x1,x2,,xn+1;f]=A\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\mathbf{A},
[x1,x2,,xn+1;f]=B\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime};f\right]=\mathrm{B}, there exists in every interval containing all the pointsxi,xix_{i},x_{i}^{\prime}a divided difference taking any value betweenHASAeiBB.

The property is not true forn=0n=0because in this case we always haveδ=1\delta=1in formula (8).

In particular, if the nth divided difference remains in modulus greater than a positive number, it retains a constant sign.

Eitherx1*,x2*,,xm*x_{1}^{*},x_{2}^{*},\ldots,x_{m}^{*}an ordered sequence such asx1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}in itself a partial sequence (x1=x1*,xn+1=x*mx_{1}=x_{1}^{*},x_{n+1}=x^{*}{}_{m}) and such that

maxi=1.2,,m1(|xi+1*xi*|)<εn+1\max_{i=1,2,\ldots,m-1}\left(\left|x_{i+1}^{*}-x_{i}^{*}\right|\right)<\frac{\varepsilon}{n+1}

ε\varepsilonbeing a positive number.
Let's consider the divided differences

 (11) di=[xi*,xi+1*,,xi+n*;f]i=1.2,,mn\text{ (11) }\quad d_{i}=\left[x_{i}^{*},x_{i+1}^{*},\ldots,x_{i+n}^{*};f\right]\quad i=-1,2,\ldots,m-n\text{. }

Now suppose that[x1,x2,,xn+1;f]=0\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=0and let's apply formula (10). We then see that there must be at least one indexiifor whichdidi+10d_{i}d_{i+1}\leq 0From this inequality and the property previously demonstrated, we deduce that

If[x1,x2,,xn+1;f]=0\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=0there exists, in the smallest interval containing the pointsxix_{i}, an interval of any length we want where there is at least one zero divided difference.

By applying the property to the functionfHASxnf-\mathrm{A}x^{n}and looking more closely at the demonstration, we see that if[x1,x2,,xn+1;f]=HAS\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\mathrm{A}, there is a pointxxin the smallest interval containing the pointsxix_{i}such that in every intervalI(x;η)\mathrm{I}(x;\eta)middlexxand lengthη\etathere exists at least one divided difference taking the valueHAS1A_{1}

We can also see that, from formula (6), we can deduce that if E is an interval and if

[x1,x2,,xn;f]=0,[x1,x2,,xn;f]=0x1,x1,x2,x2,,xn,xn ordered \begin{gathered}{\left[x_{1},x_{2},\ldots,x_{n};f\right]=0,\quad\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]=0}\\ x_{1},x_{1}^{\prime},x_{2},x_{2}^{\prime},\ldots,x_{n},x_{n}^{\prime}\quad\text{ ordonnés }\end{gathered}

we can find in the interval (x1,xnx_{1},x_{n}^{\prime}) at least one nth divided difference equals zero.
5. It follows from the definition that the nth bound on a subset is at most equal toΔn\Delta_{n}.

Eithercca point ofEEAndE1,E2E_{1},E_{2}the parts ofEErespectively included in the closed intervals(has,c),(c,b)(a,c),(c,b)We will show that if the set E is dense in the interval (has,ba,b) the nth iborne off(x)f(x)is equal toΔn[f;E]\Delta_{n}[f;E]on at least one of the setsE1,E2\mathbb{E}_{1},\mathrm{E}_{2}.

Forn=0n=0The property is obvious, regardless of E.
Let us therefore assumen>0n>0and consider a sequence of positive numbersε1,ε2,,εm,\varepsilon_{1},\varepsilon_{2},\ldots,\varepsilon_{m},\ldotstending towards zero with1m\frac{1}{m}By definition, there exists a divided difference such that

x1,x2,,xn+1;f]|>Δnεm2>Δnεm\left.\mid x_{1},x_{2},\ldots,x_{n+1};f\right]\left\lvert\,>\Delta_{n}-\frac{\varepsilon_{m}}{2}>\Delta_{n}-\varepsilon_{m}\right.

If the pointsxix_{i}are on the same side of the pointccwe take this difference divided and we designate it byΔn(εm)\Delta_{n}\left(\varepsilon_{m}\right)Otherwise, by applying formula (9) if necessary, we can assume thatccintervenes in the divided difference under consideration.

So be it

|[x1,x2,,xi,c,xi+1,,xn;f]|>Δnεm2\left|\left[x_{1},x_{2},\ldots,x_{i},c,x_{i+1},\ldots,x_{n};f\right]\right|>\Delta_{n}-\frac{\varepsilon_{m}}{2} (12)

The sequelx1,x2,,xL,c,xi+1,,xnx_{1},x_{2},\ldots,x_{l},c,x_{i+1},\ldots,x_{n}being ordered. Let's apply formula (9) by inserting a new point betweencc,xi+1x_{i+1}[which is always possible since E is assumed to be dense in the interval (has,ba,b)] and take the one of the divided differences that satisfies inequality (12). By repeating this procedure, two cases can arise:
10. Or, there always remainsiipoints to the left ofccAnd so there are divided differences.[x1,x2,,xi,c,xi+1,,xn;f]\left[x_{1},x_{2},\ldots,x_{i},c,x_{i+1}^{\prime},\ldots,x_{n}^{\prime};f\right]verifying (12), the pointsxi+1,,xnx_{i+1}^{\prime},\ldots,x_{n}^{\prime}being as close as we want to c, we can then find an ordered sequence.x1,x2,,xi,xi",1,xn"x_{1},x_{2},\ldots,x_{i},x_{i}^{\prime\prime}{}_{1},\ldots,x_{n}^{\prime\prime}, c such that formula (8) gives us
[x1,x2,,xi,x",i+1,x",nc;f]|>|[r1,x2,xi,c,x,i+1,x;nf]|εm2\|\left[x_{1},x_{2},\ldots,x_{i},x^{\prime\prime}{}_{i+1},\ldots,x^{\prime\prime}{}_{n},c;f\right]\left|>\left|\left[r_{1},x_{2},\ldots x_{i},c,x^{\prime}{}_{i+1},\ldots,x^{\prime}{}_{n};f\right]\right|-\frac{\varepsilon_{m}}{2}\right.
and then

|[x1,x2,,xi,xi+1",,xn",c;f]|>Δnεm.\left|\left[x_{1},x_{2},\ldots,x_{i},x_{i+1}^{\prime\prime},\ldots,x_{n}^{\prime\prime},c;f\right]\right|>\Delta_{n}-\varepsilon_{m}.

We take this difference divided forΔn(εm)\Delta_{n}\left(\varepsilon_{m}\right).
202^{0}Or, at some point, there is onlyi1i-1points on the left: ofccand we are brought back to the case101^{0}.

Finally, it therefore still exists inE1\mathrm{E}_{1}OrE2\mathrm{E}_{2}a difference dividedΔn(εm)\Delta_{n}\left(\varepsilon_{m}\right)verifying inequalities

The sequel

Δn|Δn(εm)|>Δnεm\Delta_{n}\geq\left|\Delta_{n}\left(\varepsilon_{m}\right)\right|>\Delta_{n}-\varepsilon_{m}
Δn(ε1),Δn(ε2),,Δn(εm),\Delta_{n}\left(\varepsilon_{1}\right),\Delta_{n}\left(\varepsilon_{2}\right),\ldots,\Delta_{n}\left(\varepsilon_{m}\right),\ldots

therefore has a limitΔ\Delta_{-}Now, there is certainly an infinite partial sequence located entirely in𝔈1\mathfrak{E}_{1}Or𝔈2\mathfrak{E}_{2}And this sequel obviously has the same limitation.Δn\Delta_{n}, which proves ownership.

We can easily deduce that
the nth bound of a function defined and with nth difference divided by bounds on a dense set in an interval (has,ba,b) is the same as on a subset contained within a subinterval of (has,ba,b), of any length you want.

The previous demonstration also shows us that if E is dense in an interval, the upper limit of{x1,x2,,xn+1;f}\left\{x_{1},x_{2},\ldots,x_{n+1};f\right\}\midis equal to its greatest limit.

Formula (9) further shows us that if|[x1,x2,,xn+1;f]|=Δn\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]\right|=\Delta_{n}the nth difference divided is constantly equal to{x1,x2,,xn+1;f}\left\{x_{1},x_{2},\ldots,x_{n+1};f\right\}in the smallest interval containing the pointsxix_{i}.

The study of functions whose divided nth difference is a constant A is equivalent to that of functions with zero nth difference, sincefHASxnf-\mathrm{A}x^{n}is such a function. Therefore, it is a polynomial function. To be more precise, we will say that it is a polynomial function of ordern1n-1It takes on E the values ​​of a polynomial of degreen1n-1.

If the terminalΔn\Delta_{n}is reached by[x1,x2,,xn+1;f]\left[x_{1},x_{2},\ldots,x_{n+1};f\right]the function is polynomial of ordernnon the part of E contained within the smallest interval containing the pointsxix_{i}. IfΔn>0\Delta_{n}>0, the degenerate of the polynomial: is indeed equal tonn6.
Between two terminalsΔn,Δm\Delta_{n},\Delta_{m}There is generally no relationship. Let's return to formula (7). Relation (1) shows us that
(13)

|[x1,x2,,xn;f]|HASk.Δk,k<n1\left|\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]\right|\leq A_{k}.\Delta_{k},k<n-1

OrA𝒌\mathbf{A}_{\boldsymbol{k}}depends on the pointsxix^{\prime}{}_{\boldsymbol{i}}The minimum A ofHASk\mathrm{A}_{k}depends only on the set E. We then have
(14)

Δn1HASΔk+BΔn,k<n1\Delta_{n-1}\leq\mathrm{A}\cdot\Delta_{k}+\mathrm{B}\cdot\Delta_{n},k<n-1

OrHAS,B\mathrm{A},\mathrm{B}depend only on the set E.
Generally speaking, between three boundsΔp,Δq,Δr,p<q<r\Delta_{p},\Delta_{q},\Delta_{r},p<q<rir:yyalways has a relationship of the formΔqHAS.Δp+B.Δr\Delta_{q}\leq\mathrm{A}.\Delta_{p}+\mathrm{B}.\Delta_{r}where A and B depend only on the set E.

In particular, suppose that E is a closed interval(has,b)(a,b)We can write

[x1,x2,,xn;fj\displaystyle\mid\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};fj\mid\right. 2|x1xn|Δn2\displaystyle\leq\frac{2}{\left|x_{1}^{\prime}-x_{n}^{\prime}\right|}\cdot\Delta_{n-2}
min2|x1xn|\displaystyle\min\cdot\frac{2}{\left|x_{1}^{\prime}-x_{n}^{\prime}\right|} =2bhas\displaystyle=\frac{2}{b-a}

The results of No. 5 show us that in order to minimize the coefficient ofJnJ_{n}in formula (7) it is permissible to take

x2=x3==xn1=x1=x2==xnx_{2}^{\prime}=x_{3}^{\prime}=\cdots=x_{n-1}^{\prime}=x_{1}=x_{2}=\cdots=x_{n}

We then obtain formula
(15)

Δn12hasbn2+(bhas)Δn\Delta_{n-1}\leq\frac{2}{a-b}\leftharpoonup_{n-2}+(b-a)\Delta_{n}
|[x1,x2,,xn;f]|2(xn+xn1x1x2)(xnx1)(xn1x1)(xnx2)Δn3n>3,x1<x2<xn1<xn\begin{gathered}\left|\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]\right|\leq\frac{2\left(x_{n}^{\prime}+x_{n-1}^{\prime}-x_{1}^{\prime}-x_{2}^{\prime}\right)}{\left(x_{n}^{\prime}-x_{1}^{\prime}\right)\left(x_{n-1}^{\prime}-x_{1}^{\prime}\right)\left(x_{n}^{\prime}-x_{2}^{\prime}\right)}\Delta_{n-3}\\ n>3,x_{1}^{\prime}<x_{2}^{\prime}<x_{n-1}^{\prime}<x_{n}^{\prime}\end{gathered}
Δn14(bhas)2Δn3+2(bhas)Δn(n>3)\Delta_{n-1}\leq\frac{4}{(b-a)^{2}}\Delta_{n-3}+2(b-a)\Delta_{n}\quad(n>3)

Let's take another one

The minimum of the coefficient ofΔ0\Delta_{0}is equal to ( 8 )

22n3(bhas)n1\frac{2^{2n-3}}{(b-a)^{n-1}}

(8) The maximum of the inverse of this quantity is indeed equal to the maximum of the polynomialxn1+x^{n-1}+\ldotsdeviating as little as possible from zero in the interval (has,ba,b). See Ch. de la Vallée Potjssin, "Lessons on the Approximation of Functions of a Real Variable," Chapter VI. The polynomial in question is:

(bhas)n122n8cos[(n1)arccos2xhasbbhas]\frac{(b-a)^{n-1}}{2^{2n-8}}\cos\left[(n-1)\arccos\frac{2x-a-b}{b-a}\right]

See: S. Bernstein "Lectures on Extreme Properties . . . etc." p. 6.
with

xi=b+has2bhas2cosi1n1π,i=1.2,,n.x_{i}^{\prime}=\frac{b+a}{2}-\frac{b-a}{2}\cos\frac{i-1}{n-1}\pi,\quad i=1,2,\ldots,n.

We then have

i=1n|xixi|i=1n|xihas|=bhas2(ni=1ncosi1n1π)=n2(bhas)\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right|\leq\sum_{i=1}^{n}\left|x_{i}^{\prime}-a\right|=\frac{b-a}{2}\left(n-\sum_{i=1}^{n}\cos\frac{i-1}{n-1}\pi\right)=\frac{n}{2}(b-a)

-hence the relation
'(17)

Δn122n8(bhas)n1Δ0+n2(bhas)Δn\Delta_{n-1}\leq\frac{2^{2n-8}}{(b-a)^{n-1}}\Delta_{0}+\frac{n}{2}(b-a)\Delta_{n}

In relations (15), (16), (17) we can obviously replacebhas-b-aby a smaller number.

The preceding inequalities are those of Mr. Hadamard()9\left({}^{9}\right)when we assume the existence of the nth derivative. We obtained them by a very simple method.
7. IfffAndφ\varphiare at nth difference divided by bounded,f+φf+\varphi, ef whereccis a constant are also at nth difference divided bounded.

The product of two functions with a bounded divided nth difference is still a bounded divided nth difference. This follows from the formula()10\left({}^{10}\right)

[αi,α2,,αk+1;f.φ]=t=0k[α1,α2,,αki+1;f].\displaystyle{\left[\alpha_{i},\alpha_{2},\ldots,\alpha_{k+1};f.\varphi\right]=\sum_{t=0}^{k}\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k-i+1};f\right].} (18)
[αki+1,αki+2,,αk+1;φ]\displaystyle{\left[\alpha_{k-i+1},\alpha_{k-i+2},\ldots,\alpha_{k+1};\varphi\right]}

which can be easily verified by induction using (1).
More generally, ifFFAndffare at nth difference divided bounded ,F(f)\mathbf{F}(f)It is too. This will result from a formula giving the difference - divided by a function of a function.

Let's state this.

fi=f(αi),i=1.2,,k+1f_{i}=f\left(\alpha_{i}\right),\quad i=1,2,\ldots,k+1

We obviously have a relationship of the form

[α1,α2,,αk+1;F(f)]=i=1k[fi,fi+1,,fk+1;F].\displaystyle{\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};\mathrm{F}(f)\right]=\sum_{i=1}^{k}\left[f_{i},f_{i+1},\ldots,f_{k+1};\mathrm{F}\right].} (19)
.HAS1(k)(α1,α2,,αk+1)\displaystyle.\mathrm{A}_{1}^{(k)}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)

(9) Voir par ex. T. Carleman "Les fonctions quasi-analytiques" (Paris, 1926) Chap. II.
( 10 ) C’est l’analogun en termes finis de la formule de Leibnitz. Pour des points équidistants elle a été signalée par M. E. Jacobsthal „Mittelwertbildung und Reihentransformation" Math. Zeitschr. t. 6 (1920) p. 100.
les Ai(k)(α1,α2,,αk+1)\mathrm{A}_{i}^{(k)}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right) ne dépendant que de la fonction f(x)f(x). Ces : quantités peuvent se calculer à l’aide des relations de récurrence

Ai(k)(α1,α2,,αk+1)=j=1i[α1,α2,,αk+1;f]Aij+1(k+1)(αj,αj+1,,αk)Ak(k)(α1,α2,,αk+1)=[α1,,αk+1;f)\begin{gathered}A_{i}^{(k)}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)=\sum_{j=1}^{i}\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]\cdot A_{i-j+1}^{(k+1)}\left(\alpha_{j},\alpha_{j+1},\ldots,\alpha_{k}\right)\\ A_{k}^{(k)}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)=\left[\alpha_{1},\ldots,\alpha_{k+1};f\right)\end{gathered}

Si nous désignons par dr,dr′′,,,dr(p)d_{r}^{\prime},d_{r}^{\prime\prime},,\ldots,d_{r}^{(p)} des différences divisées : d’ordre rr de la fonction f(x)f(x) sur des points αi\alpha_{i}, convenablement choisis le coefficient Ai(k)(α1,α2,,αk+1)A_{i}^{(k)}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right) est de la forme

d1d1′′d1(p)d2d2′′d2(q)dkdk′′a˙k(t)\sum d_{1}^{\prime}d_{1}^{\prime\prime}\ldots d_{1}^{(p)}d_{2}^{\prime}d_{2}^{\prime\prime}\ldots d_{2}^{(q)}\ldots d_{k}^{\prime}d_{k}^{\prime\prime}\ldots\dot{a}_{k}^{(t)} (20)

avec

p+q++t=ki+1,p+2q++kl=k()11p+q+\cdots+t=k-i+1,\quad p+2q+\cdots+kl=k\left({}^{11}\right) (21)

Par exemple si ff est à nème différence divisée bornée, fkf^{k} l’est : aussi si kn()12k\geq n\left({}^{12}\right), ou bien si kk est un entier positif. Si |f|>c>0|f|>c>0. sur E,fk\mathrm{E},f^{k} est à nème différence divisée bornée quel que soit kk. On en ena\mathrm{en}^{\mathrm{a}} déduit que le quotient de deux fonctions à nème différence divisée bornée l’est aussi si le dénominateur reste en module plus grand qu’un nombre positif. Nous en déduisons aussi que le module d’une fonction à nème différence divisée bornée n’est pas en général à nème différence : divisée bornée si n>1n>1.

Considérons une famille de fonctions ( ff ) définies sur un même ensemble E. Désignons par Δn\Delta_{n}^{*} la limite supérieure des nèmes bornes des fonctions de cette famille. On voit tout d’abord que si Δn\Delta_{n}^{*} est fini. toute fonction limite de la famille est à nème différence divisée bornéeet sa borne ne dépasse pas Δn\Delta^{*}{}_{n}. Si Δn\Delta^{*}{}_{n} est fini, il ne résulte pas encoreque Δ0,Δ1,,Δn1\Delta_{0}^{*},\Delta_{1}^{*},\ldots,\Delta_{n-1}^{*} sont finis. Mais si Δn,Δm(m<n)\Delta_{n}^{*},\Delta_{m}^{*}(m<n) sont finisil résulte des inégalités de M. Hadamard que Δm+1,Δm+2,,Δn1\Delta_{m+1}^{*},\Delta_{m+2}^{*},\ldots,\Delta_{n-1}^{*} sont aussi finis. Si les fonctions de la famille ne sont pas définies surle même ensemble des circonstances toutes différentes peuvent se présenter.

Considérons une suite d’ensembles finis E,1E,2,Em,\mathrm{E}^{*}{}_{1},\mathrm{E}^{*}{}_{2},\ldots,\mathrm{E}_{m}^{*},\ldots chacun contenant le précédent et ayant pour limite E\mathrm{E}^{*}, évidemment dénom-. brable ; inversement, tout ensemble dénombrable peut s’obtenir de
(11) La somme (20) s’étend à toutes les solutions en nombres entiers et. positifs du système (21) et à chaque solution correspondent (ki+1)!p!q!t!\frac{(k-i+1)!}{p!q!\ldots t!} termes La formule (19) donne à la limite la dérivée kème d’une fonction de fonction
(12) On considère bien entendu une branche réelle de la fonction fkf^{k}.
cette manière. Soit une suite de fonctions f1,f2,,fm,,fmf_{1},f_{2},\ldots,f_{m},\ldots,f_{m} étant définie sur Em,m=1,2,\mathrm{E}_{m}^{*},m=1,2,\ldots, et telle que

Δ0[fm;Em]Δ0,Δn[fm;Em]Δn,m=1,2,\Delta_{0}\left[f_{m};\mathrm{E}_{m}^{*}\right]\leq\Delta_{0},\quad\Delta_{n}\left[f_{m};\mathrm{E}_{m}^{*}\right]\leq\Delta_{n},\quad m=1,2,\ldots

Il existe alors au moins une fonction limite f(x)f(x) définie sur E\mathrm{E}^{*} wérifiant les inégalités

Δ0[f;E]Δ0,Δn[f;E]Δn\Delta_{0}\left[f;\mathrm{E}^{*}\right]\leq\Delta_{0},\quad\Delta_{n}\left[f;\mathrm{E}^{*}\right]\leq\Delta_{n}

La démostration est immédiate ()13\left({}^{13}\right).

§ 3. Propriétés des fonctions à nème variation bornée.

  1. 8.

    La formule (6) donne
    (22) |[x1,x2,,xn+1;f]||[x1,x2,,xn+1;f]|+(n+1)Vn\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]\right|\leq\leq\left|\left[x_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{n+1}^{\prime};f\right]\right|+(n+1)V_{n} donc, toute fonction à nème variation bornée est à nème différence divisée bornée.

La réciproque n’est pas vraie.
De (1) et de (5) nous déduisons Vn(n+1)(ba)Δn!1\mathrm{V}_{n}\leq(n+1)(b-a)\Delta_{n!1}, donc toute tonciion à ( n+1n+1 )ème différence divisée bornée est à nème variation bornée.

La réciproque n’est pas vraie ( (14).
Il èn résulte que toute fonction à nème variation bornée est aussi à (n1)(n-1) ème variation bornée. En particulier une telle fonction est toujours bornée.

Posons vn=vn(x1,x2,,xm)v_{n}=v_{n}\left(x_{1},x_{2},\ldots,x_{m}\right) en mettant en évidence les points (3). Soit vn(m)v_{n}^{(m)} la limite supérieure des vn(x1,x2,,xm)v_{n}\left(x_{1},x_{2},\ldots,x_{m}\right) lorsque les points varient sur E, leur nombre restant fixe. A tout ε>0\varepsilon>0 correspond donc au moins une suite (3) telle que

vn(x1,x2,,xm)>vn(m)εv_{n}\left(x_{1},x_{2},\ldots,x_{m}\right)>v_{n}^{(m)}-\varepsilon

On démontre facilement, à l’aide de la formule (9), que si on ajoute un nouveau point xx, compris par exemple entre xi,xi+1x_{i},x_{i+1}, on a

vn(x1,x2,,xl,x,xi+1,,xm)vn(x1,x2,,xm)v_{n}\left(x_{1},x_{2},\ldots,x_{l},x_{,}x_{i+1},\ldots,x_{m}\right)\geq v_{n}\left(x_{1},x_{2},\ldots,x_{m}\right)

d’où

vn(m+1)>vn(m)εv_{n}^{(m+1)}>v_{n}^{(m)}-\varepsilon

(13) La démonstration se fait par la méthode diagonale bien connue. Grâce aux travaux de M. Montel, c’est aujourd’hui une méthode courante dans ce genre de problèmes.
( 14 ) Il est facile de mettre en défaut la réciproque par des fonctions convenablement choisies et par des intégrations répétées.
donc

vn(m+1)vn(m)v_{n}^{(m+1)}\geq v_{n}^{(m)}

La quantité vn(m)v_{n}^{(m)} tend donc pour mm\rightarrow\infty vers une limite, qui est nécessairement égale à Vn\mathrm{V}_{n}. Si E contient mm points Vn=Vn(m)\mathrm{V}_{n}=\mathrm{V}_{n}^{(m)}. Si E contient une infinité de points VnV_{n} est aussi la plus grande des limites des vnv_{n}.

Il est à peu près évident que, si E* est un sous-ensemble de E, on a Vn[f;E]Vn[f;E]\mathrm{V}_{n}\left[f;\mathrm{E}^{*}\right]\leq\mathrm{V}_{n}[f;\mathrm{E}].

Prenons un point cc appartenant à E+E\mathrm{E}+\mathrm{E}^{\prime} et désignons par E4,E2\mathrm{E}_{4},\mathrm{E}_{2}, des parties de E comprises dans les intervalles fermés (a,c),(c,b)(a,c),(c,b).

Il est facile de voir que

Vn[f;E1]+Vn[f;E2][f;E].\mathrm{V}_{n}\left[f;\mathrm{E}_{1}\right]+\mathrm{V}_{n}\left[f;\mathrm{E}_{2}\right]\leq[f;\mathrm{E}].

Supposons maintenant que cc appartienne à E. Soit vnv^{\prime}{}_{n} la variation sur les points (3) auxquels on ajoute le point cc et vn′′,vn′′′v_{n}^{\prime\prime},v_{n}^{\prime\prime\prime} les variations sur les points de cette suite qui sont respectivement dans E1\mathrm{E}_{1} et 𝔼2\mathbb{E}_{2}. On peut prendre les points (3) de manière que

vn(m)ε<vnvnvn′′+vn′′′v_{n}^{(m)}-\varepsilon<v_{n}\leq v_{n}^{\prime}\leq v_{n}^{\prime\prime}+v_{n}^{\prime\prime\prime}

d’où

Vn[f;E]Vn[f;E1]+Vn[f;E2].\mathrm{V}_{n}[f;\mathrm{E}]\leq\mathrm{V}_{n}\left[f;\mathrm{E}_{1}\right]+\mathrm{V}_{n}\left[f;\mathrm{E}_{2}\right].

Nous avons donc dans ce cas

Vn[f;E]=Vn[f;E1]+Vn[f;E2]\mathrm{V}_{n}[f;\mathrm{E}]=\mathrm{V}_{n}\left[f;\mathrm{E}_{1}\right]+\mathrm{V}_{n}\left[f;\mathrm{E}_{2}\right] (23)
  1. 9.

    Si n>0n>0, une fonction à nème variation bornée est continue.

Soit E* un sous ensemble dénombrable de E, tel que E-E* apparđienne tout entier au dérivé de E\mathrm{E}^{*} ( E\mathrm{E}^{*} peut coïncider avec E ).

A toute variation vnv_{n} et à tout nombre ε>0\varepsilon>0, on peut faire correspondre une variation vnv^{*}{}_{n} sur E\mathrm{E}^{*} telle que vn<v+nεv_{n}<v^{*}{}_{n}+\varepsilon, donc : Vn[f;E]Vn[f;E]\mathrm{V}_{n}[f;\mathrm{E}]\leq\mathrm{V}_{n}\left[f;\mathrm{E}^{*}\right].

Mais on a aussi Vn[f;E]Vn[f;E]\mathrm{V}_{n}[f;\mathrm{E}]\geq\mathrm{V}_{n}\left[f;\mathrm{E}^{*}\right], donc :

Vn[f;E]=Vn[f;E]\mathrm{V}_{n}[f;\mathrm{E}]=\mathrm{V}_{n}\left[f;\mathrm{E}^{*}\right]

Nous pouvons toujours trouver une suite d’ensemble E\mathrm{E}^{*} finis 𝔼,1E,2,E,m\mathbb{E}^{*}{}_{1},\mathrm{E}^{*}{}_{2},\ldots,\mathrm{E}^{*}{}_{m},\ldots, chacun contenant le précédent, telle que la fonction soit complètement déterminée par ces valeurs sur la limite E\mathrm{E}^{*} de cette suite, et telle aussi qua

limmVn[f;Em]=Vn[f;E]\lim_{m\rightarrow\infty}\mathrm{\penalty 10000\ V}_{n}\left[f;\mathrm{E}_{m}^{*}\right]=\mathrm{V}_{n}[f;\mathrm{E}]

Ces propriétés résultent de la continuité. Elles restent donc vraies pour n=0n=0 si la fonction est continue. On voit aussi que dans ce cas (23) reste vraie même si cc est un point de EE^{\prime} :
10. Si f,φf,\varphi sont à nème variation bornée il en est de même pour f+φf+\varphi et cf,ccf,c étant une constante.

La formule (19) permet de montrer que si ff est à nème variation bornée et F à (n+1)(n+1) ème différence divisée bornée, F(f)\mathrm{F}(f) est à nème variation bornée. fkf^{k} l’est aussi pourvu que kn+1k\geq n+1 ou bien égal à un nombre entier positif. La propriété est vraie quel que soit kk si |f|>c>0|f|>c>0. On en déduit que le quotient de deux fonctions à nème variation bornée est à nème variation bornée si le dénominateur reste en module plusgrand qu’un nombre positif.

Il est à remarquer que fkf^{k} peut ne pas être à nème variatione bornée si k<n+1k<n+1. Par exemple la fonction

f(1n)=(1)nn3,n=1,2,3,f\left(\frac{1}{n}\right)=\frac{(-1)^{n}}{n^{3}},\quad n=1,2,3,\ldots

est à variation bornée ordinaire (d’ordre 0 ) tandis que f13f^{\frac{1}{3}}is unbounded in variation.

If the nth total variation of the functions of a family (ff) remains below a fixed number, any limit function has a total variation of ordernnat most equal to that number.

Finally, as in No. 7, a sequence of functionsf1,f2,f_{1},f_{2},\ldots,fm,f_{m},\ldots, defined respectively on finite setsE*,1E*,2ππE*,m\mathrm{E}^{*}{}_{1},\mathrm{E}^{*}{}_{2},\ldots\pi_{\pi}\mathrm{E}^{*}{}_{m},\ldotsand such

Δ0[fm;Em*]Δ0,Vn[fm;Em*]Vn\Delta_{0}\left[f_{m};\mathrm{E}_{m}^{*}\right]\leq\Delta_{0},\quad\mathrm{\penalty 10000\ V}_{n}\left[f_{m};\mathrm{E}_{m}^{*}\right]\leqslant\mathrm{V}_{n}

then there exists at least one limit function defined on the limit setE*\mathrm{E}^{*}and verifying the inequalities

Δ0[f;E*]Δ0,Vn[f;E*]Vn\Delta_{0}\left[f;\mathrm{E}^{*}\right]\leq\Delta_{0},\quad\mathrm{\penalty 10000\ V}_{n}\left[f;\mathrm{E}^{*}\right]\leq\mathrm{V}_{n}

Formula (22) also shows us, by reasoning analogous to that used in No. 6, that

ΔnHASΔ0+(n+1)Vn\Delta_{n}\leq\mathrm{A}\cdot\Delta_{0}+(n+1)\mathrm{V}_{n}

being a fixed number dependent on the setsE*m\mathrm{E}^{*}{}_{m}, this inequality being verified by all functionsfmf_{m}The limitf(x)f(x)can then be determined and it also verifies the inequality

Δn[f;E*]HAS.Δ0+(n+1)Vn\Delta_{n}\left[f;\mathrm{E}^{*}\right]\leq\mathrm{A}.\Delta_{0}+(n+1)\mathrm{V}_{n}

CHAPTER II.

DEFINITION AND MAIN PROPERTIES OF HIGHER-ORDER CONVEX FUNCTIONS.
§. 1. - Classification of functions of a real variable with respect to polynomials.
11. Considern+2n+2ordered points of the set E

x1,x2,,xn+2x_{1},x_{2},\ldots,x_{n+2} (24)

and represent the functionf(x)f(x)by the pointsHAStA_{t}coordinatesxi,f(xi),i=1.2,,n+2x_{i},f\left(x_{i}\right),i=1,2,\ldots,n+2.

The pointHASn+2\mathrm{A}_{n+2}can have three different positions relative to the representative curve (L) of the polynomial

P(x1,x2,,xn+1;fx)\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)

It can be above, on or below (L). We will say that the function is convex, polynomial, or concave for the points (24) according to the three cases.

Analytically, we will have the three relationships

f(xn+2)=P(x1,x2,,xn+1;fxn+2)f\left(x_{n+2}\right)=\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x_{n+2}\right)

Formula (2) allows us to write these relations in the form

[x1,x2,,xn,2;f]<>0\left[x_{1},x_{2},\ldots,x_{n,2};f\right]\stackrel{{\scriptstyle>}}{{<}}0 (25)

In this form, we see that the definition is independent of the order of the points.

If the points (24) are ordered, we can also write

U(x1,x2,,xn+2;f)<>0\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n+2};f\right)\stackrel{{\scriptstyle>}}{{<}}0

because in this case,V(x1,x2,,xn+2)>0\mathrm{V}\left(x_{1},x_{2},\ldots,x_{n+2}\right)>0In general ,
the pointHASLA_{l}will have a precise arrangement with respect to the polynomial

P(x1,x2,,xi1,xi+1,,xn2;fx).\mathrm{P}\left(x_{1},x_{2},\ldots,x_{i-1},x_{i+1},\ldots,x_{n\mid 2};f\mid x\right). (26)

The function is, for example, convex if the pointHASiA_{i}is above or below this line depending on whethern+2in+2-iis even or odd.

We can give the general definition:
The function will be called convex, non-concave, polynomial, non-convex or concave of ordernnon the set E following the differences divided by ordern+1n+1across all groups ofn+2n+2points of E>0,0,=0,0,<0>0,\geq 0,=0,\leq 0,<0.

These functions form the class of order functionsnn.
Forn=0n=0, we have monotonic functions. Forn=1n=1ordinary convex or concave functions.

If the functionf(x)f(x)is convex or concave,f(x)-f(x)is respectively concave or convex. We can take the non-concave function of ordernnas a type of order functionnnConvex and polynomial functions can then be considered special cases. In the study of order functionsnnUnless otherwise stated, these will always be non-concave functions.

It can happen that a function possesses several convexity properties of different orders. We will say that it belongs to the class (has,b,c,a,b,c,\ldots) if it possesses order propertieshas,b,c,a,b,c,\ldotsTo highlight the nature of the function, we will assign numbershas,b,c,a,b,c,\ldotsclues in the following manner:has,has*,has,has,has*a,a^{*},a,a^{\prime},a^{\prime*}depending on whether the function is non-concave, convex, polynomial, non-convex or concave of orderhasaIt is sometimes useful to distinguish functions of invariable sign. For the sake of uniformity in notation, we will agree to call them functions of order -1, and we will assign this number of indices, as above, depending on whether the function remains>0,0,=0,0,<0>0,\geq 0,=0,\leq 0,<012.
If we make the change of variables

x=αx+β,y=γy+δ,f1(x)=γf(αx+β)+δx=\alpha x^{\prime}+\beta,\quad y^{\prime}=\gamma y+\delta,\quad f_{1}\left(x^{\prime}\right)=\gamma f\left(\alpha x^{\prime}+\beta\right)+\delta

we obtain easily

[x4,x2,,xn+2;f]=γαn+1[x1,x2,,xn+2;f]\left[x_{4}^{\prime},x_{2}^{\prime},\ldots,x_{n+2}^{\prime};f\right]=\frac{\gamma}{\alpha^{n+1}}\left[x_{1},x_{2},\ldots,x_{n+2};f\right]

Therefore, changing the coordinate axes does not change the order of the function. Changing the units on the axes, or shifting the origin, does not change the convexity of the function. The nature of the function does not change if the orientation of both axes is changed, since the function is of even order, or if the orientation of the x-axis is changed, since the function is of odd order. In all other cases, the non-concave (convex) function changes to a non-convex (concave) function.

Lethas,ba^{\prime},b^{\prime}, the endpoints of a subset completely inside E. In the following (24) let us take the pointx1x_{1}in the interval
(has,hasa,a,hasa) closed on the right andxn+2x_{n+2}in the meantime (b,bb^{\prime},b) closed on the left. The function is, by definition, contained between the two polynomials L

(x1,x2,,xn+1;fx),P(x2,x3,,xn+2;fx)\mathbb{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right),\quad\mathrm{P}\left(x_{2},x_{3},\ldots,x_{n+2};f\mid x\right)

Any order functionn(0)n(\geq 0)is bounded on any subset completely inside the set on which this function is defined.

If E contains its endpoints, we can takex1=has,xn+2=bx_{1}=a,x_{n+2}=band we then see that a function of ordern(0)n(\geq 0)defined on a set containing its endpoints is bounded.

We can also note that iff(x)f(x)If a function belongs to a given class on E, it will belong to the same class on every subset of E, provided, of course, that convexity and polynomiality are considered special cases of non-concavity.
13. Let us now consider functions defined on a finite set.

Let us take a function defined on the ordered sequence (3) and use the notation (4); we then see that

The necessary and sufficient conditions for the tonction to be non-concave (convex, polynomial) of ordernnof (3) are:

Δn+1i0,(>0,=0),i=1.2,,mn1.\Delta_{n+1}^{i}\geq 0,(>0,=0),\quad i=1,2,\ldots,m-n-1.

These conditions are, by definition, necessary. Let us show that they are sufficient.

It suffices to show that of the hypothesis

Δn+11,Δn+120,(>0,=0)\Delta_{n+1}^{1},\Delta_{n+1}^{2}\geqslant 0,\quad(>0,=0)

One can conclude,

[x1,x2,,xi1,xi+1,,xn+3;f]0,(>0,=0)i=2.3,,n+1\begin{gathered}{\left[x_{1},x_{2},\ldots,x_{i-1},x_{i+1},\ldots,x_{n+3};f\right]\geq 0,(>0,=0)}\\ i=2,3,\ldots,n+1\end{gathered}

Let's construct L polynomials

P(x1,x2,,xn+1;f=x),P(x2,x3,,xn+2;fx)\displaystyle\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid=x\right),\quad\mathrm{P}\left(x_{2},x_{3},\ldots,x_{n+2};f\mid x\right) (27)
P(x1,x2,,xi1,xi+1,,xn+2;fx)\displaystyle\mathrm{P}\left(x_{1},x_{2},\ldots,x_{i-1},x_{i+1},\ldots,x_{n+2};f\mid x\right) (28)

and let the pointHASi(xi,f(xi))\mathrm{A}_{i}\left(x_{i},f\left(x_{i}\right)\right)We can verify from the figure that if the signs corresponded, not the polynomial (28) would have more in common with at least one of the polynomials (27)nnpoints (15) which can only happen if the three polynomials (27), (28) coincide. There is then a contradiction, which demonstrates the property. By repeating this process
(15) If two polynomials coincide without intersecting, this point counts at least as two points of intersection.
we can reach all the groups ofn+2n+2points of (3). The property also results very simply from formula (10).

The function being non-concave of ordernnon (3) the continuation
(29)

Δn+11,Δn+12,,Δn+1mn1\Delta_{n+1}^{1},\quad\Delta_{n+1}^{2},\ldots,\Delta_{n+1}^{m-n-1}

does not show any change in sign()16\left({}^{16}\right)Formula (1) then shows that the sequence

Δn1,Δn2,,Δn4m+n\Delta_{n}^{1},\quad\Delta_{n}^{2},\ldots,\Delta_{n_{4}}^{m+n}

is non-decreasing. IfffIf the sequence is convex, it is increasing, and if it is polynomial, the sequence has all its terms equal.

A polynomial function of ordernnis also polynomial of order: greater thannn, it can only be convex, polynomials; or concave of order(n1)()17(n-1)\left({}^{17}\right)For a diorder functionnnor also to ardre-n1n-1It suffices to add an additional condition, as we have shown: this demonstrates the monotonicity of the sequence (30). This condition is highlighted in the following table.

nature of ordernnof the function
n*n^{*} nn n¯\bar{n} n!n! n*n^{\prime*}
additional property Δn1>0\Delta_{n}^{1}>0 Δn>0\Delta_{n}^{\prime}>0 Δn>0\Delta_{n}^{\prime}>0 Δnmn>0\Delta_{n}^{m-n}>0 Δiimn>0\Delta_{ii}^{m-n}>0
(n1)*(n1)\frac{(n-1)^{*}}{(n-1)} ΔL=0\Delta_{l}^{\prime}=0 Δn=0\Delta_{n}^{\prime}=0 impossibility Δnmn=0\Delta_{n}^{m-n}=0 Δnmn=0\Delta_{n}^{m-n}=0
(n1)(n-1)^{\prime} Δnmn=0\Delta_{n}^{m-n}=0 Δmmn=0\Delta_{m}^{m-n}=0 Δn1=0\Delta_{n}^{1}=0 Δt=0\Delta_{t}^{\prime}=0
(n1)*(n-1)^{\prime*} Δnmn<0\Delta_{n}^{m-n}<0 Δnmn<0\Delta_{n}^{m-n}<0 Δn1<0\Delta_{n}^{1}<0 Δn<0\Delta_{n}^{\prime}<0 Δn<0\Delta_{n}^{\prime}<0

Now, for the function to be of order1,1,2,-1,1,2,\ldots, n we needmmconditions at most (including a possible additive constant corresponding to the order -1). For the function to be of class: given, it suffices to equate the divided differencesΔn+11,Δn+12,,Δn+1mn1\Delta_{n+1}^{1},\Delta_{n+1}^{2},\ldots,\Delta_{n+1}^{m-n-1},Δnin,Δn1in1,,Δ1i1\Delta_{n}^{i_{n}},\Delta_{n-1}^{i_{n-1}},\ldots,\Delta_{1}^{i_{1}}Andf(𝒳i0)f\left(\mathscr{X}_{i_{0}}\right)to suitably chosen numbers,iri_{r}being equal to 1 ormjm-jdepending on the nature of the class. We can see immediately that the system is still compatible under the stated restrictions, therefore:

There exist functions of a given class with a lead of m pointsp- {}_{\text{p- }}provided that this class meets the following conditions:
101^{0}The order conditionnnSince it is polynomial, all higher-order conditions are polynomial.
( 16 ) A sequenceα1,α2,\alpha_{1},\alpha_{2},\ldotspresents a variation in sign betweenαm,αm+1\alpha_{m},\alpha_{m+1}ifαm,αm+1<0\alpha_{m},\alpha_{m+1}<0. Ifαm+1=αm+2==αm+k1=0\alpha_{m+1}=\alpha_{m+2}=\cdots=\alpha_{m+k-1}=0there is a variation in sign betweenαm,αm+k\alpha_{m},\alpha_{m+k}whenαm.αm+k.<0\alpha_{m}.\alpha_{m+k}.<0(17 )
It is, moreover, necessarily to beardn1n-120.
The order conditionnnbeing the smallest condition for polymomiality, the order conditionn1n-1is convexity or concavity.

Eitherf(x)f(x)an order functionnndefined on any set. I say that if it is polynomial on an ordered sequencex1,x2,,xn+2x_{1},x_{2},\ldots,x_{n+2}it will necessarily be polynomial over the entire part of E contained within the closed interval (x1,xn+2x_{1},x_{n+2}).

Letx1,x2,,xn+2n+2x_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{n+2}^{\prime}n+2points of E in(x1,xn+2)\left(x_{1},x_{n+2}\right)not necessarily all distinct fromxix_{i}It is obviously sufficient to show that

[x1,x2,,xn+2;f]=0\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+2}^{\prime};f\right]=0

However, among the pointsxix_{i}^{\prime}there is at leastununwhich is distinct fromxix_{i}, For examplex4x_{4}{}^{\prime}, supposexi<x1<xi+1x_{i}<x_{1}{}^{\prime}<x_{i+1}.

11. It suffices to consider the two polynomialsLL
(x1,x2,,xt,x1,0xi+1,,xn;fx),P(x2,x3,,xi,x0,1xi+1,,xn+1;fx)\mathbb{P}\left(x_{1},x_{2},\ldots,x_{t},x_{1}{}^{0},x_{i+1},\ldots,x_{n};f\mid x\right),\mathrm{P}\left(x_{2},x_{3},\ldots,x_{i},x^{0}{}_{1},x_{i+1},\ldots,x_{n+1};f\mid x\right)
to see that ifHAS1(x1,f(x1))\mathrm{A}_{1}{}^{\prime}\left(x_{1}{}^{\prime},f\left(x_{1}{}^{\prime}\right)\right)is not found on

P(x1,x2,,xn+1;fx)\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)

The function cannot be of order n. Analytically, the property is immediate by virtue of formula (10).
14. If the functionf(x)f(x)is of ordernnOn (3) the sequence (29) does not show any sign variations. We can then deduce that the sequence

Δnk+11,Δnk+12,,Δnk+1mn+k1\Delta_{n-k+1}^{1},\Delta_{n-k+1}^{2},\ldots,\Delta_{n-k+1}^{m-n+k-1} (({31)(\{31))

presentskkSign variations at most ( 18 ).
Suppose thatf(x)f(x)be defined and of ordernnon E. We will assume that any function defined on less thann+2n+2points of ordernnand that its convex nature is the most unfavorable for the properties we have in mind.

We will say that two differences divided by any order

[α1,α2,,αr+1;f],[β1,β2,,βr+1;f]\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{r+1};f\right],\left[\beta_{1},\beta_{2},\ldots,\beta_{r+1};f\right]

are consecutive if we have

α1α2..<xr+1β1<β2<<βr+1\alpha_{1}\leq\alpha_{2}\leq\ldots..<x_{r+1}\leq\beta_{1}<\beta_{2}<\ldots<\beta_{r+1}

or generally
α1<α2<<α1=β1αi+1=β2<<αr+1=βri+2<βri+3<<βr+1\alpha_{1}<\alpha_{2}<\ldots<\alpha_{1}=\beta_{1}\leqslant\alpha_{i+1}=\beta_{2}<\ldots<\alpha_{r+1}=\beta_{r-i+2}<\beta_{r-i+3}<\ldots<\beta_{r+1}
Let's consider the pointsα,β,γ\alpha,\beta,\gamma dans l’intervalle ( a,ba,b ) tels que aαβγba\leq\alpha\leq\beta\leq\gamma\leq b. Soit E1\mathrm{E}_{1} la partie de E comprise dans l’inter-

00footnotetext: (18) Cela sésulte du fait que si a2a1,a3a2,,amam1a_{2}-a_{1},a_{3}-a_{2},\ldots,a_{m}-a_{m-1}, présente . π\pi variations, la suite, a1,a2,,ama_{1},a_{2},\ldots,a_{m} présente k+1k+1 variations au plus.

valle (α,β)(\alpha,\beta) et E2E_{2} la partie de EE comprise dans (β,γ)(\beta,\gamma). Le point β\beta appartient à l’un au moins des ensembles E1\mathrm{E}_{1} et E2\mathrm{E}_{2}. Nous dirons alors quo E1,E2\mathrm{E}_{1},\mathrm{E}_{2} sont deux sous-ensembles consécutifs de 𝐄\mathbf{E}.

Soit maintenant cc un point intérieur à l’intervalle ( a,ba,b ). Je disque la fonetion est d’ordre nkn-k dans le roisinage gauche et dons le voisinage droit de e.

Pour fixer les idées, démontrons la propriété pour le voisinage gauche. Considérons donc l’intervalle ( a,ca,c ) ouvert ò droite. Il faut démontrer qu’on peut trouver un point cc^{\prime} à gauche de cc tel que dansl’intervalle ( c,cc^{\prime},c ) ouvert à droite la fonction soit d’ordre nkn-k. Si cc n’appartient pas à E’ ou bien si c est point limite seulement de droite la propriété est évidente puisq’il n’y a alors qu’un nombre fini de points à gauche de c. Supposons donc que c soit point limite de gauche de EE et supposons que le point cc^{\prime} n’existe pas. On peut alors trouver un point α\alpha à gauche de cc tel que dans l’intervalle ( α,c\alpha,c ) ouvert à droite il existe deux différences divisées Δnk+1(1),Δnk+1(2)\Delta_{n-k+1}^{(1)},\Delta_{n-k+1}^{(2)} non nulles et de signes contraires. Les résultats du No. 13 nous montrent qu’on peut supposer que Δnk+1(1),Δnk+2(2)\Delta_{n-k+1}^{(1)},\Delta_{n-k+2}^{(2)} soient consécutives. Soit α\alpha^{\prime} le point le plus proche de cc qui intervient dans ces différences divisées. Dansl’intervalle ( α,c\alpha^{\prime},c ) ouvert à droite on peut trouver deux différences divisées consécutives Δnk+1(3),Δnk+1(4)\Delta_{n-k+1}^{(3)},\Delta_{n-k+1}^{(4)} non nulles et de signes contraires. Soit α′′\alpha^{\prime\prime} le point le plus proche de cc qui intervient dans ces différences divisées. On continue le procédé jusqu’à ce qu’on arrive au point α(k+1)\alpha(k+1). Nous avons ainsi une suite de différences divisées con-sécutives

Δnk+1(1),Δnk+1(2),,Δnk+1(2k+1),Δnk+1(2k+2)\Delta_{n-k+1}^{(1)},\Delta_{n-k+1}^{(2)},\ldots,\Delta_{n-k+1}^{(2k+1)},\Delta_{n-k+1}^{(2k+2)} (32)

qui, par construction, présente au moins k+1k+1 variations de signes.-
Considérons tous les points qui interviennent dans les différences. divisées (32) et formons la suite (31) correspondante. Gette suite a, pardéfinition au plus kk variations de signes. Or il y a contradiction puisque : (32) en est une suite partielle ( 19 ). L’existence du point cc^{\prime} est donc établie.

On démontre de la même manière la propriété pour le koisinago : droit de cc.

La propriété est vraie même pour k=n+1k=n+1.
Il résulte immédiatement de cette propriété qu’on pout décomposear l’ensenible E en un nombre fini d’ensemble consécutifs
(19) Il est clair qu’une suite présente au moins autant de variations de : signes qu’une quelconque de ses suites partielles.
(33)

E1,E2,,Em,\mathrm{E}_{1},\mathrm{E}_{2},\ldots,\mathrm{E}_{m},

tel que sur chacun la fonction soit d’ordre nkn-k.
Les ensembles E1\mathrm{E}_{1} et Em\mathrm{E}_{m} peuvent éventuellement être formés par les seuls points aa et bb et alors ils n’ont pas de point commun avec E2\mathrm{E}_{2} resp. Em1\mathrm{E}_{m-1}.

Supposons que la décomposition (33) soit faite de manière qu’on ne puisse pas remplacer ces ensembles par un nombre plus petit d’ensembles vérifiant la même propriété. On peut alors supposer que de deux ensembles Ei,Ei+1\mathrm{E}_{i},\mathrm{E}_{i+1} l’un au moins a au moins nk+2n-k+2 points.

Montrons qu’on peut former une suite de différences divisées

Δnk+1(1),Δnk+1(2),,Δnk+1(m)\Delta_{n-k+1}^{(1)},\Delta_{n-k+1}^{(2)},\ldots,\Delta_{n-k+1}^{(m)} (34)

toutes différentes de zéro et de signes alternés En effet il existe par hypothèse dans E1+E2\mathrm{E}_{1}+\mathrm{E}_{2} deux différences divisées non nulles et des signes contraires. On peut les supposer conséculives (No. 13) ; soient Δnl+1(1),Δnk+1(2)\Delta_{n-l+1}^{(1)},\Delta_{n-k+1}^{(2)}. De plus on peut toujours supposer qu’ou bien Δnk+1(1)\Delta_{n-k+1}^{(1)} soit dans E1\mathrm{E}_{1}, ou bien Δnk+1(2)\Delta_{n-k+1}^{(2)} soit dans E2\mathrm{E}_{2}. On voit alors qu’on peut trouver une différence divisée Δnk+1(3)\Delta_{n-k+1}^{(3)} consécutive à Δnk+1(2)\Delta_{n-k+1}^{(2)} et située dans E2+E3\mathrm{E}_{2}+\mathrm{E}_{3} telle que Δnk+1(2)Δnk+1(3)<0\Delta_{n-k+1}^{(2)}\cdot\Delta_{n-k+1}^{(3)}<0. En effet si celà n’était possible pour aucun choix de Δnk+1(1),Δnk+1(2)\Delta_{n-k+1}^{(1)},\Delta_{n-k+1}^{(2)} la fonction serait d’ordre nkn-k sur E2E37\mathrm{E}_{2}{}_{7}\mathrm{E}_{3}. Et ainsi de suite.

Formons la suite (31) correspondant à tous les points qui interviennent dans (34). Cette suite a au plus kk variations ; (34) en est une suite partielle, donc, m1km-1\leq k, d’où mk+1m\leq k+1.

On peut donc énoncer la propriété :
Si la fonction f(x)f(x) est d’ordre nn sur l’ensemble E , on peut décomposer cet ensemble en k+1k+1 ensembles consécutifs au plus sur chacun la fonction étant d’ordre nkn-k.

Cette décomposition peut en général être effectuée d’une infinité de manières. Dans certains cas, par exemple si la fonction est convexe et si E est un intervalle, la décomposition est unique. On peut le démontrer très facilement.

Si n=1n=1 la fonction jouit d’une propriété de convexité ordinaire. Une telle fonction se décompose en au plus deux fonctions monotones et en au plus trois fonctions de signe constant. Les ensembles extrèmes de décomposition peuvent se composer effectivement des points aa et bb seuls. Soit par exemple la fonction

f(0)=f(1)=1,f(x)=x1,(0<x<1).f(0)=f(1)=1,\quad f(x)=x-1,\quad(0<x<1).

Nous avons les décompositions :
si k=1k=1 les ensembles sont E1\mathrm{E}_{1} (point 0 ), E2\mathrm{E}_{2} (intervalle 0<x10<x\leq 1 )
si k=2k=2 les ensembles sont E1\mathrm{E}_{1} (point 0 ), E2\mathrm{E}_{2} (int. 0<x<10<x<1 ), E3\mathrm{E}_{3} (point 1 ).
15. Démontrons encore la propriété suivante

Toute fonction d’ordre n(0)n(\geq 0) définie sur un ensemble fermé alteint son maximum et son minimum.

Démontrons la propriété relative au maximum. Nous savons déjà que la fonction est bornée, il existe donc un nombre A tel que

f(x)<A1m sur E\displaystyle f(x)<\mathrm{A}-\frac{1}{m}\text{ sur }\mathrm{E}
f(x)>A1m en au moins un point de E\displaystyle f(x)>\mathrm{A}-\frac{1}{m}\text{ en au moins un point de }\mathrm{E}

et ceci pour tout nombre mm entier et positif.
Soit une suite monotone, par exemple

x1<x2<x3<<xm<x_{1}<x_{2}<x_{3}<\ldots\ldots<x_{m}<\ldots\ldots (35)

telle que f(xm)>A1mf\left(x_{m}\right)>\mathrm{A}-\frac{1}{m}.
A uńe extraction de suite près on peut supposer que la suite (35) soit telle qu’on ait xxm<1m,xx-x_{m}<\frac{1}{m},x étant le point limite de la suite.

Il suffit évidemment d’examiner le cas où la suite (35) est infinie. On a alors nécessairement x>xmx>x_{m} pour tout mm.

De l’inégalité

U(x1,x2,,xn,xm,x;f10(m>n)\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n},x_{m},x;f_{1}\geq 0\quad(m>n)\right.

nous déduisons

f(x)f(xm)+Bmf(x)\geq f\left(x_{m}\right)+\frac{\mathrm{B}}{m}

B étant une constante finie, done

A+1m>f(x)>A+B1m\mathrm{A}+\frac{1}{m}>f(x)>\mathrm{A}+\frac{\mathrm{B}-1}{m}

d’où

f(x)=A.f(x)=\mathrm{A}.

On démontre de la même manière la propriété relative au minimum.

De la définition résulte qu’une fonction convexe (ou concave) d’ordre nn ne peut prendre plus de n+1n+1 fois la même valeur. Démontrons la propriété suivante :

Une fonction convexe (ou concave) d’ordre n définie sur un ensem–ble dense dans un intervalle atteint son maximum en n+32(\left\lceil\frac{n+3}{2}\right\rceil\left(\right. ou n+22)\left.\left\lceil\frac{n+2}{2}\right\rceil\right) et son minimum en [n+22](\left[\frac{n+2}{2}\right]\left(\right. ou |n+32|)\left.\left|\frac{n+3}{2}\right|\right) points au plus, |x||x| désignant l’entier égal ou immédiatement inférieur à α\alpha

Pour fixer lés idées, supposons n=2mn=2m et démontions la propriété relative au minimum.

Supposons que contrairement à l’énoncé, le minimum A soit atteint aux points ordonnés

x1,x2,,xm+k+1mk>0x_{1},x_{2},\ldots,x_{m+k+1}\quad m\geq k>0 (36)

-en tout autre point la fonction étant plus grande que A.
On peut toujours intercaler entre les points (36) les points x1,x2,,xmk+1x_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{m-k+1}^{\prime} de E tels que la suite
(37) x1,x2,,x2k,x1,x2k+1,x2,x2k+2,,xm+k,xmk+1xmk+1x_{1},x_{2},\ldots,x_{2k},x_{1}^{\prime},x_{2k+1},x_{2}^{\prime},x_{2k+2},\ldots,x_{m+k},x_{m-k+1}^{\prime}\cdot x_{m-k+1} soit ordonnée.

Développant le premier membre de la relation
[x1,x2,,x2k,x1,x2k+1,x2,x2k+2,,xm+k,xmk+1,xm+k+1;f1>0\left[x_{1},x_{2},\ldots,x_{2k},x_{1}^{\prime},x_{2k+1},x_{2}^{\prime},x_{2k+2},\ldots,x_{m+k},x_{m-k+1}^{\prime},x_{m+k+1};f_{1}>0\right. nous avons

i=12m+2(1)i[f(ξi)A]ViV>0\sum_{i=1}^{2m+2}(-1)^{i}\left[f\left(\xi_{i}\right)-A\right]\cdot\frac{V_{i}}{V}>0 (38)

Nous avons par hypothèse

f(x1)=f(x2)==f(xm+k+1)=Af\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{m+k+1}\right)=\mathrm{A}

U’inégalité (38) devient donc

i=1mk+1f(xi)A]V2k+2i1V>0.\left.-\sum_{i=1}^{m-k+1}\mid f\left(x_{i}^{\prime}\right)-\mathrm{A}\right]\frac{\mathrm{V}_{2k+2i-1}}{\mathrm{\penalty 10000\ V}}>0. (39)

Nous savons que f(xi)>Af\left(x_{i}^{\prime}\right)>\mathrm{A} et que V>0,V2k+2i1>0,i=1,2,\mathrm{V}>0,\mathrm{\penalty 10000\ V}_{2k+2i-1}>0,i=1,2,\ldots, mk+1,()20m-k+1,\left({}^{20}\right) ce qui est en contradiction avec l’inégalité (39). La proeprietí est donc démontrée.

On procède de même dans les autres clas.
(²) En effet si la suite α1,α2,,αk\alpha_{1},\alpha_{2},\ldots,\alpha_{k} est ordonnée on a V(α1,α2,,αk)>0V\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k}\right)>0.

Si la fonction est convexe et si le nombre des points cù le maximum est atteint est n+32\left\lceil\frac{n+3}{2}\right\rceil, l’une des extrémités a,ba,b ou bien toutes les deux se trouvent parmi ces points suivant que nn est pair ou impair. Si le nombre des points où le minimum est atteint est [n+22]\left[\frac{n+2}{2}\right], l’une des extrémités se trouve parmi ces points lorsque nn est pair.
16. Si ff et φ\varphi sont deux fonctions de même classe, f+φf+\varphi et c.fc.fcc est une constante positive sont c ncore de même classe. On ne peut en général rien dire sur la classe du produit de deux fonctions. La formule (18) permet d’écrire les propriétés suivantes :

onctions c l a s s e s
ff (1,01,2,,n)!(1,0,1,2,,n(n))(-1,01,2,\ldots,n)!\left(-1,0^{\prime},1,2^{\prime},\ldots,n\left(n^{\prime}\right)\right) (1,0,1.2,,n)|(1,0,1,2,.,n(n))|(-1,0,1.2,\ldots,n)\left|\left(-1,0^{\prime},1,2^{\prime},.,n\left(n^{\prime}\right)\right)\right|
φ\varphi (1,0,1,2,,n)(-1,0,1,2,\ldots,n) (1,0,1,2,..,n(n))\left(-1,0^{\prime},1,2^{\prime},..,n\left(n^{\prime}\right)\right)
f.φf.\varphi (1,0,1,2,,n)(-1,0,1,2,\ldots,n) (1,0,1,2,,n)\left(-1,0^{\prime},1^{\prime},2^{\prime},\ldots,n^{\prime}\right)

De même la fonction de fonction F(f)F(f) peut s’étudicr avec la formule (19). On a par exemple les propriétés

fonctions c l a s s e s
ff (0,1,2,,n)|(0,1,2,3,,n(n))|(0,1,2,3,,n(n)(0,1,2,3,,n(n))(0,1,2,\ldots,n)\left|\left(0,1^{\prime},2,3^{\prime},\ldots,n\left(n^{\prime}\right)\right)\right|\left(0,1^{\prime},2,3^{\prime},\ldots,n\left(n^{\prime}\right)\mid\left(0^{\prime},1,2^{\prime},3,\ldots,n^{\prime}(n)\right)\right.
F (0,1,2,,n)|(0,1,2,\ldots,n)|
(0,1,2,3,,n(n))\left(0,1^{\prime},2,3^{\prime},\ldots,n\left(n^{\prime}\right)\right) (0,1,2,3,,n(n))\left(0^{\prime},1,2^{\prime},3,\ldots,n\left(n^{\prime}\right)\right) 0,1,2,,n0,1,2,\ldots,n
F(f)\mathrm{\penalty 10000\ F}(f) (0,1,2,,n)(0,1,2,\ldots,n) (0,1,2,3,n(n))\left(0,1^{\prime},2,3^{\prime}\ldots,n\left(n^{\prime}\right)\right)
(0,1,2,3,,n(n))\left(0^{\prime},1,2^{\prime},3,\ldots,n\left(n^{\prime}\right)\right) (0,1,2,3,,n(n))\left(0^{\prime},1,2^{\prime},3,\ldots,n^{\prime}(n)\right)

Il est possible d’établir des résultals plus précis. On peut monts er par exemple que si F est de la classe (0,1)(0,1) et si ff est d’ordre 1,F(t)1,\mathrm{\penalty 10000\ F}(t). est aussi d’ordre 1.

On en déduit par exemple que si 1>01>0 est de la classe ( 0,1 ’, 2,3,n(n)2,3^{\prime}\ldots,n\left(n^{\prime}\right) ) la fonction fp,0<p<1f^{p},0<p<1 est de la même classe et 1f\frac{1}{f} est de la classe (0,1,23,,n(n)\left(0^{\prime},1,2^{\prime}3,\ldots,n\left(n^{\prime}\right)\right..

Si ñous considérons la convexité et la polynomialité comme cas particuliers de la non-concavité on peut énoncer la propriété :

La limite d’une suite convergente de fonctions d’une même classe : est une fonction de la même classe.

Nous avons encore la propriété suivante :
Une fonction continue sur l’ensemble fermé 𝐄\mathbf{E} et d’une classe donnée sur un sous-ensemble E\mathrm{E}^{*}, tel que EE=E\mathrm{E}-\mathrm{E}^{*}=\mathrm{E}^{*\prime}, est de la même. classe sur E.

Cette proposition est vraie sans restrictions. Elle est immédiate
pour la non-concavité et la polynomialité et elle résulte pcur la con-vexité de la propriété démontrée à la fin du No. 13.

Soit maintenant une suite de fonctions

f1,f2,,fm,f_{1},f_{2},\therefore,f_{m},\ldots (40)

définies sur les ensembles finis E4,E2,,Em,\mathrm{E}_{4}{}^{*},\mathrm{E}_{2}{}^{*},\ldots,\mathrm{E}_{m}^{*},\ldots, compris chacun dans le suivant.

Si Δ0[fm;Em]Δ0,Vn[fm;Em]Vn\Delta_{0}\left[f_{m};\mathrm{E}_{m}{}^{*}\right]\leq\Delta_{0},\quad\mathrm{\penalty 10000\ V}_{n}\left[f_{m};\mathrm{E}_{m}{}^{*}\right]\leq\mathrm{V}_{n} et si les fonctions (40). sont de la même classe il existe une fonction limite ff, définie sur l’ensemble limite E\mathrm{E}^{*}, vérifiant les conditions signalées au No. 10 , et quis soit de la même classe.

§ 2. - Relations entre les fonctions d’ordre et de classe donnés et les fonctions étudiées au Chap. I.

  1. 17.

    Supposons que la fonction ff soit définie sur l’ensemble E1\mathrm{E}_{1}, formé par l’ensemble E et un point isolé 𝔵\mathfrak{x}. On vérifie facilement que si ff est à nème différence divisée bornée sur E , elle est aussi à nème différence divisée bornée sur E1\mathrm{E}_{1}.

Considérons maintenant une fonction d’ordre nn sur E. Soient a,ba^{\prime},b^{\prime} les extrémités d’un sous-ensemble complètement intérieur à E. En vertu de a remarque faite nous pourrons supposer qu’il y ait au. moins n+1n+1 points x1,x2,,xn+1x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime} dans l’intervalle ( a,aa,a^{\prime}) open to the right and at leastn+1n+1pointsx",1x",2,x"n+1x^{\prime\prime}{}_{1},x^{\prime\prime}{}_{2},\ldots,x^{\prime\prime}{}_{n+1}in the meantime (b,bb^{\prime},b) open on the left. Let us finallyx1,x2,,xn+1,n+1x_{1},x_{2},\ldots,x_{n+1},n+1points of the considered subset. Because the sequence (30) is monotonic, it follows that the difference divided[𝔵1,𝔵2,,𝔵n+1;f]\left[\mathfrak{x}_{1},\mathfrak{x}_{2},\ldots,\mathfrak{x}_{n+1};f\right]is included between the divided differences[x1,x2,,x;n+1f],[x1,"x2,",x";n+1f]\left[x_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x^{\prime}{}_{n+1};f\right],\left[x_{1}{}^{\prime\prime},x_{2}{}^{\prime\prime},\ldots,x^{\prime\prime}{}_{n+1}{}^{\prime};f\right] ; done

Any function of order n esì with nth divided difference bounded on every completely interior subset E.

It follows that any function of ordern(1)n(\geq 1)on E is continuous on every subset completely interior to E.

IfE*\mathrm{E}^{*}is a completely interior subset of E on a.

|[x1,x2,,xn+1;f]|Δn[f;E*]= finite number. \left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]\right|\leq\Delta_{n}\left[f;\mathbb{E}^{*}\right]=\text{ nombre fini. }

For any sequence of points (3) ofE\mathrm{E}^{\prime}we deduce from this.

i=1m1|Δni+1Δni|=|i=1m1(Δni+1Δni)|=|ΔΔnmn|2Δnf;E*]\left.\sum_{i=1}^{m-1}\left|\Delta_{n}^{i+1}-\Delta_{n}^{i}\right|=\left|\sum_{i=1}^{m-1}\left(\Delta_{n}^{i+1}-\Delta_{n}^{i}\right)\right|=\left|\Delta^{\prime}-\Delta_{n}^{m-n}\right|\leq 2\Delta_{n}\mid f;\mathrm{E}^{*}\right]

done:

Any order functionnnon E is at nth bounded variation on every subset completely inside E.

In the following section, we will establish a converse of this property.
18. Let us consider the functions defined on a finite set (3). It is easy to see that any function defined on this set can be decomposed into the difference of two functions of the class (1,0,1,2,,n-1,0,1,2,\ldots,n).

Let us indeed state
(41)

f=ϕψf=\phi-\psi

It is clear that we can takeϕ(x1)>0\phi\left(x_{1}\right)>0big enough so that we also haveψ(œ1)>0\psi\left(œ_{1}\right)>0Then we can takeϕ(w2)>0\phi\left(w_{2}\right)>0big enough so that we also have[x1,x2;ϕ]>0,ψ(x2)>0,[x1,x2;ψ]>0\left[x_{1},x_{2};\phi\right]>0,\psi\left(x_{2}\right)>0,\left[x_{1},x_{2};\psi\right]>0etc…. etc….

The decompositions (41) are obtained by writing

[𝔵i,𝔵i+1,,𝔵i+k;ϕ]12{1[𝔵,𝔵i+1,,𝔵i+k\displaystyle{\left[\mathfrak{x}_{i},\mathfrak{x}_{i+1},\ldots,\mathfrak{x}_{i+k};\phi\right]\geq\frac{1}{2}\left\{1\left[\mathfrak{x},\mathfrak{x}_{i+1},\ldots,\mathfrak{x}_{i+k}\right.\right.} (42)
+[𝔵i,𝔵i+1,,xi+k;f]}\displaystyle\left.+\left[\mathfrak{x}_{i},\mathfrak{x}_{i+1},\ldots,x_{i+k};f\right]\right\}
i=1,k=0,1,2,,n\displaystyle i=1,\quad k=0,1,2,\ldots,n
k=n+1i=1,2,3,,mn1.\displaystyle k=n+1\quad i=1,2,3,\ldots,m-n-1.

Consider the system

[x1,x2,xk+1;ϕ]=λkk=0,1,2,,n[x.xi+1,,xi+n+1;ϕ]=μii=1,2,3,,mn1\begin{array}[]{ll}{\left[x_{1},x_{2},\ldots x_{k+1};\phi\right]=\lambda_{k}}&k=0,1,2,\ldots,n\\ {\left[x_{.}x_{i+1},\ldots,x_{i+n+1};\phi\right]=\mu_{i}}&i=1,2,3,\ldots,m-n-1\end{array}

ademmlinear equations inϕ(x1),ϕ(x2),,ϕ(xm)\phi\left(x_{1}\right),\phi\left(x_{2}\right),\ldots,\phi\left(x_{m}\right)Taking into account that the sequence (3) is ordered and applying the fundamental formula (1) we easily find that in generalϕ(xi)\phi\left(x_{i}\right)is a linear and homogeneous expression ofλ1,λ2,,λn;μ1,μ2,,μmn1\lambda_{1},\lambda_{2},\ldots,\lambda_{n};\mu_{1},\mu_{2},\ldots,\mu_{m-n-1}-whose coefficients are non-negative.

Be it nowϕ*(x)\phi^{*}(x)any solution to the system of inequalities (42) andϕ(x)\phi(x)the solution qn'on obtains if we replace all the signs\geqby==The system thus obtained is indeed compatible and the solution is completely determined.

From the previous analysis, we deduce that we have

ϕ*(𝔵i)ϕ(𝔵i)i=1,2,3,,m.\phi^{*}\left(\mathfrak{x}_{i}\right)\geqslant\phi\left(\mathfrak{x}_{i}\right)\quad i=1,2,3,\ldots,m.

It is also easy to see that all the equalities can only take place at the same time if (42) is a system of equalities.

The decomposition (41) can be done in an infinite number of ways.

Among these decompositions heyyhas one for which the functionsϕ,ψ\phi,\psi. are the smallest possible (*1). From the above, it follows that this canonical decomposition is obtained by the formulas

f(x)=ϕ(x)ψ(x) on (3)f(x)=\phi(x)-\psi(x)\quad\text{ sur }(3)

(43)[𝔵i,𝔵i+1,,𝔵i+k;ϕ]=12{|[𝔵i,𝔵i+1,,𝔵i+k;f]|+\left[\mathfrak{x}_{i},\mathfrak{x}_{i+1},\ldots,\mathfrak{x}_{i+k};\phi\right]=\frac{1}{2}\left\{\left|\left[\mathfrak{x}_{i},\mathfrak{x}_{i+1},\ldots,\mathfrak{x}_{i+k};f\right]\right|+\right.

+[xi,xi+1,,xi+k;f]}i=1,k=0,1,2,,nk=n+1,i=1,2,3,,mn1.\begin{gathered}\left.\quad+\left[x_{i},x_{i+1},\ldots,x_{i+k};f\right]\right\}\\ i=1,\quad k=0,1,2,\ldots,n\\ k=n+1,\quad i=1,2,3,\ldots,m-n-1.\end{gathered}

This decomposition has the following properties:
101^{0}. There(n+1)ee(n+1)eefunction limitsϕ\phiAndψ\psiis at most equal to the calle offf20.
The total variation of ordernnfunctionsϕ\phiAndψ\psidoes not exceed that offf30.
The functionsϕ,ψ\phi,\psiare bounded by a quantity dependent on only the properties up to the ordernnofffand of an interval which contains the points (3), but not of the number of these points.
101^{0}, And202^{0}are immediate. To demonstrate property 30, note that by denoting byΔk,Vk\Delta_{k},\mathrm{\penalty 10000\ V}_{k}the limits and total variations: offfwe have

|[x1,x2,,xk;ϕ]|Δk1k=1.2,,n\displaystyle\left|\left[x_{1},x_{2},\ldots,x_{k};\phi\right]\right|\leq\Delta_{k-1}\quad k=2,\ldots,n
|[xi,xi+1,,xi+n;ϕ]|12(Vn+2Δn)i=1.2,,mn\displaystyle\left|\left[x_{i},x_{i+1},\ldots,x_{i+n};\phi\right]\right|\leq\frac{1}{2}\left(\mathrm{\penalty 10000\ V}_{n}+2\Delta_{n}\right)\quad i=2,\ldots,m-n

what we obtain by suitably adding relations (43). Taking (1) into account, we deduce

|x1,x2,,xk;ϕ1|Δk1k=1.2,,n1|[x1,xi+1,,xi+n1;ϕ]|<Δn1+n2,bhas)(Vn+2Vn)i=2.3,,mn+1\begin{gathered}\left|x_{1},x_{2},\ldots,x_{k};\phi_{1}\right|\leq\Delta_{k-1}\quad k=1,2,\ldots,n-1\\ \left.\left|\left[x_{1},x_{i+1},\ldots,x_{i+n-1};\phi\right]\right|<\Delta_{n-1}+\frac{n}{2},b-a\right)\left(\mathrm{V}_{n}+2\mathrm{\penalty 10000\ V}_{n}\right)\\ i=2,3,\ldots,m-n+1\end{gathered}

Or (has,ba,b) is an interval containing the points (3). By repeating co: process we arrive at the limitation

|ϕ|<i=0n1i!(bhas)iΔi+n!(bhas)n12(Vn+2Δn) on (3) |\phi|<\sum_{i=0}^{n-1}i!(b-a)^{i}\Delta_{i}+n!(b-a)^{n}\cdot\frac{1}{2}\left(\mathrm{\penalty 10000\ V}_{n}+2\Delta_{n}\right)\quad\text{ sur (3) }

(21) A functionffis "smaller" than another functionf1f_{1}if weatf1\mathbf{a}_{-}t\leq f_{1}on the common set of the two sets where the functions are defined, the sign < taking place for at least one value of the variable.

This formula also applies toψ\psiIt is rather crude, but sufficient to demonstrate the property303^{0}since it does not deprive Mr.

Let us now consider any functionffto nth bounded variation on a set𝐄\mathbf{E}and supposen>0n>0Since the function is continuous, it is completely determined by its values ​​on a countable subset.E*\mathrm{E}^{*}such asEE*\mathrm{E}-\mathrm{E}^{*}belongs to the derivative ofE*\mathrm{E}^{*}.

Let us now consider E* as the limit of a sequence of finite setsE*,1E*,2E*,m\mathrm{E}^{*}{}_{1},\mathrm{E}^{*}{}_{2},\ldots\mathrm{E}^{*}{}_{m},\ldotseach containing the previous one and are

f=ϕmψmm=1.2,f=\phi_{m}-\psi_{m}\quad m=1,2,\ldots

The minimal decompositions on these sets.

{ϕ1,ϕ2,,ϕn,ψ1,ψ2,,ψm,\left\{\begin{array}[]{l}\phi_{1},\phi_{2},\ldots,\phi_{n},\ldots\\ \psi_{1},\psi_{2},\ldots,\psi_{m},\ldots\end{array}\right.

are also bounded, of the class(1,0,1,2,,n)(-1,0,1,2,\ldots,n)and their total variation of ordernndoes not exceedVn[f;E]\mathrm{V}_{n}[f;\mathrm{E}]We then know that the functionsϕi\phi_{i}have at least one limitϕ\phionE*\mathrm{E}^{*}and consequently theψi\psi_{i}also have a limitψ\psisuch as

Vn[ϕ;E*]Vn[f;E],Vn[ψ;E*]Vn[f;E]ϕ,ψ of the class (1,0,1,2,,n)f=ϕψ on E*\begin{gathered}\mathrm{V}_{n}\left[\phi;\mathrm{E}^{*}\right]\leq\mathrm{V}_{n}[f;\mathrm{E}],\quad\mathrm{V}_{n}\left[\psi;\mathrm{E}^{*}\right]\leq\mathrm{V}_{n}[f;\mathrm{E}]\\ \phi,\psi\text{ de la classe }(-1,0,1,2,\ldots,n)\\ f=\phi-\psi\quad\text{ sur }\mathrm{E}^{*}\end{gathered}

By the principle of continuity, we deduce the following property:
Every function with bounded nth variation is the difference of two functions of the class(1,0,1,2,,n)(1,0,1,2,\ldots,n)and whose nth total variation does not exceed that off(τ))(22\left.f(\tau){}^{(22}\right).

Eitherf=ϕψf=\phi-\psithe minimum decomposition on the sequence (3). Let's add a new point to points (3).x0x_{0}and eitherf1=ϕ1ψ1f_{1}=\phi_{1}-\psi_{1}the minimum decomposition on the new sequence obtained (f1=ff_{1}=fon (3)). It is easily shown using formulas (43) that we haveϕϕ1\phi\leq\phi_{1}on (3) (23). We deduce that the sequences (44) do indeed have a limit.

It follows that the decomposition obtained above for any set also satisfies the minimum property, that is to say-

00footnotetext: (22) Pour le cas n=1n=1 M. A. Winternitz (voir loc. cit. 5) a démontré que toute fonction à première variation bornée (Funktion von beschränkter Drehung) est la différence de deux fonctions d’ordre 1. La méthode de cet -auteur est différente de celle employée ici.
(23) L’égalité peut d’ailleurs avoir lieu partout. Si xi<x0<xi+1x_{i}<x_{0}<x_{i+1} on a certaimement ϕ(xj)=ϕ1(xj),j=1,2,,i\phi\left(x_{j}\right)=\phi_{1}\left(x_{j}\right),j=1,2,\ldots,i.

to say that among all the functionsϕ,ψ\phi,\psiclass(1,0,1,2,,n)(-1,0,1,2,\ldots,n)verifying equalityf=ϕψf=\phi-\psiThose obtained above are the smallest possible. Otherwise, in fact, it would show that there exists ammm_{m}for whichf=ϕmψmf=\phi_{m}-\psi_{m}is not the minimum decomposition onE*m\mathrm{E}^{*}{}_{m}-which is impossible.

We assumedn>0n>0. Ifn=0n=0the functionffis not generally continuous, but its points of discontinuity form a countable set. It suffices to take the set E* such that it contains the set of discontinuities; the method is then applicable and necessarily leads to the minimum decomposition into two non-negative and non-decreasing functions, which is well known.

CHAPTER III.

ON THE DERIVATIVES OF THE FUNCTIONS OF A REAL VARIABLE.

§ 1. - Some remarks on the definition
of the derivative of ordernn.

  1. 19.

    We will now assume that the functionf(x)f(x)either decorated on E. When the pointsx1,x2,,xnT1x_{1},x_{2},\ldots,x_{n_{T1}}tend towards a pointxxofE\mathrm{E}^{\prime}the difference divided

[x1,x2,,xn+1;f]\left[x_{1},x_{2},\ldots,x_{n+1};f\right] (45)

does not generally tend towards any limit.
We will designate byfn(x)f_{n}(x)the limit of the divided difference (45), if it exists, is finite and well-determined when the pointsx1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}tend in some way towardsxx.

Suppose that the pointxxbelongs to E, we will then designate byfn(x)*f_{n}{}^{*}(x)the limit of the difference divided[x,x1,x2,,xn;f]\left[x,x_{1},x_{2},\ldots,x_{n};f\right]if it exists, is finite and well-defined when the pointsx1,x2,,xnx_{1},x_{2},\ldots,x_{n}tend in some way towardsxx.

It can easily be demonstrated that in order thatfn(x)f_{n}(x)exists, it is necessary and sufficient that for every numberε>0\varepsilon>0we can match a numberη>0\eta>0such as
(46)[x1,x2,,xn+1;f][x1,x2,,xn+1;f]<ε\quad\left[x_{1},x_{2},\ldots,x_{n+1};f\right]-\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime};f\right]\mid<\varepsilon, InI(x;η)(24)\mathrm{I}(x;\eta){}^{(24)}.

This inequality can also be replaced by the following (formula (6)):
(47)|[x1,x2,,xn+1;f][x2,x3,,xn+2;f]|<ε\quad\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]-\left[x_{2},x_{3},\ldots,x_{n+2};f\right]\right|<\varepsilon, InI(x;η)\mathrm{I}(x;\eta)
( 24 ) I(x;η)\mathrm{I}(x;\eta)denotes the midpoint intervalxxand lengthη\eta.

We can also takeη>0\eta>0so that

|[x1,x2,,xn+1;f]fn(x)|<ε, In I(x;η)\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]-f_{n}(x)\right|<\varepsilon,\quad\text{ dans }\mathrm{I}(x;\eta) (48)

The same properties hold true forfn*(x)f_{n}^{*}(x)by including* the pointxxin all the divided differences of formulas (46), (47) and (48).

Formula (9) shows that iffn*(x)f_{n}^{*}(x)exists, the divided difference (45) tends towardsfn(x)*f_{n}{}^{*}(x)when the pointsx1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}tend towardsxxprovided that the quotient

|xx1x1x2|\left|\frac{x-x_{1}}{x_{1}-x_{2}}\right|

remains bounded. Indeed, in this case, any limit of (45) is finite, and from any sequence of divided differences converging to a limit, we can extract a new sequence such that

xx1x1x2\frac{x-x_{1}}{x_{1}-x_{2}}

has a limit, which is finite by hypothesis. Formula (9) then shows that this sequence of divided differences tends towardsfn(x)*()25f_{n}{}^{*}(x)\left({}^{25}\right).

We will assume that E is closed.
The existence offn(x)f_{n}(x)entails by definition that offn(x)*f_{n}{}^{*}(x)By definition ,
thennth derivativef(n)(x)f^{(n)}(x)is the derivative of the(n1(n-1the th derivative and, by definition, also the first derivativef(x)f^{\prime}(x)is identical tof1(x)*f_{1}{}^{*}(x).
f(n)(x)f^{(n)}(x)can therefore be defined on the setE(n)\mathrm{E}^{(n)}and it is evident that its existence implies that off(n1)(x)f^{(n-1)}(x)in all aspects ofE(n1)\mathrm{E}^{(n-1)}in a neighborhoodI(x;η),η>0\mathrm{I}(x;\eta),\eta>0ofxxWhen we talk about the continuity off(n)(x)f^{(n)}(x)at one pointxxofE(n)E^{(n)}we assume, of course, that this derivative exists in the neighborhood ofxx20.
From (46) we deduce that iffn(x)f_{n}(x)exists at a pointxxof :E\mathrm{E}^{\prime}the function is a divided nth difference function bounded in the neighborhood ofxxIf the function is at(n+1)(n+1)nth difference divided bounded,fn(x)f_{n}(x)exists at every point ofE\mathrm{E}^{\prime}and is continuous (onE\mathrm{E}^{\prime}). Iffn(x)f_{n}(x)exists in. every point ofE\mathrm{E}^{\prime}It is continuous, therefore necessarily bounded. It follows that the function has a bounded nth difference. In this case, inequality (46) holds uniformly on E.

Iffn(x)f_{n}(x)exists at a pointx,fn1(x)x,f_{n-1}(x)also exists at this point and:
(25) This remark allows us to definefn(x)*f_{n}{}^{*}(x)even at a point ofE\mathrm{E}^{\prime}which does not belong to E, but it is unnecessary to consider this extension.
in its neighborhood, but it should be noted thatfn(x)f_{n}(x)can exist at a point (ofE"E^{\prime\prime}) without existing in its vicinity ( 26 ).

Iffn*(x)f_{n}^{*}(x)exists at a pointx,fn1*(x)x,f_{n-1}^{*}(x)also exists at this point, but not generally in its vicinity ( 27 ).

Finallyfn*(x)f_{n}^{*}(x)can exist at a point and even be continuous withoutfn(x)f_{n}(x)exists ( 28 ).

We can demonstrate the following property:
(26) Let the function

f(0)=0,f(1n)=0,n=2.3,f(1n+1+13pn(n+1))=0,p=1.2,n=2.3,f(1n+1+123pn(n+1))=123p1n2(n+1),p=1.2,n=2.3,\begin{array}[]{ll}f(0)=0,f\left(\frac{1}{n}\right)=0,&n=2,3,\ldots\\ f\left(\frac{1}{n+1}+\frac{1}{3^{p}n(n+1)}\right)=0,&p=1,2,\ldots n=2,3,\ldots\\ f\left(\frac{1}{n+1}+\frac{1}{2\cdot 3^{p}n(n+1)}\right)=\frac{1}{2\cdot 3^{p-1}n^{2}(n+1)},&p=1,2,\ldots n=2,3,\ldots\end{array}

The wholeEE^{\prime}is formed by the points

12,13,,1n,, And 0\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots,\text{ et }0

At the points12,13,,f1(𝓍)\frac{1}{2},\frac{1}{3},\ldots,f_{1}(\mathcal{x})does not exist, on the contrary|[x1,x2;f]|1n\left|\left[x_{1},x_{2};f\right]\right|\leq\frac{1}{n}In(0,1n)\left(0,\frac{1}{n}\right)SOf1(0)f_{1}(0)exists and is equal to zero.
(27) Consider the function defined for0x120\leq x\leq\frac{1}{2}in the following way
f(0)=0,.f(x)=12n+1n(x12n+1)f(0)=0,.f(x)=\frac{1}{2^{n+1}n}\left(x-\frac{1}{2^{n+1}}\right)For12n+1x32n+2,n=1,2,3,\frac{1}{2^{n+1}}\leq x\leq\frac{3}{2^{n+2}},n=1,2,3,\ldots

f(x)=12n+1n(x12n) For 32n+2x12nn=1,2,3,f(x)=-\frac{1}{2^{n+1}n}\left(x-\frac{1}{2^{n}}\right)\quad\text{ pour }\frac{3}{2^{n+2}}\leq x\leq\frac{1}{2^{n}}\quad n=1,2,3,\ldots

We check thatf2*(0)f_{2}^{*}(0)exists and is equal to zero, whilef2*(x)f_{2}^{*}(x)obviously does not exist at points122,123,124,\frac{1}{2^{2}},\frac{1}{2^{3}},\frac{1}{2^{4}},\ldots
(28) It suffices to take the function

f(0)=0,f(1n)=0,n=2.3,,f(1n+1+12np(n+1))=0,p=1.2,,n=1.2,,f(1n+1+1(2p+1)n(n+1))=1p2n(n+1),p=1.2,,n=1.2,,\begin{array}[]{lr}f(0)=0,f\left(\frac{1}{n}\right)=0,&n=2,3,\ldots,\\ f\left(\frac{1}{n+1}+\frac{1}{2np(n+1)}\right)=0,&p=1,2,\ldots,n=1,2,\ldots,\\ f\left(\frac{1}{n+1}+\frac{1}{(2p+1)n(n+1)}\right)=\frac{1}{p^{2}n^{\prime}(n+1)},p=1,2,\ldots,n=1,2,\ldots,\end{array}

f1*(x)f_{1}^{*}(x)exists in every respect0,12,13,0,\frac{1}{2},\frac{1}{3},\ldots, butf1(0)f_{1}(0)does not exist.

Iffn(x)f_{n}(x)exists at a point ofE(n)\mathrm{E}^{(n)}the nth derivativef(n)(x)f^{(n)}(x)exists at this point and we have equality:

f(n)(x)=n!fn(x)f^{(n)}(x)=n!f_{n}(x)

Indeed, there is a numberη>0\eta>0such as inI(x;γ1)\mathrm{I}\left(x;\gamma_{1}\right)the nth difference divided byf(x)f(x)does not exceed the finite number A in modulus. All limitsf1(x),f2(x),,fn1(x)f_{1}(x),f_{2}(x),\ldots,f_{n-1}(x)exist inI(x;η)\mathrm{I}(x;\eta)We can then prove the property by induction. It is obvious forn=1n=1Let us therefore assume that it is true for1.2,,n11,2,\ldots,n-1and let's take it apart tonnTo allε>0\varepsilon>0corresponds to aη1η\eta_{1}\leq\etasuch that ifxx^{\prime}is a point ofE(n1)\mathrm{E}^{(n-1)}InI(x;η1)\mathrm{I}\left(x;\eta_{1}\right)and ifx1,x2,,xnx_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{n}{}^{\prime}are close enough toxx^{\prime}Andx1,x2,,xnx_{1},x_{2},\ldots,x_{n}sufficiently close toxxwe have at the same time

|[x1,x2,,xi,xi,xi+1,,xn;f]fn(x)|<ε3n,|1xixixx|<ε3nHASi=1.2,,n|[x1,x2,,xn]fn1(x)|<|xx|6ε|[x1,x2,,xn;f]fn1(x)|<|xx|6ε\begin{gathered}\left|\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i}^{\prime},x_{i},x_{i+1},\ldots,x_{n};f\right]-f_{n}(x)\right|<\frac{\varepsilon}{3n},\left|1-\frac{x_{i}^{\prime}-x_{i}}{x^{\prime}-x}\right|<\frac{\varepsilon}{3n\mathrm{\penalty 10000\ A}}\\ i=1,2,\ldots,n\\ \left|\left[x_{1},x_{2},\ldots,x_{n}\right]-f_{n-1}(x)\right|<\frac{\left|x^{\prime}-x\right|}{6}\varepsilon\\ \left|\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]-f_{n-1}\left(x^{\prime}\right)\right|<\frac{\left|x^{\prime}-x\right|}{6}\varepsilon\end{gathered}

But, hypothetically

fn1(x)=1(n1)!f(n1)(x),fn1(x)=1(n1)!f(n1)(x)f_{n-1}(x)=\frac{1}{(n-1)!}f^{(n-1)}(x),\quad f_{n-1}(x)=\frac{1}{(n-1)!}f^{(n-1)}\left(x^{\prime}\right)

We have done
|1(n1)!f(n1)(x)f(n1)(x)xx[x1,x2,,xn;f][x1,x2,,xn;f]xx|<ε3\left|\frac{1}{(n-1)!}\frac{f^{(n-1)}(x)-f^{(n-1)}\left(x^{\prime}\right)}{x-x^{\prime}}-\frac{\left[x_{1},x_{2},\ldots,x_{n};f\right]-\left[x_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{n}{}^{\prime};f\right]}{x-x^{\prime}}\right|<\frac{\varepsilon}{3}

|nfn(x)i=1nxixixxi[x1,x2,,xi,xi,,xn;f]|<2ε3\left|nf_{n}(x)-\sum_{i=1}^{n}\frac{x_{i}-x_{i}^{\prime}}{x-x_{i}}\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i}^{\prime},x_{i},\ldots,x_{n};f\right]\right|<\frac{2\varepsilon}{3}

Formula (6) gives

|n!fn(x)f(n1)(x)f(n1)(x)xx|<ε In I(x;η1)\left|n!f_{n}(x)-\frac{f^{(n-1)}(x)-f^{(n-1)}\left(x^{\prime}\right)}{x-x^{\prime}}\right|<\varepsilon\quad\text{ dans }\mathrm{I}\left(x;\eta_{1}\right)

which demonstrates the property.
We deduce that so thatf(n)(x)f^{(n)}(x)exists and either continues onE(n)E^{(n)}it is enough thatfn(x)f_{n}(x)exists onE(n)E^{(n)}, but it should be noted that this condition is not generally necessary.

Let us also note that, from the existence offn*(x)f_{n}^{*}(x), we cannot generally conclude that off(n)(x)(n>1)f^{(n)}(x)(n>1)21.
More precise properties can be obtained if E is a closed win interval (has,ba,b). Stieltjes demonstrated ( 29 ) in fact that:

Iff(n)(x)f^{(n)}(x)exists and is continuous at the pointx,fn(x)x,f_{n}(x)exists and we have

fn(x)=f(n)(x)n!f_{n}(x)=\frac{f^{(n)}(x)}{n!}

Comparing this with what was said above, we see that:
The necessary and sufficient condition for a functionf(x)f(x)ubéfinite and bounded in the interval (has,ba,b) has a continuous nth derivative - in this interval is that the divided nth difference is uniformly continuous in (has,ba,b).

We already know that the nth difference divided is uniformly continuous if at every number=ε>0=\varepsilon>0and in every respectxxof(has,b)(a,b)we can match a numberη>0\eta>0such that one has
[x1,x2,,xn+1;f|[x2,x3,,xn+2;f]|<εInI(x;η)\because\mid\left[x_{1},x_{2},\ldots,x_{n+1};f\left|-\left[x_{2},x_{3},\ldots,x_{n+2};f\right]\right|<\varepsilon\operatorname{dans}\mathrm{I}(x;\eta)\right.
In the case of an interval, if fn(x)*f_{n}{}^{*}(x)exists and is continuous at the pointx,fn(x)x,f_{n}(x)also exists at this point. Let us suppose, in fact, that in𝕀(x;δ),δ>0,fn*(x)\mathbb{I}(x;\delta),\delta>0,f_{n}^{*}(x)exists and either continues to the pointxxTo allε>0\varepsilon>0corresponds to aη,(0<ηδ)\eta,(0<\eta\leq\delta)such as

|fn*(x)fn*(x)|<ε In I(x;η)\left|f_{n}^{*}(x)-f_{n}^{*}\left(x^{\prime}\right)\right|<\varepsilon\quad\text{ dans }\mathrm{I}(x;\eta)
fn*(xn)=[x1,x2,,xn+1;f]f_{n}^{*}\left(x_{n}^{\prime}\right)=\left[x_{1},x_{2},\ldots,x_{n+1};f\right]

SO

|fn*(x)[x1,x2,,xn+1;f]|<ε In I(x;η)\left|f_{n}^{*}(x)-\left[x_{1},x_{2},\ldots,x_{n+1};f\right]\right|<\varepsilon\quad\text{ dans }I(x;\eta)

fn(x)f_{n}(x)exists and is obviously equal tofn(x)*f_{n}{}^{*}(x)It is important
to note that even in the case of an intervalfn(x)f_{n}(x)(Orfn*(x)f_{n}*(x)) can exist at a point without existing in its neighbor (image (30)). Similarly iffn(x)*f_{n}{}^{*}(x)exists to the pointx,fn1*(x)x,f_{n-1}^{*}(x)also exists at the pointxx, but not generally in its neighborhood ( 31 ).
(29) TJ Stieltjes „Over Lagrange's interpolatie-formulae" Verslagen cen Mendeelingen der Koninklijke Akademie van Wetenschappen te Ansterdam 2nd ser. t. XVII (1882), p. 239.
(30) See the example given in note ( 27 ).
(31) The example in note ( 27 ) verifies the property.

Stieltues also proved the following proposition ( 32 ): -
Iff(x)f(x)is defined and bounded in (has,ba,b) and iff(n)(x)f^{(n)}(x)exists at a single point,fn*(x)f_{n}^{*}(x)also exists at this point and we have

fn*(x)=1n!f(n)(x)f_{n}^{*}(x)=\frac{1}{n!}f^{(n)}(x)

This is a necessary condition for the existence of the nth derivative, but it is not sufficient in general. Instead, we will demonstrate the following property:

The necessary and sufficient condition for the functionf(x)f(x)defined and bounded within the interval (has,ba,b) has an nth derivative at every point of (has,ba,b) is thatfn(x)*f_{n}{}^{*}(x)exists at every point of (has,ba,b).

We know that the condition is necessary. Let's show that it is sufficient.

In this casef*(x)n1f^{*}{}_{n-1}(x)exists everywhere and is continuous, therefore.

fn1*(x)=fn1(x)=1(n1)!f(n1)(x)f_{n-1}^{*}(x)=f_{n-1}(x)=\frac{1}{(n-1)!}f^{(n-1)}(x)

It will suffice to show thatfn1(x)f_{n-1}(x)has a derivative at every point of (has,ba,b). Eitherxxa point of (has,ba,b) ; we can findHAS>0\mathrm{A}>0Andδ>0\delta>0such as

|[x,x1,x2,,xn;f]|<HAS In I(x;δ)\left|\left[x,x_{1},x_{2},\ldots,x_{n};f\right]\right|<\mathrm{A}\quad\text{ dans }\mathrm{I}(x;\delta)

ε>0\varepsilon>0given, one can find0<ηδ0<\eta\leq\delta, such as
(49)|[x,x1,x2,,xn;f][x,x1,x2,,xn;f]|<ε\left|\left[x,x_{1},x_{2},\ldots,x_{n};f\right]-\left[x,x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]\right|<\varepsilonInI(x;η)I(x;\eta).

Letxx^{\prime}a point ofI(x;η),x2,x3,,xnI^{\prime}(x;\eta),x_{2},x_{3},\ldots,x_{n}points in the vicinity ofxxAndx1,x2,,xnx_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{n}{}^{\prime}points in the vicinity ofxx^{\prime}We can find the pointsx*,x**x^{*},x^{**}InI(x;η)\mathrm{I}(x;\eta)suchqμeq\mu e
fn1(x*)=[x,x2,x3,,xn;f],fn1(x*)=[x1,x2,xn;f]f_{n-1}\left(x^{*}\right)=\left[x,x_{2},x_{3},\ldots,x_{n};f\right],f_{n-1}\left(x^{*}\right)=\left[x_{1}{}^{\prime},x_{2}{}^{\prime},\ldots x_{n}{}^{\prime};f\right].
Gold,fn1(x)f_{n-1}(x)Since it's continuous, we can choose the pointsxi,xix_{i},x_{i}^{\prime}such that one has both

|xixix*x*|<1+εi=1.2,,n,(x1=x)\left|\frac{x_{i}-x_{i}^{\prime}}{x^{*}-x^{\prime*}}\right|<1+\varepsilon\quad i=1,2,\ldots,n,\left(x_{1}=x\right)
|fn1(x*)fn1(x*)x*x*fn1(x)fn1(x)xx|<ε3.\left|\frac{f_{n-1}\left(x^{*}\right)-f_{n-1}\left(x^{*}\right)}{x^{*}-x^{\prime*}}-\frac{f_{n-1}(x)-f_{n-1}\left(x^{\prime}\right)}{x-x^{\prime}}\right|<\frac{\varepsilon}{3}. (50)

Let's consider another pointx"x^{\prime\prime}InI(x;η)\mathrm{I}(x;\eta), and let's correspond to it*-
(32) TJ STIELTJES „Einige bemerkingen omtrent de differentialquotienten. van eene functie van eene veranderlijke" Niéuw. Archief for Wiskunde t. IX, (I882), p. 106-111.
place the points in the same wayx1,"x2,",xn;"x"*x_{1}{}^{\prime\prime},x_{2}{}^{\prime\prime},\ldots,x_{n}{}^{\prime\prime};x^{\prime\prime*}such that the corresponding inequalities (49), (50) are satisfied. It is always possible to take these points in such a way that we also have

|xixix*x**xix"x*x*|<ε6nHAS,i=1.2,,n(x1=x)\left|\frac{x_{i}-x_{i}^{\prime}}{x^{*}-x^{**}}-\frac{x_{i}-x^{\prime\prime}}{x^{*}-x^{\prime*}}\right|<\frac{\varepsilon}{6n\mathrm{\penalty 10000\ A}},\quad i=1,2,\ldots,n\left(x_{1}=x\right)

Formula (6) then gives us

|[x,x2,x3,,xn;f][x1,x2,,xn;f]x*x**[x,x2,x3,,xn;f][x1",x2",,xn";f]x*x"*|i=1n|xixix*x*x1xi"x*x"*||[x1,x2,,xi,xi",xi+1",,xn";f]|++|xixix*x*||[x,x2,x3,,xi,xt,,xn;f][x,x2,x3,,xi,xi",,xn";f]}<ε3\begin{gathered}\left\lvert\,\frac{\left[x,x_{2},x_{3},\ldots,x_{n};f\right]-\left[x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime};f\right]}{x^{*}-x^{**}}-\right.\\ \left.-\frac{\left[x,x_{2},x_{3},\ldots,x_{n};f\right]-\left[x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{n}^{\prime\prime};f\right]}{x^{*}-x^{\prime\prime*}}\right\rvert\,\leq\\ \leq\sum_{i=1}^{n}\left|\frac{x_{i}-x_{i}^{\prime}}{x^{*}-x^{\prime*}}-\frac{x_{1}-x_{i}^{\prime\prime}}{x^{*}-x^{\prime\prime*}}\right|\left|\left[x_{1},x_{2},\ldots,x_{i},x_{i}^{\prime\prime},x_{i+1}^{\prime\prime},\ldots,x_{n}^{\prime\prime};f\right]\right|+\\ \left.+\left|\frac{x_{i}-x_{i}^{\prime}}{x^{*}-x^{\prime*}}\right|\right\rvert\,\left[x,x_{2},x_{3},\ldots,x_{i},x_{t}^{\prime},\ldots,x_{n}^{\prime};f\right]-\\ \left.-\left[x,x_{2},x_{3},\ldots,x_{i},x_{i}^{\prime\prime},\ldots,x_{n}^{\prime\prime};f\right]\mid\right\}<\frac{\varepsilon}{3}\end{gathered}
|fn1(x)fn,1(x)xxfn1(x)fn1(x")xx"|<ε In I(x;η)\left|\frac{f_{n-1}(x)-f_{n,1}\left(x^{\prime}\right)}{x-x^{\prime}}-\frac{f_{n-1}(x)-f_{n-1}\left(x^{\prime\prime}\right)}{x-x^{\prime\prime}}\right|<\varepsilon\quad\text{ dans }\mathrm{I}(x;\eta)

"which demonstrates the property.
22. Now suppose thatf(x)f(x)either bounded and summable in (has,ba,bThe function

Fhas(x)=1has(α)f(x)=1Γ(α)hasx(xt)α1f(t)dt\mathrm{F}_{a}(x)=1_{a}^{(\alpha)}f(x)=\frac{1}{\Gamma(\alpha)}\int_{a}^{x}(x-t)^{\alpha-1}f(t)dt

is then continuous forα>0\alpha>0We will demonstrate the more general property (always assumingα>0\alpha>0) :

Iff(x)f(x)is a bounded divided nth difference, the divided nth difference of the functionFhas(x)\mathrm{F}_{a}(x)is uniformly continuous in every interval{(has1,b),has1>has0\left\{\left(a_{1},b\right),a_{1}>a_{0}\right..

We know that this property means that at anyε>0\varepsilon>0and in every respectxxof(has1,b)\left(a_{1},b\right)we can match aη>0\eta>0such that we have (51)L1[x1,x2,,xn+1;Fhas][x2,x3,,xn+2;Fhas]<l_{1}\left[x_{1},x_{2},\ldots,x_{n+1};\mathrm{F}_{a}\right]-\left[x_{2},x_{3},\ldots,x_{n+2};\mathrm{F}_{a}\right]\mid<InI(x;η)\mathrm{I}(x;\eta)
Let's make the change of variables .

t(xhas)t+hast\mid(x-a)t+a

which is legitimate ( 33 ) and let's remove the factor1Γ(α)\frac{1}{\Gamma(\alpha)}We can consider, with a slight change in notation,

Fhas*(x)=01(1t)has1(xhas)hasf((xhas)t+has)dt\mathrm{F}_{a}^{*}(x)=\int_{0}^{1}(1-t)^{a-1}(x-a)^{a}f((x-a)t+a)dt

We have (formula (8)):

[x1,x2,.,xn+2;(xhas)hasf((xhas)x+has)]=\left[x_{1},x_{2},.,x_{n+2};(x-a)^{a}f((x-a)x+a)\right]= (52)
k=1n+2[x1,x2,,xk;(xhas)has].[xk,xk+1,,xk+2;f((xhas)t+has)]\sum_{k=1}^{n+2}\left[x_{1},x_{2},\ldots,x_{k};(x-a)^{a}\right].\left[x_{k},x_{k+1},\ldots,x_{k+2};f((x-a)t+a)\right]

However, the function(xhas)has(x-a)^{a}and all its divided differences are bounded in the interval (has1,ba_{1},b). The same applies, by hypothesis, to the function:f((xhas)t+has)f((x-a)t-+a)until ordernnincluded in (has1,ba_{1},b) and for all values ​​ofttIt therefore suffices to demonstrate that for any numberε>0\varepsilon>0we can match a numberη>0\eta>0such that one has
|01(1tj{[x1,x2,,xn+1;f((xhas)t+has)][x2,x3,,xn+2;f(xhas)t+has)]has1}dt|<ε\left|\int_{0}^{1}\left(1-t_{j}{}^{a-1}\left\{\left[x_{1},x_{2},\ldots,x_{n+1};f((x-a)t+a)\right]-\left[x_{2},x_{3},\ldots,x_{n+2};f(x-a)t+a\right)\right]\right\}dt\right|<\varepsilonprovided thatx1,x2,xn+2x_{1},x_{2},\ldots x_{n+2}remain within a length intervalη\eta.

The general case follows immediately from the casen=0n=0We know, in fact, thatf(n1)(x)f^{(n-1)}(x)exists and is continuous. Furthermore, we can find a pointξ\xiIn(has,b)(a,b)and included in the smallest interval containing the pointsx1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}such that in any interval containing the pointξ\xithere exists a difference divided equal to[x1,x2,..,xn+1;f((xhas)t+has)]\left[x_{1},x_{2},..,x_{n+1};f((x-a)t+a)\right]This pointξ\xi se trouve toujours dans le plus petit intervalle où les points, sur lesquels ces différences divisées sont prises, sont situés. Supposonsque f(x)f(x) ait une nème dérivée au point (ξa)t+a(\xi-a)t+a, alors en vertu du second théorème de Stifltjes

[x1,x2,,xn+1;f((xa)t+a)]=tnf(n)((ξa)t+a)n!\left[x_{1},x_{2},\ldots,x_{n+1};f((x-a)t+a)\right]=\frac{t^{n}f^{(n)}((\xi-a)t+a)}{n!}

De même nous pouvons trouver ξ\xi^{\prime} de manière que si f(x)f(x) a une : nème dérivée au point (ξa)t+a\left(\xi^{\prime}-a\right)t+a, on a

[x2,x3,,xn+2;f((xa)t+a)]=tnf(n)((ξa)t+a)n!\left[x_{2},x_{3},\ldots,x_{n+2};f((x-a)t+a)\right]=\frac{t^{n}f^{(n)}((\xi-a)t+a)}{n!}
00footnotetext: (33) Voir H. Lebesgue, "Sur les intégrales singulières", Ann. Fac. Toulouse 3ème s. t. L. (1909), pp. 25-117, sp. p. 44.

Les points ξ,ξ\xi,\xi^{\prime} sont dans un intervalle de longueur η\leq\eta. D’autre part f(n1)(x)f^{(n-1)}(x) existe partout et est à première différence divisée bornée, en vertu d’un théorème de M. Lebesgue f(n)(x)f^{(n)}(x) existe donc presque partout et est évidemment bornée. En vertu des propriétés bien connues des fonctions sommables il résulte que le prob’ème se réduit à la continuité d’une expression de la forme Fa(x)F_{a}(x). Ce que nous savonsêtre exact ( 34 ).

On sait que la dérivée d’ordre α(α>0)\alpha(\alpha>0) est définie par l’égalité :

D(a)f(x)=dndxnIana)f(x)=dndxnFnax)\left.\mathrm{D}^{(a)}f(x)=\frac{d^{n}}{dx^{n}}\mathrm{I}_{a}^{\prime n-a)}f(x)=\frac{d^{n}}{dx^{n}}\mathrm{\penalty 10000\ F}_{n-a^{\prime}}x\right)

nn étant entier >α>\alpha.
La première proposition énoncée au No. 21 nous permet d’éerire les conditions nécessaires et suffisantes pour l’existence d’une dérivée continue d’ordre α\alpha. En vertu de la propriété exprimée par la formule (51) nous déduisons que si t(x)t(x) est à nène différence divisée bornée la. dérivée d’ordre α\alpha existe et est continue dans (a,b)(a,b) pour α<n\alpha<n. C’est un théorème de M. P. Montel, énoncé d’une façon un peut différente. M. Montel a moniré que, la fonction étant supposée bornée, il suffit de considérer seulement les différences divisées pises sur des points équidistants ( 35 ) :

Les propriétés démontrées au No. 21 permettent d’écrire lés conditions nécessaires et suffisantes pour l’existence, dans l’intervalle ( a,ba,b ) ouvert à gauche, de la dérivée d’ordre α\alpha ou bien de la dérivée continue d’ordre α\alpha. Pratiquement ces enoncés ne présentent pas beaucoup d’intérêt. Il est possible par diverses transformations d’en déduire les critères donnés par M. Marchaud. Nous n’msistons pas sur cette question qui nous eloignerait trop de notre sujet et nous renverrons au memorie de M. A. Marchaud ( 36 ).

§. 2. - Remarques sur les dérivées des fonctions étudiées aux Chap. I. et II.

  1. 23.

    Nous déduisons de ce qui précède qu’une fonction d’ordre n sur E a des dérivées continues d’ordre 1,2,,n11,2,\ldots,n-1 sur tout sousensemble complèlement intérieur à E. Si la fonction est définie dans un intervalle elle a des dérivées continues d’ordre r<nr<n dans tout intervalle complètement intérieur.
    (34) A la rigueur ceci ne résulte que si xx est dans (a1,b)\left(a_{1},b\right) ce qui n’est pas en contradiction avec notre hypolhèse initiale.
    (35) P. Montel "Sur les polynomes d’approximation" Bull. de la Soc. Math. t. 46 (1918) pp. 151-192 sp. p. 183.
    (36) Voir loc, cit. (7).

Posons

U(x1,x2,,xn+1x1,x2,,xn+1;f)=\mathrm{U}\left(\begin{array}[]{l}x_{1},x_{2},\ldots,x_{n+1}\\ x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime}\end{array};f\right)=

=|1x1,x1;x2][x1,x1;x3][x1,x1;xn][x1,x1;f]1[x2,x2;x2][x2,x2;x3][x2,x2;xn][x2,x2;f]1[xn+1,xn+1;x2][xn+1,xn+1;x3][xn+1,xn+1;xn][x+1,xn+1;f]|=\left|\begin{array}[]{cccc}\left.1\mid x_{1},x_{1}{}^{\prime};x^{2}\right]&{\left[x_{1},x_{1}{}^{\prime};x^{3}\right]}&\ldots\left[x_{1},x_{1}{}^{\prime};x^{n}\right]&{\left[x_{1},x_{1}{}^{\prime};f\right]}\\ 1\left[x_{2},x_{2}{}^{\prime};x^{2}\right]&{\left[x_{2},x_{2}{}^{\prime};x^{3}\right]}&\ldots\left[x_{2},x_{2}{}^{\prime};x^{n}\right]&{\left[x_{2},x_{2}{}^{\prime};f\right]}\\ \cdots\cdots\cdots\cdots\cdots\cdots&\cdots\cdots&\cdots\\ 1\left[x_{n+1},x_{n+1}^{\prime};x^{2}\right]&{\left[x_{n+1},x_{n+1}^{\prime};x^{3}\right]\ldots\left[x_{n+1},x_{n+1}^{\prime};x^{n}\right]}&{\left[x_{+1},x_{n+1}^{\prime};f\right]}\end{array}\right|
Cette expression s’annule identiquement lorsque f(x)f(x) est un polynome de degré n. Done, pourvu que tous les points

x1,x1,x2,x2,,xn+1,xn+1x_{1},x_{1}^{\prime},x_{2},x_{2}^{\prime},\ldots,x_{n+1},x_{n+1}^{\prime} (53)

soient distincts, elle est nécessairement de la forme
(54) U(x1,x2,,xn+1x1,x2,,xn+1;f)=i=1nA1.yi,yi+1,,yi+n+1;f]\left.\mathrm{U}\left(\begin{array}[]{l}x_{1},x_{2},\ldots,x_{n+1}\\ x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime}\end{array};f\right)=\sum_{i=1}^{n}\mathrm{\penalty 10000\ A}_{1}.\mid y_{i},y_{i+1},\ldots,y_{i+n+1};f\right]

y2i+1=xi,y2i=xi,i=1,2,,n+1y_{2i+1}=x_{i},y_{2i}=x_{i}^{\prime},\quad i=1,2,\ldots,n+1

This formula can be determined as follows: Subtract each row of the determinant from the next. Then, applying formula (6), the determinant decomposes (by virtue of Binet's formula giving the product of two tables) into a sum of determinants of ordernnof the same form but relating to divided second differences, each multiplied by a factor independent of the functionffWe decompose each determinant in the same way until we arrive at formula (54). If we assume that the sequence (53) is ordered, we can write formula (6) so that the factors introduced are always positive, and this process effectively leads to (54). It follows that if the sequence (53) is ordered, the coefficientsHASi\mathrm{A}_{i}in (54) are positive.

If the derivativef(x)f^{\prime}(x)exists and is continuous, we have

limitU(x1,x2,,xn+1x1,x2,,xn+1;f)=n!U(x1*,x2*,,xn+1*;f)\lim\mathrm{U}\left(\begin{array}[]{l}x_{1},x_{2},\ldots,x_{n+1}\\ x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime}\end{array};f\right)=n!\mathrm{U}\left(x_{1}^{*},x_{2}^{*},\ldots,x_{n+1}^{*};f^{\prime}\right)

ifxi,xix_{i},x_{i}^{\prime}tend towards the pointxi*x_{i}^{*}ofE,i=1.2,,n+1\mathrm{E}^{\prime},i=1,2,\ldots,n+1
Since sequence (53) is ordered, from formulas (54) and (55) we deduce that if the function f(x)f(x)is non-concave of ordernnits derived nonconcave ordern1n-1The converse of this property is not true in general. The derivativef(x)f^{\prime}(x)may be of ordern1n-1without the function being to crednnit can be convex of ordern1n-1and the order functionnn, without being convex. The (n1n-1The mth derivative of a function of order
m is of order 1. Such a function has a left-hand derivative and a right-hand derivative, which are functions of order 0. If the(n+1)th (n+1)^{\text{ème }}The derivative exists, and it has a constant sign.

If E is an interval and if the derivativef(x)f^{\prime}(x)is non-concave of ordern1n-1the functionf(x)f(x)is necessarily non-concave of ordernnFurthermore, iff(x)f(x)is convex,f(x)f^{\prime}(x)is also convex, and conversely, since one of these functions cannot be polynomial without the other also being polynomial in the same interval. In the case where E is an interval, iff(n+1)(x)f^{(n+1)}(x)exists, the conditionf(n+1)(x)0f^{(n+1)}(x)\geq 0is necessary and sufficient for the function to be non-concave of ordernnthe conditionf(n+1)(x)>0f^{(n+1)}(x)>0is sufficient for it to be convex.

In the case of an interval, the properties of the function are simply deduced from those of the derivative by the easily established formula
(56)U(x1,x2,,xn+2;f)=n!x1x2x2xsxn+1xn+2U(t1,t2,,tn+1;f)dt1dt2dtn+1\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n+2};f\right)=n!\int_{x_{1}}^{x_{2}}\int_{x_{2}}^{x_{\mathrm{s}}}\ldots\int_{x_{n+1}}^{x_{n+2}}\mathrm{U}\left(t_{1},t_{2},\ldots,t_{n+1};f^{\prime}\right)dt_{1}dt_{2}\ldots dt_{n+1}24.
We have seen that a function with bounded nth variation is a function with bounded nth difference divided by the function; therefore, a function with bounded nth variation has continuous derivatives of the same order.1.2,,n11,2,\ldots,n-1If it is defined within a closed interval (has,ba,b) the continuous derivatives of orderr<nr<nexist in the open interval at left.

We will also demonstrate that the derivative of a bounded nth variation function is at (n1n-1)th bounded variation.

Let's write the general formula (54) for the2n2npoints

α1,α1,α2,α2,,αn,αn\alpha_{1},\alpha_{1}^{\prime},\alpha_{2},\alpha_{2}^{\prime},\ldots,\alpha_{n},\alpha_{n}^{\prime}

Doingf=xnf=x^{n}, We have

1=1nHAS=U(α1,α2,,αnα1,α2,,αn;xn)\sum_{1=1}^{n}\mathrm{\penalty 10000\ A}=\mathrm{U}\left(\begin{array}[]{l}\alpha_{1},\alpha_{2},\ldots,\alpha^{n}\\ \alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n}^{\prime}\end{array};x^{n}\right)

It is then obvious that ifα1,*α2,*,αn*\alpha_{1}{}^{*},\alpha_{2}{}^{*},\ldots,\alpha_{n}{}^{*}is an ordered sequence, at allε>0\varepsilon>0, corresponds to aη>0\eta>0such that one has

0<HASiV(α1,*α2,*,αn)*<n!+ε,i=1.2,,n|i=1nHASiVα1,*α2,*,αn)*n!|<ε0<\frac{\mathrm{A}_{i}}{\mathrm{\penalty 10000\ V}\left(\alpha_{1}{}^{*},\alpha_{2}{}^{*},\ldots,\alpha_{n}{}^{*}\right)}<n!+\varepsilon,i=1,2,\ldots,n\left|\frac{\sum_{i=1}^{n}\mathrm{\penalty 10000\ A}_{i}}{\left.\mathrm{\penalty 10000\ V}\alpha_{1}{}^{*},\alpha_{2}{}^{*},\ldots,\alpha_{n}{}^{*}\right)}-n!\right|<\varepsilon

provided that|α1α1|*<η,|αiαi|*<η,i=1.2,,n\left|\alpha_{1}-\alpha_{1}{}^{*}\right|<\eta,\quad\left|\alpha_{i}{}^{\prime}-\alpha_{i}{}^{*}\right|<\eta,\quad i=1,2,\ldots,nNow
consider an ordered sequence ofEE^{\prime}

x1,x2,xmx_{1},x_{2},\ldots x_{m} (57)

According to the previous property, we can always take the ; points of E
(58)

y1,y2,,y2my_{1},y_{2},\ldots,y_{2m}

so that,ε>0\varepsilon>0given, we have

|U(y2i1,y2i+1,,y2i+2n3y2i,y2i+2,,y2i+2i2;f)V(xi,xi+1,,xi+n1)U(y2i+1,y2i+3,,y2i+2n1y2i+2,y2i+4,,y2i+2n;f)V(xi+1,xi+2,,xi+n)|<<(2n1)(n!+ε){|Δn2i1Δn2i|+|Δn2iΔ2i+1|++|Δn2i+n1Δn2i+n|}+2ε.Δn[f;E]i=1.2,,mn\begin{gathered}\left|\frac{\mathrm{U}\left(\begin{array}[]{l}y_{2i-1},y_{2i+1},\ldots,y_{2i+2n-3}\\ y_{2i},y_{2i+2},\ldots,y_{2i+2i-2}\end{array};f\right)}{\mathrm{V}\left(x_{i},x_{i+1},\ldots,x_{i+n-1}\right)}-\frac{\mathrm{U}\left(\begin{array}[]{l}y_{2i+1},y_{2i+3},\ldots,y_{2i+2n-1}\\ y_{2i+2},y_{2i+4},\ldots,y_{2i+2n}\end{array};f\right)}{\mathrm{V}\left(x_{i+1},x_{i+2},\ldots,x_{i+n}\right)}\right|<\\ <(2n-1)(n!+\varepsilon)\left\{\left|\Delta_{n}^{2i-1}-\Delta_{n}^{2i}\right|+\left|\Delta_{n}^{2i}-\Delta^{2i+1}\right|+\ldots\right.\\ \left.\cdots+\left|\Delta_{n}^{2i+n-1}-\Delta_{n}^{2i+n}\right|\right\}+2\varepsilon.\Delta_{n}[f;\mathrm{E}]\\ i=1,2,\ldots,m-n\end{gathered}
Δn=[yi,yi+1,,yi+n;f],j=1.2,,2mn.\Delta_{n}^{\prime}=\left[y_{i},y_{i+1},\ldots,y_{i+n};f\right],\quad j=1,2,\ldots,2m-n.

We deduce that
(59)

i=1mn|U(y2i1,y2i+1,,y2i+2n3y2i,y2i+2,,y2i+2n2;f)V(xi,xi+1,,xi+n1)U(y2i+1,y2i+3,,y2i+2n1y2i+2,y2i+4,,y2i+2n)V(xi+1,xi+2,,xi+n)|<<(2n1)(n!+ε)(n+1){|ΔnΔn2|+|Δn2Δn3|++4Δn2mn1Δn2mn}+2ε(mn)Δn[f;E]\begin{gathered}\sum_{i=1}^{m-n}\left\lvert\,\frac{\mathrm{U}\left(\begin{array}[]{l}y_{2i-1},y_{2i+1},\ldots,y_{2i+2n-3}\\ y_{2i},y_{2i+2},\ldots,y_{2i+2n-2}\end{array};f\right)}{\mathrm{V}\left(x_{i},x_{i+1},\ldots,x_{i+n-1}\right)}-\right.\\ \left.-\frac{\mathrm{U}\binom{y_{2i+1},y_{2i+3},\ldots,y_{2i+2n-1}}{y_{2i+2},y_{2i+4},\ldots,y_{2i+2n}}}{\mathrm{\penalty 10000\ V}\left(x_{i+1},x_{i+2},\ldots,x_{i+n}\right)}\right\rvert\,<\\ <(2n-1)(n!+\varepsilon)(n+1)\left\{\left|\Delta_{n}^{\prime}-\Delta_{n}^{2}\right|+\left|\Delta_{n}^{2}-\Delta_{n}^{3}\right|+\ldots\right.\\ \left.\cdots+4\Delta_{n}^{2m-n-1}-\Delta_{n}^{2m-n}\mid\right\}+2\varepsilon(m-n)\Delta_{n}[f;\mathrm{E}]\end{gathered}

ButΔn[f;E]\Delta_{n}[f;E]Having finished, with a slight change of notation we can also say that, given the sequence (57), we can determine the sequence (58) such that the left-hand side of (59) is

<(2n1)(n+1)!Vn[f;E]+ε3<(2n-1)\cdot(n+1)!V_{n}[f;E]+\frac{\varepsilon}{3}

ε>0\varepsilon>0given in advance.
But the first member of (59) can be determined by a suitable choice of the sequence (57) so that it differs by less thanε3\frac{\varepsilon}{3}of: the quantity
(60)

(n1)!((n1) nth variation of f(x) on (57))\left(\begin{array}[]{ll}n&1\end{array}\right)!\cdot\left((n-1)\text{ ème variation de }f^{\prime}(x)\text{ sur }(57)\right)\text{. }

Finally, sequence (57) can be taken such that quantity (60) differs by less thanε3(n1)!\frac{\varepsilon}{3(n-1)!}ofVn1!fE]\left.V_{n-1}!^{\prime}f^{\prime}E^{\prime}\right].

It follows that

Vn1[f;E]<(2n1)(n+1)!Vn[f;E]+ε\mathrm{V}_{n-1}\left[f^{\prime};\mathrm{E}^{\prime}\right]<(2n-1)(n+1)!\mathrm{V}_{n}[f;\mathrm{E}]+\varepsilon

done

Vn1[f;E](2n1)(n+1)!Vn[f;E].\mathrm{V}_{n-1}\left[f^{\prime};\mathrm{E}^{\prime}\right]\leq(2n-1)(n+1)!\mathrm{V}_{n}[f;\mathrm{E}].

This inequality is rather crude, but sufficient to demonstrate the property.f(x)f(x)being at a limited variation numberf(n1)(x)f^{(n-1)}(x)is therefore a first bounded variation of t. We follow thatf(n1)(x)f^{(n-1)}(x)then admits a left-hand derivative and a right-hand derivative which are of bounded variation of order0()370\left({}^{37}\right)25.
Let us first suppose that E is an interval (has,ba,bWe can give a precise meaning to the(n+1)(n+1)the divided difference of a function of ordernn, even if the points are not all distinct.

It is about giving meaning to the divided difference

[x1,x1,,x1i1,x2,x2,,x2i2,xk,xk,,xkik;f]\displaystyle{[\underbrace{x_{1},x_{1},\ldots,x_{1}}_{i_{1}},\underbrace{x_{2},x_{2},\ldots,x_{2}}_{i_{2}},\underbrace{x_{k},x_{k},\ldots,x_{k}}_{i_{k}};f]} (61)
i1+i2+ik=n+2\displaystyle i_{1}+i_{2}+\cdots i_{k}=n+2

the pointsx1,x2,,xkx_{1},x_{2},\ldots,x_{k}being distinct. If we consider (61) as the quotient of two determinants (see No. 1), it appears in indeterminate form.00\frac{0}{0}To resolve the uncertainty, we replace each group of points with the corresponding points.xL,xj,,xjx_{l},x_{j},\ldots,x_{j}byiji_{j}distinct points tending towardsxix_{i}We can then obtain, using a well-known method (L'Hôpital's rule), the true value of the quotient (61). This amounts to defining the determinant

U(x1,x1,,x1i1,x2,x2,,x2i2,xk,xk,,xk,ik;f)\mathbf{U}(\underbrace{x_{1},x_{1},\ldots,x_{1}}_{i_{1}},\underbrace{x_{2},x_{2},\ldots,x_{2}}_{i_{2}},\underbrace{x_{k},x_{k},\ldots,x_{k},}_{i_{k}};f)

as being equal to the determinantU(α1,α2,,αn+2;f)\mathrm{U}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{n+2};f\right)where, generally speaking, the order lines are replacedi1+i2++ij1+1ji_{1}+i_{2}+\ldots+i_{j-1}+1_{j},i1+i2++ij1+2,,i1+i2++ij1+iji_{1}+i_{2}+\cdots+i_{j-1}+2,\ldots,i_{1}+i_{2}+\cdots+i_{j-1}+i_{j}by :
1xjhasj2xj31x_{j}\quad a_{j}^{2}\quad x_{j}^{3}…………xjnf(xj)x_{j}^{n}\quad f\left(x_{j}\right)
012xj3xj2nxjn1f(xj)\begin{array}[]{llll}0&1&2x_{j}&3x_{j}^{2}\end{array}nx_{j}^{n-1}f^{\prime}\left(x_{j}\right)
0026xj0\quad 0\quad 2\quad 6x_{j}. .____\_\_\_\_
____\_\_\_\_
____\_\_\_\_
____\_\_\_\_..n(n1)xjnn(n-1)x_{j}^{n}2____\_\_\_\_ f"(xj)0000f^{\prime\prime}\left(x_{j}\right)\begin{array}[]{llll}0&0&0&0\end{array}0____\_\_\_\_.(ij1)\left(i_{j}-1\right)  !n(n1)n(n-1) ____\_\_\_\_.(nij+2)xjn\left(n-i_{j}+2\right)x_{j}^{n}).
V(x1,x1,,x1,x2,x2,,x2,,xk,xk,,xk)\mathrm{V}\left(x_{1},x_{1},\ldots,x_{1},x_{2},x_{2},\ldots,x_{2},\ldots,x_{k},x_{k},\ldots,x_{k}\right)is obtained by doingf=xn+1f=x^{n+1}and we can easily see that this expression is different from zero, therefore the divided difference is perfectly defined.

The previous operation is justified ifk>2k>2since the function has a continuous derivative of ordern1n-1The same applies ifk=2k=2,et2i1n\mathrm{e}_{\mathrm{t}}2\leq i_{1}\leq n. Ifk=2k=2Andi1=1i_{1}=1We must introduce the nth derivative. This derivative does not exist in general, but there is always an nth left-hand derivative and an nth right-hand derivative. It follows that we can still give meaning to the divided difference, provided we let then+1n+1points of the second group towardsx2x_{2}on the same side.

For example, if these points remain constantly to the left ofx2x_{2}the formula found is valid provided thatf(n)(x2)f^{(n)}\left(x_{2}\right)represents the nth left-hand derivative.
It is clear that these considerations are only valid within the interval (has,ba,b), more precisely, everywhere derivatives exist.

We can now complete the properties of functions of order n. Iff(x)f(x)is non-concave of ordernnwe have

[x1,x2,,xn+2;f]0\left[x_{1},x_{2},\ldots,x_{n+2};f\right]\geq 0

the points being distinct or not. We will also see that iff(x)f(x)is of ordernnand if we have

[x1,x2,,xn+2;t]=0x1x2xn+2( not all of them together )\begin{gathered}{\left[x_{1},x_{2},\ldots,x_{n+2};t\right]=0}\\ x_{1}\leq x_{2}\leq\cdots\leq x_{n+2}\quad(\text{ non pas tous confondus })\end{gathered}

The function is a polynomial of ordernnin the meantime (x1,xn+2x_{1},x_{n+2}
Moreover, all these properties can be translated geometrically using L polynomials .

If the set E is arbitrary, the preceding considerations still apply, provided that the points where several coincide belong to a derived set of suitable order. The derivatives can also be extended by the expressionn!fn(x)n!f_{n}(x)across the entire setE\mathrm{E}^{\prime}It is easy to verify that this extension allows for the complete generalization of the properties. For example, iff(x)f(x)is non-concave of ordernnIt is shown that everywhere they existf1(x),f2(x),f_{1}(x),f_{2}(x),\ldotsare also non-concave in ordern1,n2,n-1,n-2,\ldots26 respectively
. Suppose thatx1,x2,,xnx_{1},x_{2},\ldots,x_{n}let be points of the derived set. We can takex1,x2,,xnx_{1}{}^{\prime},x_{2}{}^{\prime},\ldots,x_{n}{}^{\prime}sufficiently close to the respective points of the preceding sequence such that,ε>0\varepsilon>0given, we have
with formula (54)

|U(x1,x2,,xnx1x2,,xn;f)V(x1,x2,,xn)(n1)![x1,x2,,xn;f]|<ε2(n1)!\left|\frac{\mathrm{U}\binom{x_{1},x_{2},\ldots,x_{n}}{x_{1}^{\prime}\cdot x_{2}^{\prime},\ldots,x_{n}^{\prime};f}}{\mathrm{\penalty 10000\ V}\left(x_{1},x_{2},\ldots,x_{n}\right)}-(n-1)!\left[x_{1},x_{2},\ldots,x_{n};f^{\prime}\right]\right|<\frac{\varepsilon}{2}(n-1)!
|i=1nHASiV(x1,x2,,xn)n!|<ε2Jn(n1)!\left|\frac{\sum_{i=1}^{n}\mathrm{\penalty 10000\ A}_{i}}{\mathrm{\penalty 10000\ V}\left(x_{1},x_{2},\ldots,x_{n}\right)}-n!\right|<\frac{\varepsilon}{2J_{n}}(n-1)!

assuming the function has a bounded nth difference divided function.
We deduce

|x1,x2,,xn;f]<n.Δn[f;E]+ε\left|\mid x_{1},x_{2},\ldots,x_{n};f^{\prime}\right]\mid<n.\Delta_{n}[f;\mathbb{E}]+\varepsilon

from where

Δn1[f;E]nΔn[t;E]\Delta_{n-1}\left[f^{\prime};\mathrm{E}^{\prime}\right]\leq n\Delta_{n}[t;\mathrm{E}] (62)

When the set E is an interval (has,ba,b) Formula (56) allows us to write (forn+1n+1points)

U(x1,x2,,xn+1;f)=\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n+1};f\right)=

=(n1)!x1x2x3x3xnxn+1[t1,t2,,tn;f],V(t1,t2,,tn)dt1dt2dtn=(n-1)!\int_{x_{1}}^{x_{2}}\int_{x_{3}}^{x_{3}}\cdots\int_{x_{n}}^{x_{n+1}}\left[t_{1},t_{2},\ldots,t_{n};f^{\prime}\right],\mathrm{V}\left(t_{1},t_{2},\ldots,t_{n}\right)dt_{1}dt_{2}\ldots dt_{n}\ldots
We also have
V(x1,x2,,xn+1)=n!x1x2x2x3xnxn+1V(t1,t2,,tn)dt1dt2dtn\mathrm{V}\left(x_{1},x_{2},\ldots,x_{n+1}\right)=n!\int_{x_{1}}^{x_{2}}\int_{x_{2}}^{x_{3}}\ldots\int_{x_{n}}^{x_{n+1}}\mathrm{\penalty 10000\ V}\left(t_{1},t_{2},\ldots,t_{n}\right)dt_{1}dt_{2}\ldots dt_{n}\ldots
We deduce from this

n.|[x1,x2,,xn+1;f]|Δn1[fhasb]n.\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]\right|\leq\Delta_{n-1}\left[f_{a}^{b}\right]

from where

nΔn[ba]Δn[bbhas]\left.n\Delta_{n}[\underset{a}{b}]\leq\Delta_{n}\stackrel{{\scriptstyle b}}\frac{b}{a}\right]

Comparing with (62) we deduce equality for the case of an interval.

Δn1[fhasb]=nΔn[fhasb()38\Delta_{n-1}\left[f_{a}^{b}\right]=n\Delta_{n}\left[f_{a}^{b}\left({}^{38}\right)\right. (63)
  1. 27.

    We already know that iff(x)f(x)is of bounded nth variationf(x)f^{\prime}(x)is at (n1n-1)th bounded variation. We also know that if
    (38) It can easily be verified that this equality does not hold in general if the set E is arbitrary. This is, moreover, obvious a priori since: the differentiation does not exist on isolated points of E.
    function is continuous (which always holds ifn1n\geq 1) we can consider only equidistant points for the study of variation. Suppose that E is an interval(has,b)(a,b)and thatn>1n>1
    To all ε>0\varepsilon>0corresponds to a sequence

  1. 64.

    x,x+h,x+2h,,x+mh,(h>0)x,x+h,x+2h,\ldots,x+mh,\quad(h>0)
    such that
    (665) (nth variation offfon (64)>Vn[bhas]ε>V_{n}\left[\frac{b}{a}\right]-\varepsilon.

We can always assume (as a result of continuity)has<xa<x,x+mh<bx+mh<b.

It is easy to see that

[x+ih,x+(i+1)h,,x+(n+i)h;f]=[x+ih,x+(i+1)h,\ldots,x+(n+i)h;f]=
=1n01[ht+x+ih,ht+x+(i+1)h,,ht+x+(n+i1)h;t]dt=\frac{1}{n}\int_{0}^{1}\left[ht+x+ih,ht+x+(i+1)h,\ldots,ht+x+(n+i-1)h;t^{\prime}\right]dt

"and comparing with (65) it follows that

n(Vn[fb]ε)<Vn1[fbhasb]n\left(\mathrm{\penalty 10000\ V}_{n}[\stackrel{{\scriptstyle b}}]-\varepsilon\right)<\mathrm{V}_{n-1}\left[\stackrel{{\scriptstyle b}}_{a}^{b}\right]

from where

nVn[fb]Vn1[fab]n\mathrm{\penalty 10000\ V}_{n}[\stackrel{{\scriptstyle b}}]\leq\mathrm{V}_{n-1}[\stackrel{{\scriptstyle b}}{{\underset{a}{f}}}]

Now, at allε>0\varepsilon>0corresponds to a numberη>0\eta>0such as{x+y,x+2y,,x+ny;t][x,x+y,x+(n1)y;t]}\left.\mid\left\{\mid x+y,x+2y,\ldots,x+ny;t^{\prime}\right]-\left[x,x+y,\ldots x+(n-1)y;t^{\prime}\right]\right\}-
nyh{[x,x+y,,x+ny;f][x+h,x+y+h,,x+ny+h;f]}|<ε\left.-\frac{ny}{h}\{[x,x+y,\ldots,x+ny;f]-[x+h,x+y+h,\ldots,x+ny+h;f]\}\right\rvert\,<\varepsilonProvided that|h|<η|h|<\eta.

Using formulas (6) and (10) we can write
(66)[x+h,x+y+h,,x+ny+h;f][x,x+y,,x+ny;f]=[x+h,x+y+h,\ldots,x+ny+h;f]-[x,x+y,\ldots,x+ny;f]=

=HAS1[x,x+h,x+y,;f]+HAS2[x+h,x+y,x+y+h,;f]++HASn+1[,x+(n1)y+h,x+ny,x+ny+h;f]\begin{gathered}=\mathrm{A}_{1}[x,x+h,x+y,\ldots;f]+\mathrm{A}_{2}[x+h,x+y,x+y+h,\ldots;f]+\ldots\\ \ldots+\mathrm{A}_{n+1}[\ldots,x+(n-1)y+h,x+ny,x+ny+h;f]\end{gathered}

all the differences divided by the second member being of ordern+1n+1ulesHASL\mathrm{A}_{l}are independent off(x)f(x)and also ofxxand they are non-mogative ifx<x+h<x+yx<x+h<x+y.

We can find a sequel

x,x+y,,x+my,y>0,has<x,x+my<bx,x+y,\ldots,x+my,\quad y>0,a<x,x+my<b

such as,ε>0\varepsilon>0given, we have

<Vn+1[fhasb]ε2<<ı=1mn+1x+iy,x+(i+1)y,,x+(n+i1)y;f][x+(i1)y,x+iy,,x+(n+i2)y;f].<\begin{gathered}\mathrm{V}_{n+1}\left[f_{a}^{b}\right]-\frac{\varepsilon}{2}<\\ \left.<\sum_{\imath=1}^{m-n+1}\mid x+iy,x+(i+1)y,\ldots,x+(n+i-1)y;f^{\prime}\right]-\\ -\left[x+(i-1)y,x+iy,\ldots,x+(n+i-2)y;f^{\prime}\right]\mid.\end{gathered}

We takehhsmall enoughx<x+h<x+y,x+my+h<bx<x+h<x+y,x+my+h<b,
And

ı=1mn+1[x+iy,x+(i+1)y,,x+(n+i1)y;f][x+(i1),x+iy,,x+(n+i2)y;f]<<ε2+nyhı=1mn+1|[x+(i1)y+h,x+iy+h,,x+(n+i1)y+h;f][x+(i1)y,x+iy,,x+(n+i1)y;f].\begin{gathered}\sum_{\imath=1}^{m-n+1}\mid\left[x+iy,x+(i+1)y,\ldots,x+(n+i-1)y;f^{\prime}\right]-\\ -\left[x+(i-1),x+iy,\ldots,x+(n+i-2)y;f^{\prime}\right]\mid<\\ \left.<\frac{\varepsilon}{2}+\frac{ny}{h}\sum_{\imath=1}^{m-n+1}\right\rvert\,[x+(i-1)y+h,x+iy+h,\ldots,x+(n+i-1)y+h;f]-\\ {[x+(i-1)y,x+iy,\ldots,x+(n+i-1)y;f]\mid.}\end{gathered}

However, formula (66) shows that the sum of the right-hand side is less than

HAS*Vn[fb]\mathrm{A}^{*}\mathrm{\penalty 10000\ V}_{n}[\stackrel{{\scriptstyle b}}]

Or
HAS*=2(n+1)ymax.(HAS1+HAS3+HAS5+,,HAS2+HAS4+HAS6+)nA^{*}=\frac{2}{(n+1)y}\cdot\max.\left(A_{1}+A_{3}+A_{5}+,\ldots,A_{2}+A_{4}+A_{6}+\ldots\right)nodd=max.(HAS1+HAS3+HAS5+n2y+h,HAS2+HAS4+HAS6+(n2+1)yh)n=\max.\left(\frac{\mathrm{A}_{1}+\mathrm{A}_{3}+\mathrm{A}_{5}+\ldots}{\frac{n}{2}y+h},\frac{\mathrm{\penalty 10000\ A}_{2}+\mathrm{A}_{4}+\mathrm{A}_{6}+\ldots}{\left(\frac{n}{2}+1\right)y-h}\right)\quad neven.
Ifnnis odd, you just need to dof=xn+1,xn+2f=x^{n+1},x^{n+2}to see that

HAS*=hy.\mathrm{A}^{*}=\frac{h}{y}.

Relation (1) then allows us to show that this equality also holds fornnpeer.

We deduce from this

Vn1[fa]ε<nVn[ba]\mathrm{V}_{n-1}[\underset{a}{f}]-\varepsilon<n\mathrm{\penalty 10000\ V}_{n}[\underset{a}{b}]

hence

Vn1[fba]nVn[ba].\mathrm{V}_{n-1}[\underset{a}{\stackrel{{\scriptstyle b}}}]\leq n\mathrm{\penalty 10000\ V}_{n}[\underset{a}{b}].

So, finally we have
(67)

Vn1[fab]=nVn[ba.\mathrm{V}_{n-1}\left[{\underset{a}{f}}^{b}\right]=n\mathrm{\penalty 10000\ V}_{n}[\underset{a}{b}.

We assumed thattt^{\prime}either continuous. MA Winternitz has shown that we also have ( 39 )

V0[]hasb=V1[]hasb\mathrm{V}_{0}\left[{}_{a}^{b}\right]=\mathrm{V}_{1}\left[{}_{a}^{b}\right]

ffbeing of bounded first variation andfdf_{d}{}^{\prime}its right-hand derivative.

§ 3. - On the limitation of the derivative of a function of ordernn.

  1. 28.

    Eitherf(x)f(x)non-concave of ordernnin the meantime (has,ba,b). Ifn>1n>1it admits a continuous, therefore bounded, derivative in every completely interior interval.

The sequelx1,x2,,xk,x,x,xk+1,,xnx_{1},x_{2},\ldots,x_{k},x,x^{\prime},x_{k+1},\ldots,x_{n}being ordered, we have

limitxxU(x1,x2,,xk,x,x,xk+1,,xn;f)xx0\lim_{x^{\prime}\rightarrow x}\frac{\mathrm{U}\left(x_{1},x_{2},\ldots,x_{k},x,x^{\prime},x_{k+1},\ldots,x_{n};f\right)}{x^{\prime}-x}\geq 0

hence, by expanding
(68)(1)nk1f(x)(-1)^{n-k-1}f^{\prime}(x)

=||1x1x12x1nf(x1)1x2x22x2nf(x2)1xkxk2xknf(xk)1xx2xnf(x)042xxnn+101xk11xk+12xknf(xk+1)1xnxn2xnnf(xn)|\left.=||\begin{array}[]{cccccc}1&x_{1}&x_{1}^{2}&\ldots\ldots&x_{1}^{n}&f\left(x_{1}\right)\\ 1&x_{2}&x_{2}^{2}&\ldots\ldots&x_{2}^{n}&f\left(x_{2}\right)\\ \ldots\ldots\ldots&\ldots\ldots&\ldots&\ldots\\ 1&x_{k}&x_{k}^{2}&\ldots\ldots&x_{k}^{n}&f\left(x_{k}\right)\\ 1&x&x^{2}&\ldots\ldots&x^{n}&f(x)\\ 0&4&2x&\ldots\ldots&x_{n}^{n+1}&0\\ 1&x_{k11}&x_{k+1}^{2}&\ldots\ldots&x_{k}^{n}&f\left(x_{k+1}\right)\\ \cdots&\ldots&\ldots&\ldots&\ldots&\ldots\\ 1&x_{n}&x_{n}^{2}&\ldots&\ldots&x_{n}^{n}\end{array}\quad f\left(x_{n}\right)\quad\right\rvert\,

To find a limitation offf^{\prime}in the meantime (has1,b1a_{1},b_{1})has<has1<b1<ba<a_{1}<b_{1}<byou just need to take the pointsx1,x2,,xkx_{1},x_{2},\ldots,x_{k}In
(has,has1a,a_{1}) the pointsxk+1,xk+2,,xnx_{k+1},x_{k+2},\ldots,x_{n}In (b1,bb_{1},band to determine appropriatelykk(one can always choose between two consecutive values ​​ofk)k)so that(1)nk1f(x)>0(-1)^{n-k-1}f^{\prime}(x)>0We can then take the modules in (68).

EitherΔ0\Delta_{0}the terminal off(x)f(x)and let's ask

P(z)=(zx)(zx1)(zx2)(zxn).\mathrm{P}(z)=(z-x)\left(z-x_{1}\right)\left(z-x_{2}\right)\ldots\left(z-x_{n}\right).

The second member of (68) can be written

|P(x)|i=1n(1)ntf(xi)|xxi|.|P(xi)|+(1)nk+1f(x)i=1n1xxi\left|\mathrm{P}^{\prime}(x)\right|\sum_{i=1}^{n}\frac{(-1)^{n-t}f\left(x_{i}\right)}{\left|x-x_{i}\right|.\left|\mathrm{P}^{\prime}\left(x_{i}\right)\right|}+(-1)^{n-k+1}f(x)\sum_{i=1}^{n}\frac{1}{x-x_{i}}

and this expression allows us to write

|f|Δ0{i=1n|P(x)||xxi||P(xi)|+i=1n1|xxi|}\left|f^{\prime}\right|\leq\Delta_{0}\left\{\sum_{i=1}^{n}\frac{\left|\mathrm{P}^{\prime}(x)\right|}{\left|x-x_{i}\right|\cdot\left|\mathrm{P}^{\prime}\left(x_{i}\right)\right|}+\sum_{i=1}^{n}\frac{1}{\left|x-x_{i}\right|}\right\}

kkbeing suitably chosen.
Let's look for a better limitation for sufficiently internal points.

We will assume thatf(x)=0f(x)=0Let's then ask...

Bk=|P(x)|i=1n1|xxi||P(xi)|=(1)nkP(x)i=1n(1)ni+1(xxi)P(xi)\mathrm{B}_{k}=\left|\mathrm{P}^{\prime}(x)\right|\sum_{i=1}^{n}\frac{1}{\left|x-x_{i}\right|\cdot\left|\mathrm{P}^{\prime}\left(x_{i}\right)\right|}=(-1)^{n-k}\mathrm{P}^{\prime}(x)\sum_{i=1}^{n}\frac{(-1)^{n-i+1}}{\left(x-x_{i}\right)\mathrm{P}^{\prime}\left(x_{i}\right)}

And
B*=kmin\mathrm{B}^{*}{}_{k}=\min. ofBk,B*=i,jmax.(B*,iB*)ji+j=\mathrm{B}_{k},\mathrm{\penalty 10000\ B}^{*}{}_{i,j}=\max.\left(\mathrm{B}^{*}{}_{i},\mathrm{\penalty 10000\ B}^{*}{}_{j}\right)\quad i+j=odd.
We deduce that
|f|Δ0.min.(B*)i,ji,j=0,1,2,,n,i+j=\left|f^{\prime}\right|\leq\Delta_{0}.\min.\left(\mathrm{B}^{*}{}_{i,j}\right)\quad i,j=0,1,2,\ldots,n,\quad i+j=odd.
Let us also designate byF(z)F(z)the polynomialLLtaking the values(1)ni+1(-1)^{n-i+1}to the pointsxi,i=1.2,,n+1(xn+1=x)x_{i},i=1,2,\ldots,n+1\left(x_{n+1}=x\right), We have

F(z)P(z)=ı=1n+1(1)ni+1(zxi)P(xi)(xn+1=x)\displaystyle\frac{\mathrm{F}(z)}{\mathrm{P}(z)}=\sum_{\imath=1}^{n+1}\frac{(-1)^{n-i+1}}{\left(z-x_{i}\right)\mathrm{P}^{\prime}\left(x_{i}\right)}\quad\left(x_{n+1}=x\right)
Bk=(1)nk(F(x)P"(x)2P(x))\displaystyle\mathrm{B}_{k}=(-1)^{n-k}\left(\mathrm{\penalty 10000\ F}^{\prime}(x)-\frac{\mathrm{P}^{\prime\prime}(x)}{2\mathrm{P}^{\prime}(x)}\right)
ment if we ask
P(z)\displaystyle\mathrm{P}(z) =(zx)(zx1)(zxn)Q(z)\displaystyle=(z-x)\left(z-x_{1}\right)\left(z-x_{n}\right)Q(z)
R(z)\displaystyle\mathrm{R}(z) =F(z)(zx1)(zxn)Q(z)(xx1)(xxn)Q(x)\displaystyle=\mathrm{F}(z)-\frac{\left(z-x_{1}\right)\left(z-x_{n}\right)Q(z)}{\left(x-x_{1}\right)\left(x-x_{n}\right)Q(x)}

we deduce from this

Bk=(1)nkR(x)=|R(x)|\mathrm{B}_{k}=(-1)^{n-k}\mathrm{R}^{\prime}(x)=\left|\mathrm{R}^{\prime}(x)\right|
  1. 29.

    We can see that ifxxis fixedBk\mathrm{B}_{k}is positive and never cancels out. If two pointsxix_{i}AndxxcoincideBk\mathrm{B}_{k}becomes infinite, so it certainly reaches its minimum for distinct points. FinallyBk\mathbf{B}_{k}is homogeneous of degree -1 inxix_{i}Andxxand depends only on the mutual differences of these numbers. It follows that for the minimum, at least one of the equalitiesx1=has,xn=bx_{1}=a,x_{n}=b, must be verified.

Supposex1=hasx_{1}=aand let's write the conditions

Bkxj=0,j=2.3,,n\frac{\partial\mathrm{B}_{k}}{\partial x_{j}}=0,\quad j=2,3,\ldots,n

The value thus found forBk\mathrm{B}_{k}will beBk*\geq\mathrm{B}_{k}^{*}.
We have

Bkxj=(1)nkP(x)xjx(F(xj)P(xj)1(xjx)P(x))\frac{\partial\mathrm{B}_{k}}{\partial x_{j}}=\frac{(-1)^{n-k}\mathrm{P}^{\prime}(x)}{x_{j}-x}\left(\frac{\mathrm{\penalty 10000\ F}^{\prime}\left(x_{j}\right)}{\mathrm{P}^{\prime}\left(x_{j}\right)}-\frac{1}{\left(x_{j}-x\right)\mathrm{P}^{\prime}(x)}\right)

SO

(xjx)P(x)F(xj)=P(xj)j=2.3,,n\left(x_{j}-x\right)\mathrm{P}^{\prime}(x)\mathrm{F}^{\prime}\left(x_{j}\right)=\mathrm{P}^{\prime}\left(x_{j}\right)\quad j=2,3,\ldots,n

assuming the pointsxf,xx_{f},xdistinct.
We finally deduce
R(x)=0,R(xi)=(1)ni+1,i=1.2,,n,R(xi)=0,i=2.3,,n\mathrm{R}(x)=0,\mathrm{R}\left(x_{i}\right)=(-1)^{n-i+1},i=1,2,\ldots,n,\mathrm{R}^{\prime}\left(x_{i}\right)=0,i=2,3,\ldots,nTo
highlight the numberkklet us denote this polynomialbyTk(z)\operatorname{par}\mathrm{T}_{k}(z).

Now suppose thatxn=bx_{n}=band let's write

Bkxj=0,j=1.2,,n1\frac{\partial\mathrm{B}_{k}}{\partial x_{j}}=0,\quad j=1,2,\ldots,n-1

we then obtain forBk\mathrm{B}_{k}a valueB*k\geq\mathrm{B}^{*}{}_{k}As above, we find
R(x)=0,R(xi)=(1)ni+1,i=1.2,,n,R(xi)=0,i=1.2,,n1\mathrm{R}(x)=0,\mathrm{R}\left(x_{i}\right)=(-1)^{n-i+1},i=1,2,\ldots,n,\mathrm{R}^{\prime}\left(x_{i}\right)=0,i=1,2,\ldots,n-1
Let us denote this polynomial byT¯k(z)-\overline{\mathrm{T}}_{k}(z).
We have

Bk*|T(x)| provided that xnbBk*|T¯(x)| provided that x1has.\begin{array}[]{ll}\mathrm{B}_{k}^{*}\leq\left|\mathrm{T}^{\prime}(x)\right|&\text{ pourvu que }x_{n}\leq b\\ \mathrm{\penalty 10000\ B}_{k}^{*}\leq\left|\overline{\mathrm{T}}^{\prime}(x)\right|&\text{ pourvu que }x_{1}\geq a.\end{array}

It can also be demonstrated that equality is indeed achieved for a particular position of the pointxx.

The polynomialT(z)\mathrm{T}(z)is a Chebyshev polynomial ( 40 ) in a

00footnotetext: (40) Voir S. Beinstein loc. cit. (8).

a certain interval (has,ba,b, )

Tk(z)=cos[narccos2zb1hasb1has]\mathrm{T}_{k}(z)=\cos\left[n\arccos\frac{2z-b_{1}-a}{b_{1}-a}\right]

For formula (69) to be applicable, it is necessary to write thatxxis the Kth root ofTk(z)=0\mathrm{T}_{k}(z)=0and thatxnx_{n}, which is the largest root of the derivative, is at most equal tobb,
x=b1+has2b1has2cos2k12nπ,bxn=b1+has2+b1has2cosπnx=\frac{b_{1}+a}{2}-\frac{b_{1}-a}{2}\cos\frac{2k-1}{2n}\pi,\quad b\geq x_{n}=\frac{b_{1}+a}{2}+\frac{b_{1}-a}{2}\cos\frac{\pi}{n}Eliminating
b4b_{4}we find

xξ˙k=has(cosπn+cos2k12nπ)+b(1cos2k12nπ)1+cosπnx\leq\dot{\xi}_{k}=\frac{a\left(\cos\frac{\pi}{n}+\cos\frac{2k-1}{2n}\pi\right)+b\left(1-\cos\frac{2k-1}{2n}\pi\right)}{1+\cos\frac{\pi}{n}}

The pointsξk\xi_{k}are distributed as follows:

has<ξ1<ξ2<<ξn1<b<ξna<\xi_{1}<\xi_{2}<\ldots<\xi_{n-1}<b<\xi_{n}

In the same way we have

T¯k(z)=cos[narccos2zhas1bbhas1]\bar{T}_{k}(z)=\cos\left[n\arccos\frac{2z-a_{1}-b}{b-a_{1}}\right]

the conditions for the applicability of formula (70) are

x=b+has12+bhas12cos2k+12nπ,hasx1=b+has12+bhas12cosπnx=\frac{b+a_{1}}{2}+\frac{b-a_{1}}{2}\cos\frac{2k+1}{2n}\pi,\quad a\leq x_{1}=\frac{b+a_{1}}{2}+\frac{b-a_{1}}{2}\cos\frac{\pi}{n}

from where

xηk=has(1+cos2k+12nπ)+b(cosπncos2k+12nπ)1+cosπnx\geq\eta_{k}=\frac{a\left(1+\cos\frac{2k+1}{2n}\pi\right)+b\left(\cos\frac{\pi}{n}-\cos\frac{2k+1}{2n}\pi\right)}{1+\cos\frac{\pi}{n}}

The paintingsηk\eta_{k}are distributed as follows:

η0<has<η1<η2<<ηn1<b.\eta_{0}<a<\eta_{1}<\eta_{2}<\ldots<\eta_{n-1}<b.
  1. 30.

    Ifxxis in the interval(ξk1,ξk)\left(\xi_{k-1},\xi_{k}\right)polynomialsTm(z)\mathrm{T}_{m}(z),m=k,k+1,m=k,k+1,\ldotssuitable for limitation. We have

|Tm(x)|=n(xhas)(b1x)=nxhastg2n14nπ\left|T_{m}^{\prime}(x)\right|=\frac{n}{\sqrt{(x--a)\left(b_{1}-x\right)}}=\frac{n}{x-a}\operatorname{tg}\frac{2n-1}{4n}\pi

SO

|T(x)k|<|Tk+1(x)|<|Tk+2(x)|<\left|\mathrm{T}^{\prime}{}_{k}(x)\right|<\left|\mathrm{T}_{k+1}^{\prime}(x)\right|<\left|\mathrm{T}_{k+2}^{\prime}(x)\right|<\ldots

and we will then certainly be able to write

|f(x)|Δ0.|Tk+1(x)| In (ξk1,ξk))\left|f^{\prime}(x)\right|\leq\Delta_{0}.\left|\mathrm{T}_{k+1}^{\prime}(x)\right|\quad\quad\text{ dans }\left(\xi_{k-1},\xi_{k}\right)^{)}

Similarly, we find

|f(x)|Δ0|T¯k1(x)| In (ηk,ηk+1)\left|f^{\prime}(x)\right|\leq\Delta_{0}\cdot\left|\overline{\mathrm{\penalty 10000\ T}}_{k-1}^{\prime}(x)\right|\quad\text{ dans }\left(\eta_{k},\eta_{k+1}\right)

with

|T¯k1(x)|=n(xhas1)(bx)=nbxcotg2k14nπ\left|\overline{\mathrm{T}}_{k-1}^{\prime}(x)\right|=\frac{n}{\sqrt{\left(x-a_{1}\right)(b-x)}}=\frac{n}{b-x}\operatorname{cotg}\frac{2k-1}{4n}\pi

We have in(ξk1,ξk)\left(\xi_{k-1},\xi_{k}\right)

|Tk+1(x)|=nxhastg2k+14nπn5k1hastg2k+14nπ==nbhas1+cosπn1cos2k32nπtg2k+12nπ=nbhas1+cosπnsin2k32ntg2k+14nπtg2k34nπ<<2nbhas2nππ2nsinπ2ntg2k+14nπtg2k34nπ<4nbhas1ππ6sinπ6tg2k+14nπtg2k34nπ\begin{gathered}\left|\mathrm{T}^{\prime}k+1(x)\right|=\frac{n}{x-a}\operatorname{tg}\frac{2k+1}{4n}\pi\leq\frac{n}{5k-1-a}\operatorname{tg}\frac{2k+1}{4n}\pi=\\ =\frac{n}{b-a}\frac{1+\cos\frac{\pi}{n}}{1-\cos\frac{2k-3}{2n}\pi}\cdot\operatorname{tg}\frac{2k+1}{2n}\pi=\frac{n}{b-a}\frac{1+\cos\frac{\pi}{n}}{\sin\frac{2k-3}{2n}}\cdot\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}<\\ <\frac{2n}{b-a}\frac{2n}{\pi}\frac{\frac{\pi}{2n}}{\sin\frac{\pi}{2n}}\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}<\frac{4n}{b-a}\frac{1}{\pi}\frac{\frac{\pi}{6}}{\sin\frac{\pi}{6}}\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}\end{gathered}

and finally

|Tk+1(x)|<43n2bhastg2k+14nπtg2k34nπ In (ξk1,ξk)n>2,k=2.3,,n1\begin{gathered}\left|\mathrm{T}_{k+1}^{\prime}(x)\right|<\frac{4}{3}\frac{n^{2}}{b-a}\cdot\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}\quad\text{ dans }\left(\xi_{k-1},\xi_{k}\right)\mid\\ n>2,k=2,3,\ldots,n-1\end{gathered}

In the same way we have

|T¯k1(x)|<43n2bhastg2k+34nπtg2k14nπ In (ηk,ηk+1)n>2,k=1.2,,n2\begin{gathered}\left|\overline{\mathrm{T}}_{k-1}^{\prime}(x)\right|<\frac{4}{3}\frac{n^{2}}{b-a}\frac{\operatorname{tg}\frac{2k+3}{4n}\pi}{\operatorname{tg}\frac{2k-1}{4n}\pi}\quad\text{ dans }\left(\eta_{k},\eta_{k+1}\right)\\ n>2,k=1,2,\ldots,n-2\end{gathered}

We can also write in(ξk1,ξk)\left(\xi_{k-1},\xi_{k}\right)

Tk+1*(x)\displaystyle\|\mathrm{T}_{k+1}^{*}(x)\mid =n(xhas)(bx)=n(xhas)(bx)bxxhastg2k114nπ\displaystyle=\frac{n}{\sqrt{(x-a)(b-x)}}=\frac{n}{\sqrt{(x-a)(b-x)}}\sqrt{\frac{b-x}{x-a}}\cdot\operatorname{tg}\frac{2k-1-1}{4n}\pi\leq
n(xhas)(bx)bξk1ξk1hastg2k+14nπ=\displaystyle\leq\frac{n}{\sqrt{(x-a)(b-x)}}\sqrt{\frac{b-\xi_{k-1}}{\xi_{k-1}-a}\operatorname{tg}\frac{2k+1}{4n}\pi=}
=n(xhas)(bx)tg2k+14nπtg2k34nπcos2k54nπcos2k14nπcos22k34nπ\displaystyle=\frac{n}{\sqrt{(x-a)(b-x)}}\cdot\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}\sqrt{\frac{\cos\frac{2k-5}{4n}\pi\cdot\cos\frac{2k-1}{4n}\pi}{\cos^{2}\frac{2k-3}{4n}\pi}}

from where finally

|Tk+1(x)|<n(xhas)(bx)=tg2k+14nπtg2k34nπn>2,k=2.3,,n1 In (ξk1,ξk)\begin{gathered}\left|\mathrm{T}_{k+1}^{\prime}(x)\right|<\frac{n}{\sqrt{(x-a)(b-x)}}=\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}\\ n>2,k=2,3,\ldots,n-1\end{gathered}\quad\text{ dans }\left(\xi_{k-1},\xi_{k}\right)

In a similar way

|T¯k1(x)|<n(xhas)(bx)tg2k+34nπtg2k14nπn>2,k=1.2,,n2. In (ηk,ηk+1)\begin{gathered}\left|\bar{T}_{k-1}^{\prime}(x)\right|<\frac{n}{\sqrt{(x-a)(b-x)}}\cdot\frac{\operatorname{tg}\frac{2k+3}{4n}\pi}{\operatorname{tg}\frac{2k-1}{4n}\pi}\\ n>2,k=1,2,\ldots,n-2.\end{gathered}\text{ dans }\left(\eta_{k},\eta_{k+1}\right)

Note that

tg2k+14nπtg2k34nπtg5π4ntgπ4ntg5π12tgπ12=2+323,n>2,k=2.3,,n1\frac{\operatorname{tg}\frac{2k+1}{4n}\pi}{\operatorname{tg}\frac{2k-3}{4n}\pi}\leq\frac{\operatorname{tg}\frac{5\pi}{4n}}{\operatorname{tg}\frac{\pi}{4n}}\leq\frac{\operatorname{tg}\frac{5\pi}{12}}{\operatorname{tg}\frac{\pi}{12}}=\frac{2+\sqrt{3}}{2-\sqrt{3}},\quad n>2,k=2,3,\ldots,n-1

And

η1>ξ1=has(cosπn+cosπ2n)+b(1cosπ2n)1+cosπnξn1<ηn1=has(1cosπ2n)+b(cosπn+cosπ2n)1+cosπn\begin{gathered}\eta_{1}>\xi_{1}=\frac{a\left(\cos\frac{\pi}{n}+\cos\frac{\pi}{2n}\right)+b\left(1-\cos\frac{\pi}{2n}\right)}{1+\cos\frac{\pi}{n}}\\ \xi_{n-1}<\eta_{n-1}=\frac{a\left(1-\cos\frac{\pi}{2n}\right)+b\left(\cos\frac{\pi}{n}+\cos\frac{\pi}{2n}\right)}{1+\cos\frac{\pi}{n}}\end{gathered}

We can therefore see that:
The derivatives of a functionf(x)f(x)bounded and orderlynnin the intex-
valley (has,ba,b) checks the inequalities (n>2n>2)

{|f(x)|<832+323n2bhasΔ0|f(x)(xhas)(bx)|<22+323nΔ0\left\{\begin{array}[]{l}\left|f^{\prime}(x)\right|<\frac{8}{3}\cdot\frac{2+\sqrt{3}}{2-\sqrt{3}}\cdot\frac{n^{2}}{b-a}\Delta_{0}\\ \left|f^{\prime}(x)\sqrt{(x-a)(b-x)}\right|<2\frac{2+\sqrt{3}}{2-\sqrt{3}}n\cdot\Delta_{0}\end{array}\right.

xxbelonging to the inter-flight (has+λ,bλa+\lambda,b-\lambda) with

λ=(bhas)1cosπ2n1+cosπn\lambda=(b-a)\frac{1-\cos\frac{\pi}{2n}}{1+\cos\frac{\pi}{n}}

We have introduced the coefficient 2 here; it comes from the fact that, in the proof, we have assumedf(x)=0f(x)=0The general case reduces to this one by considering the functionf1(z)=f(z)f(x)f_{1}(z)=f(z)-f(x)which is still of ordernnand we obviously have

f1(x)=0,f1(z)=f(z),|f1(z)|2Δ0.f_{1}(x)=0,f_{1}^{\prime}(z)=f^{\prime}(z),\left|f_{1}(z)\right|\leq 2\Delta_{0}.

MP Montel was kind enough to point out to us that, in the vicinity of the extremitieshas+λa+\lambdaOrbλb-\lambdathe second limitation is comparable to the first for large values ​​ofnnIt suffices to note thatλ\lambdais of the order of1n2\frac{1}{n^{2}}.

Formulas (71) closely resemble those given by Markoff and M.S. Bernstein for the limitation of the derivative of a polynomial ( 41 ). It can be seen that a function of ordernnbehaves roughly like a polynomial of degree n in a subinterval, which, moreover, can be approached as closely as one wants to(has,b)(a,b)Fornn\rightarrow\infty.

Chapter IV.

ON CONVEX FUNCTIONS IN THE SENSE OF M. JENSEN.
31. In his famous memoir MJ Jensen ( 42 ) defines convex (ordinary) functions by considering only second divided differences taken on equidistant points.
()41\left({}^{41}\right)See S. Bernstein loc. cit.()8\left({}^{8}\right)( 42
) JLWV Jensen, "On Convex Functions and Inequalities Between Mean Values," Acta Math., vol. 30 (1906), p. 175. M. L. Galvani was the first to consider functions defined on arbitrary sets. See his memoir "Sulle funzioni convesse di una o due variabili definite in un aggregato qualunque," Rendiconti di Palermo, vol. 41 (1916), p. 103.

Let us assume, for the sake of clarity, that E is an interval (has,ba,b) and consider the divided differences

δn(x;h;f)=1n!hni=0n(ni)f(x+(ni)h).\delta_{n}(x;h;f)=\frac{1}{n!h^{n}}\sum_{i=0}^{n}\binom{n}{i}f(x+(n-i)h).

Let's suppose thatf(x)f(x)let be bounded and let us set

limit.sup.|i=1n(1)t(ni)f(x+(ni)h)|=ωn(δ)hasx,x+hb,|h|δ\begin{gathered}\lim.\sup.\left|\sum_{i=1}^{n}(-1)^{t}\binom{n}{i}f(x+(n-i)h)\right|=\omega_{n}(\delta)\\ a\leq x,x+h\leq b,\quad|h|\leq\delta\end{gathered}

ωn(δ)\omega_{n}(\delta)is the oscillation modulus of ordernnof the function.
Let's

Δn=limit.sup.|δn(x;h;f)|In(has,b).\Delta_{n}^{\prime}=\lim.\sup.\left|\delta_{n}(x;h;f)\right|\quad\operatorname{dans}(a,b).

We haveωn(δ)n!δnΔn\omega_{n}(\delta)\leq n!\delta^{n}\Delta_{n}^{\prime}, so ifΔn\Delta_{n}^{\prime}is finished

limitδ0ωn(δ)=0˙\lim_{\delta\rightarrow 0}\omega_{n}(\delta)=\dot{0}

MA Marchaud has shown that in this case the function is continuous ( 43 ).

Let's taken+1n+1ordered pointsx1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}and divide the interval (ω1,xn+1\omega_{1},x_{n+1}) inppequal parts by points

x1=x0,x1,,xp1,xp=xn+1x_{1}=x_{0}^{\prime},x_{1}^{\prime},\ldots,x_{p-1}^{\prime},x_{p}^{\prime}=x_{n+1}

Eitherxi"x_{i}{}^{\prime\prime}the pointxjx_{j}{}^{\prime}which is closest toxix_{i}(or one of them if there are two). Formula (10) then gives us

|[x1",,xn+1";f]|Δn.\left|\left[x_{1}^{\prime\prime},\ldots,x_{n+1}^{\prime\prime};f\right]\right|\leq\Delta_{n}^{\prime}.

But

|xix"|xn+1x12p\left|x_{i}-x^{\prime\prime}\right|\leq\frac{x_{n+1}-x_{1}}{2p}

and since the function is continuous, we can find a numberη>0\eta>0such as

|[x1,x2,,xn+1;f][x",1x",2,x";n+1f]|<ε\left|\left[x_{1},x_{2},\ldots,x_{n+1};f\right]-\left[x^{\prime\prime}{}_{1},x^{\prime\prime}{}_{2},\ldots,x^{\prime\prime}{}_{n+1};f\right]\right|<\varepsilon

ε>0\varepsilon>0being any given number, provided thatp>ηp>\eta. It follows that

IfΔn\Delta^{\prime}{}_{n}is finite and if the function is bounded it is also a bounded nth difference divided function and we have

Δn=Δn.\Delta_{n}=\Delta_{n}^{\prime}.

(43) A. Marghaud loc, cit. (7). .

We can also define a total variationVnV^{\prime}{}_{n}on equidistant points by setting

Vn\displaystyle\mathrm{V}_{n}^{\prime} =limit.sup.i=0m|δn(x+ih;h;f)δn(x+(i+1)h;h;f)|=\displaystyle=\lim.\sup.\sum_{i=0}^{m}\left|\delta_{n}(x+ih;h;f)-\delta_{n}(x+(i+1)h;h;f)\right|=
=limit.sup.(n+1)hı=1m|δn(x+ih;h;f)1|(h>0)\displaystyle=\lim.\sup.(n+1)h\sum_{\imath=1}^{m}\left|\delta_{n}{}_{1}(x+ih;h;f)\right|\quad(h>0)

IfΔn+1\Delta^{\prime}{}_{n+1}is limited, the same is true forVn\mathrm{V}^{\prime}{}_{n}, butVn\mathrm{V}^{\prime}{}_{n}can be limited withoutΔn\Delta_{n}^{\prime}the evening.

It is further demonstrated, as above, that ifVn\mathrm{V}^{\prime}{}_{n}is finished and the functionf(x)f(x)bounded, it has a bounded nth variation and we have

Vn=Vn.V_{n}=V_{n}^{\prime}.

Of course, this property is only true forn>0n>0We generally haveV0>V0V_{0}>V_{0}^{\prime}32.
We can finally consider functionsf(x)f(x)verifying the inequality

δn+1(x;h;f)0 In (has,b)\delta_{n+1}(x;h;f)\geq 0\quad\text{ dans }(a,b) (72)

I say first that if such a function is bounded it is continuous in the open interval (has,ba,b) (n>0n>0).

From formula (10) it follows that we have

[x1,x2,,xn+2;f]0\left[x_{1},x_{2},\ldots,x_{n+2};f\right]\geq 0 (73)

provided that the pointsx2,x3,,xn+1x_{2},x_{3},\ldots,x_{n+1}rationally divide the interval (x1,xn+2x_{1},x_{n+2}). So thenxxan interior point of (has,ba,b) and let'snnfixed pointsx1,x2,,xnx_{1},x_{2},\ldots,x_{n}ordered and to the left ofxxand eitherxx^{\prime}a point nearxx, which we can assume to be to the right ofxxTo clarify things. We have

U(x1,x2,,xn,x,x;f)0\mathrm{U}\left(x_{1},x_{2},\ldots,x_{n},x,x^{\prime};f\right)\geq 0 (74)

pourvu que la condition de rationalité soit vérifiée. Or, nous pouvons toujours prendre les points xix_{i} de manière que x2,x3,,xnx_{2},x_{3},\ldots,x_{n} divisent rationnellement l’intervalle ( x1,xx_{1},x ). Alors, ou bien x2,x3,,xn,xx_{2},x_{3},\ldots,x_{n},x divisent rationnellement l’intervalle ( x1,xx_{1},x^{\prime} ), ou bien nous pouvons rem-
placer les points xix_{i} par d’autres xix_{i}^{\prime} aussi près qu’on veut des xix_{i} tels que cette propriété soit vérifiee. En développant alors l’inégalité (74) nous avons

f(x)f(x)(xx)AV(x1,x2,,xn,x)=(xx)A1.f\left(x^{\prime}\right)-f(x)\geq\left(x^{\prime}-x\right)\frac{\mathrm{A}}{\mathrm{\penalty 10000\ V}\left(x_{1},x_{2},\ldots,x_{n},x\right)}=\left(x^{\prime}-x\right)\mathrm{A}_{1}. (75)

La quantité A est bornée la fonction l’étant aussi par hypothèse. Dans V(x1,x2,,xn,x)\mathrm{V}\left(x_{1},x_{2},\ldots,x_{n},x\right) les points ordonnés x1,,xn,xx_{1},\ldots,x_{n},x sont, ou .bien fixes ou bien on remplace x1,x2,,xnx_{1},x_{2},\ldots,x_{n} par des points aussi voisins qu’on veut ; on peut donc s’arranger toujours de manière que 𝕍(x1,x2,,xn,x)\mathbb{V}\left(x_{1},x_{2},\ldots,x_{n},x\right) reste plus grand qu’un nombre positif.

Il en résulte que A1A_{1} reste borné quand xx^{\prime} varie.
Par le même procédé nous obtenons

f(x)f(x)(xx)B1f\left(x^{\prime}\right)-f(x)\leq\left(x^{\prime}-x\right)\mathrm{B}_{1} (76)

B4\mathrm{B}_{4} étant borné lorsque xx^{\prime} varie. Pour celà il suffit de prendre par exemple xnx_{n} à droite de xx. On procède de la même manière si xx^{\prime} est à gauche de xx.

Les inégalités (75), (76) prouvent la continuité.
Comme au No. précédent nous obtenons la propriété suivante :
Si une fonction bornée définie dans l’intervalle ( a,ba,b ) vérifie l’inégalité (72), elle est non-concave d’ordre nn (au sens du Chap. II).

Signalons encore la propriété suivante ( 44 ) :
Si une fonction mesurable (au sens de M. Lebesgue) vérifie l’inégaLité (72), dans ( a,ba,b ) elle est continue en tout point intérieur.

Supposons le contraire et soit xx un point de discontinuité intérieur à ( a,ba,b ). Il résulte de ce qui précède que dans tout intervalle entourant xx il existe un point ξ\xi tel que

|f(ξ)|>A|f(\xi)|>\mathrm{A} (77)

A étant un nombre positif aussi grand qu’on veut.
Soit a un nombre positif tel que l’intervalle ( x2σ,x+2σx-2\sigma,x+2\sigma ) soit complètement intérieur à ( a,ba,b ). Dans l’intervalle ( xσ,x+σx-\sigma,x+\sigma ) il existe un point ξ\xi tel que

|f(ξ)|>(n+1)(n+1k)A|f(\xi)|>(n+1)\binom{n+1}{k}\mathrm{\penalty 10000\ A} (78)

kk est égal à n2\frac{n}{2} ou n+12\frac{n+1}{2} suivant que nn est pair ou impair.

00footnotetext: ( 44 ) Pour n=1n=1 voir W. Sierpinski "Sur les fonctions convexes mesurables". Fundamenta Math. t. I (1920), p, 125.

Considérons l’un des intervalles de longueur σ\sigma ayant ξ\xi comme extrémité. Nous avons
1n+1{f(ξh)+(n+12)f(ξ+h)(n+13)f(ξ+2h)+}f(ξ)(n+11)f(ξ+h)(n+12)f(ξ+2h)+(n+13)f(ξ+3h)+\frac{1}{n+1}\left\{f(\xi-h)+\binom{n+1}{2}f(\xi+h)-\binom{n+1}{3}f(\xi+2h)+\cdots\right\}\geq f(\xi)\geq\geq\binom{n+1}{1}f(\xi+h)-\binom{n+1}{2}f(\xi+2h)+\binom{n+1}{3}f(\xi+3h)+\cdots
en supposant par exemple h>0h>0 et ξ+(n+1)hx+2σ\xi+(n+1)h\leq x+2\sigma.
On -voit alors qu’on a

|f(ξ+jh)|>A|f(\xi+jh)|>\mathrm{A}

au moins pour un j=1,1,2,,n+1j=-1,1,2,\ldots,n+1. En effet autrement il yy^{-} aurait certainement contradiction avec (78).

Il en résulte que les points ξ\xi, pour lesquels on a (77), forment un ensemble de mesure σ\geq\sigma et alors la fonction ne peut être mesurable en vertu d’un théorème de M. Borel.

SECONDE PARTIE.

SUR LES FONCTIONS CONVEXES D’ORDRE SUPÉRIEUR DE DEUX VARIABLES RÉELLES.

CHAPITRE V.

SUR LES DIFFÉRENCES DIVJSÉES DES FONCTIONS DE DEUX variables réelles.

§ 1. - Théorie générale des différences divisées.

  1. 33.

    Considérons une fonction f(x,y)f(x,y) réelle et uniforme sur un en-semble plan borné EE dont la nature sera précisée plus loin.

On peut généraliser la notion de dufférence divicée pour le cas des fonctions de deux variables indépendantes d’une infinité de manières. Nous étudierons la généralisation qui paraît présenter le plus d’intérêt.

Soient M1,M2,,Mk,k=(m+1)(n+1)\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k},k=(m+1)(n+1) points de l’ensemble E. Désignons par xi,yi,i=1,2,,kx_{i},y_{i},i=1,2,\ldots,k les coordonnées du point Mi\mathrm{M}_{i} et posons

Vm,n(M1,M2,,Mk)=\mathrm{V}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k}\right)= (79)

=|1xixi2ximyiyixiyixi2yiximyinyinxiyinxi2yinxim|=\left|1x_{i}x_{i}^{2}\ldots x_{i}^{m}y_{i}y_{i}x_{i}y_{i}x_{i}^{2}\ldots y_{i}x_{i}^{m}\ldots y_{i}^{n}y_{i}^{n}x_{i}\quad y_{i}^{n}x_{i}^{2}\ldots y_{i}^{n}x_{i}^{m}\right|
où, suivant une notation usitée, nous n’avons écrit que la ligne générale du déterminant.

Pour abréger, nous désignerons aussi par e l’ensemble des points. Mi\mathrm{M}_{i} et par Vm,n(e)\mathrm{V}_{m,n}(e) le déterminant (79).

Désignons par Um,n(M1,M2,Mk;f)\mathrm{U}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots\mathrm{M}_{k};f\right) ou Um,n(e;f)\mathrm{U}_{m,n}(e;f) le détérminant qu’on déduit de (79) en remplaçant les éléments de la dernière : colonne par

f(x1,y1),f(x2,y2),,f(xk,yk)f\left(x_{1},y_{1}\right),f\left(x_{2},y_{2}\right),\ldots,f\left(x_{k},y_{k}\right)

Appelons courbe d’ordre ( m,nm,n ) une courbe algébrique représentée. par l’équation F(x,y)=0\mathrm{F}(x,y)=0F(x,y)\mathrm{F}(x,y) est un polynome de degré mm ena xx et de degré nn en yy.

Considérons alors le quotient

[M1,M2,,Mk;f]m,n=Um,n(M1,M2,,Mk;f)Vm,n(M1,M2,,Mk)\left[\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k};f\right]_{m,n}=\frac{\mathrm{U}_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{k};f\right)}{V_{m,n}\left(\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}^{k}\right)} (80)

Remarqouns que la différence divisée d’ordre ( m,nm,n ) est symétrique par rapport aux points Mi\mathrm{M}_{i}.

Soit E\mathrm{E}^{*} l’ensemble dont les éléments sont les groupes de k==(m+1)(n+1)k==(m+1)(n+1) points de E non situés sur une courbe d’ordre (m,n)(m,n). A chaque élément de E\mathrm{E}^{*} correspond, pour la fonction f,x,yf,x,y ), une dififérence divisée d’ordre ( m,nm,n ).

Prenons un sous-ensemble E1\mathrm{E}^{*}{}_{1} de E\mathrm{E}^{*}. L’ensemble de toutes les différences divisées d’ordre ( m,nm,n ) forme ce que nous appelerons une différence divisée d’ordre ( m,nm,n ) sur E de la fonction f(x,y)f(x,y).

La différence divisée d’ordre ( m,nm,n ) sur E est donc une fonction d’ensemble égale au quotient (80) en tout élément de E1\mathrm{E}^{*}{}_{1}. Ainsi à tout sous-ensemble E1\mathrm{E}_{1}^{*} correspond uue différence divisée d’ordre ( m,nm,n ) sur E.

Un sous-ensemble E\mathrm{E}^{*} : est toujours caractérisé par certaines propriétés restrictives que doivent vérifier les groupes de points donnant ales éléments de ce sous-ensemble.
34. Supposons que tout point de E appartienne à au moins un "élément de 𝔼1\mathbb{E}_{1}^{*}. Nous dirons alors que la différence divisée d’ordre ( m,nm,n ) sur E , correspondant à Es\mathrm{E}^{*}\mathrm{\penalty 10000\ s}, est complète.

Il est à peu près évident qu’une différence divisée sur. E non complète ne présente aucune utilité pour l’étude de la fonction sur E.

Soit E1\mathrm{E}_{1} un groupe de k=(m+1)(n+1)k=(m+1)(n+1) points de E , ce groupe étant un élément de E1\mathrm{E}^{*}{}_{1}, E2\mathrm{E}_{2} l’ensemble de tous les points de E tels que chacun d’eux donne, avec k1k-1 points de E1\mathrm{E}_{1}, un élément de E4,Ep\mathrm{E}_{4}^{*}\ldots,\mathrm{E}_{p} l’ ensemble de tous les points de E tels que chacun d’eux donne, avec k..1{}_{..}k-1 points de Ep1\mathrm{E}_{p-1}, un élément de E1,\mathrm{E}_{1}^{*},\ldots etc.

On a E1<E2<<Ep<\mathrm{E}_{1}<\mathrm{E}_{2}<\ldots<\mathrm{E}_{p}<\ldots et la somme ΣEp\Sigma\mathrm{E}_{p} est contenue dans E.

Supposons qu’on puisse trouver Ef\mathrm{E}_{\mathrm{f}} de manière qu’on ait ΣEp=E\Sigma\mathrm{E}_{p}=\mathrm{E}. - Nous dirons alors que la différence divisée sur E , correspondant à Et\mathrm{E}^{*}\mathrm{t}, est close.

Il est clajr que la propriété d’être close entraine celle d’ètre complète.

Soient E1,E2\mathrm{E}_{1}^{*},\mathrm{E}_{2}^{*} deux sous-ensembles de E\mathrm{E}^{*} tels que E1<E2\mathrm{E}_{1}^{*}<\mathrm{E}^{*}{}_{2} Nous dirons alors que la différence divisée d’ordre ( m,nm,n ) sur E , correspondant au sous-ensemble E2\mathrm{E}^{*}{}_{2} est plus élendue que celle correspondant au sous-ensemble Ei\mathrm{E}_{i}^{*}. On peut aussi dire que la différence divisée sur E , correspondant à E1\mathrm{E}_{1}^{*}, est moins étendue que celle correspondant à E2\mathrm{E}_{2}^{*}.

Si une différence divisée sur E est complète ou close, toute différence divisée sur E plus étendue sera a fortiori complète ou close.

Nous supposons bien entendu qu’il existe au moins une différence divisée d’ordre ( m,nm,n ) donc que l’ensemble E ne soit pas vide. Pourqu’il en soit ainsi il taut et il suffit que les points de E ne soient pas. tous sur une courbe d’ordre ( m,nm,n ).

Une différence divisée d’ordre ( m,nm,n ) sur E est nulle identiquement si les différences divisées sont nulles pour tout élément de l’ensemble. E1\mathrm{E}_{1}^{*} correspondant.

Si une différence divisée close d’ordre ( m,nm,nIf the function is zero on E, then the function reduces on E to the values ​​of a polynomial of degree.mminxxand degreenninyynot containing a term inxmynx^{m}y^{n}.

Let us consider a sequence of setsE1,E2,,Ep,\mathrm{E}_{1},\mathrm{E}_{2},\ldots,\mathrm{E}_{p},\ldotsexpressing... the closure. We will demonstrate the property step by step. The property is true on the setE1\mathrm{E}_{1}This is immediately apparent when noting that, among thek=(m+1)(n+1)k=(m+1)(n+1)points ofE1\mathrm{E}_{1}, there is alwaysk1k-1through which passes a curved scule of order (m,nm,nIt now suffices to show that if the property is true on the setEp1\mathrm{E}_{p-1}it will also be true across the boardEp\mathrm{E}_{p}This results from the fact that the points ofEp\mathrm{E}_{p}which are not found inEp1\mathrm{E}_{p-1}are obtained from there in the following way: We take inEp1k1\mathrm{E}_{p-1}k-1points through which a single curve of order (m,nm,n) ; either (CC) this curve. We take the points that are not on (C) and that with thek1k-1points. The chosen points give an element of the setE*1\mathrm{E}^{*}{}_{1}corresponding to the difference divided over E considered. By taking all possible curves (C), we obtain all the points of𝐄p\mathbf{E}_{p}35.
Let us establish yet another property of certain divided differences on E. For a divided difference on E to be usable for the study of functions, it is necessary that, at least for simple functions, it leads to simple differential properties for the function.f(x,y)f(x,y).

EitherMM^{\prime}a point on the derivativeEE^{\prime}ofEEand an element ofE*1E^{*}{}_{1}formed
by the pointsMi,i=1.2,,k,k=(m+1)(n+1)\mathrm{M}_{i},i=1,2,\ldots,k,k=(m+1)(n+1)Let's call the distance from the pointM\mathrm{M}^{\prime}to the element e the greatest of the distances from the pointM\mathrm{M}^{\prime}to the pointsMiM_{i}.

Let's agree that the sequence of elements ofE*,1e,e",,e(p),\mathrm{E}^{*}{}_{1},e^{\prime},e^{\prime\prime},\ldots,e^{(p)},\ldots/ tends towards the pointM\mathrm{M}^{\prime}ofE\mathrm{E}^{\prime}if the distance from the pointM\mathrm{M}^{\prime}to the elemente(p)e^{(p)}tends towards zero whenpp\rightarrow\infty.

We will say that a difference divided by E is regular if, for whatever reason, a sequence of elementse,e",,ep,e^{\prime},e^{\prime\prime},\ldots,e^{\prime p},\ldotsof E tends towards the pointM\mathrm{M}^{\prime}ofE\mathrm{E}^{\prime}the difference divided[e(p);xαyβ]m,n\left[e^{(p)};x^{\alpha}y^{\beta}\right]_{m,n}tends towards a finite and well-defined limit, and this:
10. For any point M' which is the limit of at least one sequence of elements ofE1*E_{1}^{*}
202^{0}For a couple of numbersα,β\alpha,\betanon-negative integers ( 45 ).
The regularity conditions are not all independent. First, forαm,βn,α+β<m+n\alpha\leq m,\beta\leq n,\alpha+\beta<m+nthe limit in question is always equal to zero and forα=m,β=n\alpha=m,\beta=nIt is obviously equal to 1. These properties belong to all differences divided over E.

Let us designate byLm,n(α,β)(x,y)\mathrm{L}_{m,n}^{(\alpha,\beta)}\left(x^{\prime},y^{\prime}\right)the limit of the difference divided[e;xhasyβ]m,n\left[e;x^{a}y^{\beta}\right]_{m,n}to the pointM(x,y)M^{\prime}\left(x^{\prime},y^{\prime}\right), in the case of regularity. Therefore, we have

Lm,n(has1β)(x,y)\displaystyle\mathrm{L}_{m,n}^{\left(a_{1}\beta\right)}\left(x^{\prime},y^{\prime}\right) =0\displaystyle=0 αm,βn,α+β<m+n\displaystyle\alpha\leq m,\quad\beta\leq n,\alpha+\beta<m+n
=1\displaystyle=1 α=m,β=n.\displaystyle\alpha=m,\quad\beta=n.

We can write

[e;xαyβ]m,n=ı=1kHASicıαyıβ(k=(m+1)(n+1))\left[e;x^{\alpha}y^{\beta}\right]_{m,n}=\sum_{\imath=1}^{k}A_{i}c_{\imath}^{\alpha}y_{\imath}^{\beta}\quad(k=(m+1)(n+1))

YourHASiA_{i}being independent ofα\alphaAndβ\beta.
Let us designate byXi\mathrm{X}_{i}the fundamental symmetric functions of the abscissas of the points formingeeand byYi,i=i,2,,k\mathrm{Y}_{i},i=i,2,\ldots,kthe functions

00footnotetext: (45) Les considérations précédentes s’appliquent aux fonctions d’une variable La différence divisée générale, envisagée dans la première partie, est close. Si la fonction est définie dans un intervalle, la différence divisée prise sur des points équidistants est complète mais n’est pas close. La question de régularité ne se pose pas. Toute différence divisée est régulière. C’est précisement à cause de cette propriété que les questions exposées dans la première cpartie presentaient une aussi grande simplicité.

fundamental symmetrics of the ordinates of these points. We have

[e;𝔵hasyβ]m,n\displaystyle{\left[e;\mathfrak{x}^{a}y^{\beta}\right]_{m,n}} =ı=1k(1)i1Xi[e;𝔵αiyβ]m,n\displaystyle=\sum_{\imath=1}^{k}(-1)^{i-1}X_{i}\left[e;\mathfrak{x}^{\alpha-i}y^{\beta}\right]_{m,n} αk\displaystyle\alpha\geq k
=i=1k(1)i1Yi[e;𝔵αyβi]m,n\displaystyle=\sum_{i=1}^{k}(-1)^{i-1}Y_{i}\left[e;\mathfrak{x}^{\alpha}y^{\beta-i}\right]_{m,n} βk\displaystyle\beta\geq k

This shows us that:
There are only a finite number of independent regularity conditions.

In particular, it is sufficient that the regularity condition be met forαk1,βk1\alpha\leq k-1,\beta\leq k-1and then we have

Lm,n(α,β)(x,y)\displaystyle L_{m,n}^{(\alpha,\beta)}\left(x^{\prime},y^{\prime}\right) =ik(1)i1(ki)WiLm,n(αi,β)(𝒳,y)αk\displaystyle=\sum_{i}^{k}(-1)^{i-1}\binom{k}{i}\mathfrak{X}^{\prime i}L_{m,n}^{(\alpha-i,\beta)}\left(\mathscr{X}^{\prime},y^{\prime}\right)\quad\alpha\geq k
=i=1k(1)i1(ki)yiLm,n(α,βi)(𝒜,y)βk\displaystyle=\sum_{i=1}^{k}(-1)^{i-1}\binom{k}{i}y^{\prime i}L_{m,n}^{(\alpha,\beta-i)}\left(\mathscr{A}^{\prime},y^{\prime}\right)\quad\beta\geq k

We have thus found(m1)(n+1)(m+n+mn)(m-1)(n+1)(m+n+mn)Conditions of regularity. These conditions are not all independent yet and can be reduced in various ways. We will not dwell on this point here.

Regularity does not lead to closure and conversely closure does not lead to regularity ( 46 ).

If a difference divided over E is regular, any less extensive difference divided over E is also regular and exhibits the same regularity (the limits are the same).

§. 2. - On a particular divided difference.

  1. 36.

    If the subsetE*1\mathrm{E}^{*}{}_{1}coincides with E, we obtain the most extensive divided difference over E. Since E is not empty, it can easily be shown that this divided difference over E is closed. However, this divided difference over E does not appear to be of great interest for the study of the function, as it is not generally smooth. Let

00footnotetext: (46) C’est précisement sur ce point que le cas de deux variables diffère essentiellement de celui d’une variable.

for example the four points

M1(1.1),M2(1has,1has2(1θ)),M3(1+has,1has,1has2(1θ))M4(1+has2,1+θhas2)\begin{gathered}\mathrm{M}_{1}(1,1),\quad\mathrm{M}_{2}\left(1-a,1-a^{2}(1-\theta)\right),\quad\mathrm{M}_{3}\left(1+a,1-a,1-a^{2}(1-\theta)\right)\\ \mathrm{M}_{4}\left(1+a^{2},1+\theta a^{2}\right)\end{gathered}

and the functionf(x,y)=x2f(x,y)=x^{2} ; We have

[M1,M2,M3,M4;f]1.1=(1θ)has2+θ\left[M_{1},M_{2},M_{3},M_{4};f\right]_{1,1}=(1-\theta)a^{2}+\theta

Ifhas0a\rightarrow 0the four points tend towards the point(1.1)(1,1)and the divided difference can tend towards any limit.
37. We will assume, for simplicity, that E is a closed rectangle ( 47 )

E(hasxbcyhas)\mathrm{E}\binom{a\leq x\leq b}{c\leq y\leq a} (81)

Let's call with Mr. Marchaud()48\left({}^{48}\right), order network (m,nm,n) the figure formed bymmparallel to the axis0y0yAndnnparallel to the axis0x0xOf course, we only consider the points of the network that belong to rectangle E.

We call the partial divided difference of order (m,nm,n) the difference divided over E corresponding to the subsetE*1\mathrm{E}^{*}{}_{1}whose elements are the nodes (or points of intersection) of all the networks. of order (m+1,n+1m+1,n+1).

The partial divided difference of order (m,nm,nThe system is complete but not closed. It is also regular, and its regularity is expressed by the equalities.

Lm,n(α,β)(x,y)=(αm)(βn)xmαymβ.\mathrm{L}_{m,n}^{(\alpha,\beta)}\left(x^{\prime},y^{\prime}\right)=\binom{\alpha}{m}\binom{\beta}{n}x^{m-\alpha}y^{\prime m-\beta}.

The term "partial divided difference" can be explained as follows: Let's take the same divided difference of the function with respect toxx

F(y)=[x1,x2,,xm+1;f]\mathrm{F}(y)=\left[x_{1},x_{2},\ldots,x_{m+1};f\right]

and the nth difference divided byF(y)\mathrm{F}(y)

[x1,x2,,xm+1y1,y2,,yn+1;f]=[y1,y2,,yn+1;F].\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right]=\left[y_{1},y_{2},\ldots,y_{n+1};F\right].

By changing the order of the two variablesx,yx,ywe also define the quantity

[y1,y2,,yn+1x1,x2,,xm+1;f].\left[\begin{array}[]{l}y_{1},y_{2},\ldots,y_{n+1}\\ x_{1},x_{2},\ldots,x_{m+1}\end{array};f\right].

(47) It is clear that a more complicated set could be taken. (48) Thesis loc. cit. (7).

We can easily see that we have identical

[y1,y2,,yn+1x1,x2,,xm+1;f]=[x1,x2,,xm+1y1,y2,,yn+1;f].\left[\begin{array}[]{l}y_{1},y_{2},\ldots,y_{n+1}\\ x_{1},x_{2},\ldots,x_{m+1}\end{array};f\right]=\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right].

Expression (82) is precisely the divided difference of order(m,n)(m,n)of the functionf(x,y)f(x,y)on the points(xi,yi),i=1.2,,m+1j=1.2,,n+1\left(x_{i},y_{i}\right),i=1,2,\ldots,m+1j=1,2,\ldots,n+1.

Let us also call, with Mr. Marchaud (49), a pseudo-polynomial of order (m,nm,n) any function of the form

i=0mxiHASi(y)+j=0nyBj(x)HASL(y) arbitrary functions of yBj(x) arbitrary functions of x.\sum_{i=0}^{m}x^{i}\mathrm{\penalty 10000\ A}_{i}(y)+\sum_{j=0}^{n}y^{\prime}\mathrm{B}_{j}(x)\quad\begin{aligned} &\mathrm{A}_{l}(y)\text{ fonctions arbitraires de }y\\ &\mathrm{\penalty 10000\ B}_{j}(x)\text{ fonctions arbitraires de }x\end{aligned}.

A pseudo-polynomial of order(m,n)(m,n)is completely determined by its values ​​on an ordered network (m+1,n+1m+1,n+1).

This property is analogous to the uniqueness property of L polynomials.

Let us designate by

P(x1,x2,,xm+1y1,y2,,yn+1;f(xy)\mathrm{P}\left(\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\binom{x}{y}\right.

the pseudo-polynomial of order(m,n)(m,n)coinciding with the functionf(x,y)f(x,y)on the network

x=xi,i=1.2,,m+1y=yj,j=1.2,,n+1.\begin{array}[]{ll}x=x_{i},&i=1,2,\ldots,m+1\\ y=y_{j},&j=1,2,\ldots,n+1\end{array}.

It is easy to see that

f(x,y)P(x1,x2,,xm+1y1,y2,,yn+1;f|xy)=\displaystyle f(x,y)-\mathrm{P}\left(\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\left\lvert\,\begin{array}[]{l}x\\ y\end{array}\right.\right)= (83)
V(x1,x2,,xm+1)V(y1,y2,,yn+1)V(x1,x2,,xm+1,x)V(y1,y2,,yn+1,y)[x1,x2,,xy1,y2,,y]\displaystyle\frac{\mathrm{V}\left(x_{1},x_{2},\ldots,x_{m+1}\right)\cdot\mathrm{V}\left(y_{1},y_{2},\ldots,y_{n+1}\right)}{\mathrm{V}\left(x_{1},x_{2},\ldots,x_{m+1},x\right)\cdot\mathrm{V}\left(y_{1},y_{2},\ldots,y_{n+1},y\right)}\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x\\ y_{1},y_{2},\ldots,y\end{array}\right]\cdot
  1. 38.

    It can easily be seen that the general solution of the equation

[x1,x2,,xm+1y1,y2,,yn+1;f]=0. on E\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right]=0.\quad\text{ sur }\mathrm{E}

is a pseudo-polynomial of order (m1,n1m-1,n-1).

(49) We call pseudo-polynomial of order (m,n) what Mr. Marchaud\displaystyle\text{ (49) Nous appelons pseudo-polynome d'ordre }(m,n)\text{ ce que M. Marchaud }
call for an order (m+1,n+1)We are introducing this change in order to ob-\displaystyle\text{ appelle d'ordre }(m+1,n+1)\text{. Nous introduisons ce changement en vue d'ob- }
to maintain greater symmetry in the names.

Mathemat ca VIII.\square

Partial divided differences of order(m1,n1)<(m,n)[m1m,n1n,m1+n1<m+n]\left(m_{1},n_{1}\right)<(m,n)\left[m_{1}\leq m,n_{1}\leq n,m_{1}+n_{1}<m+n\right]of a pseudo-polynomial of order (m1,n1m-1,n-1) are generally unbounded. The pseudo-polynomial itself is generally unbounded. We have the following property:

For a pseudo-polynomial of order (m1,n1m-1,n-1) has all its differences divided by partial order(m,n)\leq(m,n)bounded it is necessary and sufficient that its divided partial differences of order (m,0m,0), (0,n0,n) are bounded.

Suppose the functionf(x,y)f(x,y)zero on the network

x=xi,i=1.2,,m;y=yj,j=1,,nx=x_{i}^{\prime},\quad i=1,2,\ldots,m;\quad y=y_{j}^{\prime},\quad j=1,\ldots,n

Let's apply formula (6) to partial divided differences

[x1,x2,,xmy1,y2,,yn+1;f]=[x1,x2,,xmy1,y2,,yn+1;f][x1,x2,,xmy1,y2,,yn+1;f]\displaystyle{\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right]=\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right]-\left[\begin{array}[]{l}x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m}^{\prime}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right]}
[x1,x2,,xm+1y1,y2,,yn;f]=[x1,x2,,xn+1y1,y2,,yn;f][x1,x2,,xm+1y1,y2,,yn]f]\displaystyle\left.\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n}\end{array};f\right]=\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{n+1}\\ y_{1},y_{2},\ldots,y_{n}\end{array};f\right]-\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1}^{\prime},y_{2}^{\prime},\ldots,y_{n}^{\prime}\end{array}\right]f\right]

we then see that if lx partial divided difference of order (m,nm,n) is bounded the partial divided differences of order (m1,nm-1,n), (m,n1m,n-1) are also limited.

It follows that all partial divided differences of order(m,n)\leq(m,n)are bounded. We can therefore state the following property:

So that the partial divided differences of order(m,n)\leq(m,n)of a functionf(x,y)f(x,y)to be bounded it is necessary and sufficient that:
10. The partial divided difference of order (m,nm,n) is bounded.
20. Partial divided differences of order(m,0),(0,n)(m,0),(0,n)are bounded on a network of order (m+1,n+1m+1,n+1).

We also see that:
Any function whose partial divided difference of order (m,nm,n) is bounded is the sum of a function having all its differences divided by partial order(m,n)\leq(m,n)bounded and of a pseudo-polynomial of order(m1,n1)(m-1,n-1).

The fact that the partial divided difference of order(0.0)(0,0)is bounded means that the function is bounded.

It can also be noted that

f(x,yf(x,y)=(yy)[xy,y;f]+(xx)[x,xy]f]f\left(x,y-f\left(x^{\prime},y^{\prime}\right)=\left(y-y^{\prime}\right)\left[\begin{array}[]{l}x\\ y,y^{\prime}\end{array};f\right]+\left(x-x^{\prime}\right)\left[\begin{array}[]{l}x,x^{\prime}\\ y\end{array}\right]f\right]

therefore, if the partial divided differences of order(1.0)(1,0)And(0.1)(0,1)are bounded the function is continuous.

Let us recall once again a theorem of MP Montel (50) under a slightly modified farm.

If the partial divided differences of order (mm,nm-m^{\prime},n), (m,nnm,n-n^{\prime}) of a ? function are bounded, the partial divided difference of order (m",n"m^{\prime\prime},n^{\prime\prime}) is bounded provided that

m"mmmm>0mm"m+nn"n>1.\begin{array}[]{ccc}m^{\prime\prime}\geq m-m^{\prime}&m\geq m^{\prime}>0&\frac{m-m^{\prime\prime}}{m^{\prime}}+\frac{n-n^{\prime\prime}}{n^{\prime}}>1.\end{array}

We first show that the property is true for a pseudo-polynomial of order (m1,n1m-1,n-1) (the conditionsmm"mmm\geq m^{\prime\prime}\geq m-m^{\prime},nn"ınn\geq n^{\prime\prime}\geq\imath-n^{\prime}are then sufficient). We then demonstrate the property for a function that vanishes on a lattice of order (m,nm,n) (the first two conditions can then be replaced bym"m,n"nm^{\prime\prime}\leq m,n^{\prime\prime}\leq nThe demonstration can be done using the functionsωn,n(δ,λ)\omega_{n,n}(\delta,\lambda)introduced by Mr. Marchaud in his Thesis ( 51 ).

S. 3. - Study of another particular divided difference.

  1. 39.

    To simplify, we will again assume that E is a rectangle (81).

EitherE1*\mathrm{E}_{1}^{*}the subset ofE*\mathrm{E}^{*}whose elements are all the groupseeofm+1m+1pointsMi(xi,yi)\mathrm{M}_{i}\left(x_{i},y_{i}\right)meeting the following conditions:
101^{0}The sequelx1,x2,,xm+1x_{1},x_{2},\ldots,x_{m+1}is ordered.
202^{0}. We have

|yi+1yi|ϕ(xi+1xi),ı˙=1.2,,m\left|y_{i+1}-y_{i}\right|\leq\phi\left(x_{i+1}-x_{i}\right),\quad\dot{\imath}=1,2,\ldots,m

Orϕ(θ)\phi(\theta)is a positive and non-decreasing function forθ>0\theta>0We
will say that the difference divided by order (m,0m,0) on E corresponding toE1*\mathrm{E}_{1}^{*}is a normal divided difference of order (m,0m,0The functionϕ(θ)\phi(\theta)is its characteristic function.

A normal difference of order (m,0m,0) is closed; it is aregular ifϕ(θ)\phi(\theta)is quite small and tends towards zero quite rapidly.

We will say that a difference divided over E is bounded at the pointM(x,y)\mathrm{M}(x,y)of E if there exists a circle centered at M where this divided difference is bounded. We also say that the divided difference over E is not bounded at point M if it is not bounded in any circle centered at M.

Let's demonstrate the following property:
If a tonctionf(x,y)f(x,y)has a normal divided difference of order

00footnotetext: (50) Voir loc. cit. (35).
(51) Voir le troisième Chapitre de sa Thèse.

(m,0m,0) bounded in E, it also has a normal divisible difference of order: (m1.0m-1,0) bounded at every point of E.

  • We can demonstrate this using formula (6) from the first part, which is applicable here in the form

[M1,M2,,Mm;f]m1.0[M1,M2,,Mm;f]m1.0\displaystyle{\left[\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{m};f\right]_{m-1,0}-\left[\mathrm{M}_{1}^{\prime},\mathrm{M}_{2}^{\prime},\ldots,\mathrm{M}_{m}^{\prime};f\right]_{m-1,0}} (84)
=\displaystyle= i=1m(xixi)[Mi,Mi+1,,Mm,M1,M2,,Mi;f]m,0\displaystyle\sum_{i=1}^{m}\left(x_{i}-x_{i}^{\prime}\right)\left[\mathrm{M}_{i},\mathrm{M}_{i+1},\ldots,\mathrm{M}_{m},\mathrm{M}_{1}^{\prime},\mathrm{M}_{2}^{\prime},\ldots,\mathrm{M}_{i}^{\prime};f\right]_{m,0}

Or (xi,yix_{i},y_{i}), (xi,yix_{i}^{\prime},y_{i}^{\prime}) are the coordinates of the pointsMi,Mii=1i,2ij,m\mathrm{M}_{i},\mathrm{M}_{i}^{\prime}i=1_{i},2_{ij}\ldots,m.

EitherM(x,y)M(x,y)a point ofEEand consider a circle with centerMMand radiusppLet's take the fixed pointsM;has\mathrm{M}^{\prime};{}_{\mathrm{a}}i outside the circle and on the same side of the vertical line passing through M. Suppose we take them to the right of this vertical line so that the followingx*,1x,2,xmx^{*}{}_{1},x^{\prime}{}_{2},\ldots,x^{\prime}{}_{m}Let's consider the points.Mi\mathrm{M}_{i}within the circle as follows:x1,x2,,xmx_{1},x_{2},\ldots,x_{m}be ordered. The sequencesxi,xi+1,,xm,x1,x2,,xix_{i},x_{i+1},\ldots,x_{m},x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{i}^{\prime}will then be ordered.

We can then see that we can always fix the pointsMi\mathrm{M}^{\prime}{}_{i}and take the rayρ\rhosmall enough so that whatever the points Misverifying the condition202^{0}, the groups of pointsMi,Mi+4,,MnhasM1,M2,,Mi,i=1.2,,m\mathrm{M}_{i},\mathrm{M}_{i+4},\ldots,\mathrm{M}_{na}\mathrm{M}_{1}^{\prime},\mathrm{M}_{2}^{\prime},\ldots,\mathrm{M}_{i}^{\prime},i=1,2,\ldots,malso verify the condition202^{0}Formula (84) then demonstrates the property.

We will specify the results obtained:
Let us denote byC(M;p)\mathrm{C}(\mathrm{M};\mathrm{p})the circle with center M and radiusppWe
can say that there is aρ>0\rho>0such that the function has a normal divided difference of order(m1.0)(m-1,0)barnée inC(M;Qq)2\mathrm{C}\left(\mathrm{M};\mathrm{Q}_{q}\right)_{2}regardless of point M.

For all points M located to the left of the vertical line with abscissahas+b2\frac{a+b}{2}we take the pointsMi\mathrm{M}_{i}^{\prime}such that one hasxi<bλ,i=1.2;,mx_{i}^{\prime}<b-\lambda,i=1,2;\ldots,m,λ\lambdabeing a sufficiently small fixed positive number. The property follows for all these points, taking into account that the characteristic functionϕ(θ)\phi(\theta)of the normal divided difference of order (m,0m,0The given value is decreasing. The same applies to points M that are to the right of the vertical line with abscissahas+b2\frac{a+b}{2}The stated property results from this.

I say again that: the difference divides normal diorder (m1.0m-1,0) is uniformly bounded in circlesC(M;ρ1),ρ>ρ1>0\mathrm{C}\left(\mathrm{M};\rho_{1}\right),\rho>\rho_{1}>0.

This statement means that there exists a positive numberHAS2\mathrm{A}_{2}, such as damæ:
the circleC(M;p1)C\left(M;p_{1}\right)the divided differences of the normal divided difference considered, do not exceed in modulus the number A, whatever M.

Indeed, otherwise it is easy to find that there is a pointM0M_{0}such as in the circleC(M0;ρ)C\left(M_{0};\rho\right)the normal divided difference of order (m1.0m-1,0) is not bounded; which is impossible.
40. Suppose that the functionf(x,y)f(x,y)has a normal divided difference of order (m,0m,0) which is bounded within the circleC(M;ρ),ρ>0\mathrm{C}(\mathrm{M};\rho),\rho>0-whatever M in E.

We will show that in this case the function has a (different) normal divided difference of order (m,0m,0) bounded in rectangle E.

Eitherϕ(θ)\phi(\theta)the characteristic function of the given normal divided difference. Consider the normal divided difference of order (m,0m,0) whose characteristic functionϕ1(θ)\phi_{1}(\theta)is defined as follows:

ϕ1(θ)=ϕ(ρ1) For 0θρ12mρ>ρ1>0ϕ1(θ)=ϕ(ρ1) For θ>ρ12m.\begin{array}[]{lll}\phi_{1}(\theta)=\phi\left(\rho_{1}\right)&\text{ pour }0\leq\theta\leq\frac{\rho_{1}}{2m}&\rho>\rho_{1}>0\\ \phi_{1}(\theta)=\phi\left(\rho_{1}\right)&\text{ pour }\theta>\frac{\rho_{1}}{2m}.&\end{array}

We will show that there is always a choiceρ1\rho_{1}so that "this normal divided difference satisfies the property.

LetMi(xi,yi),i=1.2,,m+1,m+1\mathrm{M}_{i}\left(x_{i},y_{i}\right),i=1,2,\ldots,m+1,m+1points in E satisfying inequalities:

x1<x2<,,<xm+1\displaystyle x_{1}<x_{2}<,\ldots,<x_{m+1}
|yi+1yi|ϕ1(xi+1xi),i=1.2,,m.\displaystyle\left|y_{i+1}-y_{i}\right|\leq\phi_{1}\left(x_{i+1}-x_{i}\right),\quad i=2,\ldots,m.

On each pair of "consecutive" pointsMi,Mi+1\mathrm{M}_{i},\mathrm{M}_{i+1}we perform the following operation: Ifxi+1xip1mx_{i+1}-x_{i}\leq\frac{p_{1}}{m}we leave the points unchanged, ifρ1m<xi+1xi2ρ1m\frac{\rho_{1}}{m}<x_{i+1}-x_{i}\leq\frac{2\rho_{1}}{m}we share the segmentMiMi+1M_{i}M_{i+1}in two equal parts by an additional point; in general, if(j1)ρ1c<xi+1xijρ1m\frac{(j-1)\rho_{1}}{c}<x_{i+1}-x_{i}\leq\frac{j\rho_{1}}{m}we share the segmentMiMi+1M_{i}M_{i+1}injj- equal parts byj1j-1extra points.

Let's tidy up the pointsMi\mathrm{M}_{i}and all the additional points introduced in the order of growth of their x-coordinates. We then see that we can chooseρ1,ρ2(ρ>ρ2>ρ1>0)\rho_{1},\rho_{2}\left(\rho>\rho_{2}>\rho_{1}>0\right), so that whatever the pointsMi\mathrm{M}_{i}any group ofm+1m+1consecutive points of the obtained sequence satisfy the following properties:
10. The group ofm+1m+1points is an element of the subsetE*1\mathrm{E}^{*}{}_{1}correspond to the given normal divided difference (whose characteristic function isϕ(θ)\phi(\theta)).
202^{0}. THEm+1m+1points of the group are in a circle of radiusp2p_{2}having as its center a point of𝐄\mathbf{E}.

The stated property then follows, possibly applying formula (10) from the first part and taking into account the fact that the given normal divided difference is uniformly bounded in circles.C(M;p2)C\left(M;p_{2}\right).

Taking into account the results of the previous No., we can state the property:

If a functionf(x,y)f(x,y)has a normal divided difference of order (m,0m,0) bounded in E, it also has a normal divided difference of order. (m1.0m-1,0) bounded in E.

We also see that the function has a normal divided difference of order (r,0r,0) bounded in E forr<mr<m.

Note. Consider the normal divided difference of order (m,0m,0) whose characteristic function isλ.θ,λ\lambda.\theta,\lambdabeing a positive number For this normal divided difference to be bounded in E, it is necessary and sufficient that it be bounded at every point of E. Indeed, it can be shown, using formula (10), that if it is not bounded in E, there exists a point where it is unbounded.
41. If the functionf(x,y)f(x,y)has a normal divided difference of order(1.0)(1,0)bounded, it is continuous at every point ofE\mathbb{E}.

EitherM(x,y)M(x,y)a point ofEEAndMp(xp,yp)M_{p}\left(x_{p},y_{p}\right)a sequence of points in E tending towards M. We see that for every numberε>0\varepsilon>0we can match a numberNNand an abscissaxpx^{\prime}{}_{p}such that one has

|f(x,y)f(xp,yp)|<ε2,|f(xp,yp)f(xp,yp)|<ε2\left|f(x,y)-f\left(x_{p}^{\prime},y_{p}\right)\right|<\frac{\varepsilon}{2},\left|f\left(x_{p}^{\prime},y_{p}\right)-f\left(x_{p},y_{p}\right)\right|<\frac{\varepsilon}{2}

Forp>Np>\mathrm{N} ; SO

|f(x,y)f(xp,yp)|<ε,p>N\left|f(x,y)-f\left(x_{p},y_{p}\right)\right|<\varepsilon,\quad p>N

If the function has a normal divided difference of order (m,0m,0) bounded, it has at every point of E a partial derivative of orderm1m-1,m1fxm1\frac{\partial^{m-1}f}{\partial x^{m-1}}We intend to show that:

If the functionf(x,y)f(x,y)has a nonmale divided difference of order(m,0),m>1(m,0),m>1bounded, the partial derivativefxf_{x}^{\prime}exists at every point and has a normal divided difference of order (m1.0m-1,0) limited.

To demonstrate the property, it suffices to take the pointsMi,MirirM_{i},M_{i}^{r}{}_{i}^{r}
so thaty1=yi,i=1.2,,my_{1}=y_{i}^{\prime},\quad i=1,2,\ldots,mAndx1<x1<x2<x2<x_{1}<x_{1}^{\prime}<x_{2}<x_{2}^{\prime}<\ldotsWe can then apply the reasoning used for functions of one variable in Chapter III. By letting tendxix_{i}^{\prime}towardsxi,i=1.2,,mx_{i},i=1,2,\ldots,mWe can see thatfxf^{\prime}{}_{x}has a normal divided difference of order (m1.0m-1,0) bounded corresponding to the same characteristic functionϕ(θ)\phi(\theta).

From the previous property and from what was said in Nos. 39 and 40, we deduce that:

If the functionf(x,y)f(x,y)has a normal divided difference of order(m,0)(m,0)bounded, it has partial derivativesfx,f"x2,,fxm1(m1)f^{\prime}x,f^{\prime\prime}x^{2},\ldots,f_{x^{m-1}}^{(m-1)}continuous at every point of E.

The derivativefxi(i)f_{x^{i}}^{(i)}has a normal divided difference of order (mi,0m-i,0) bounded and in particularfxm1(m1)f_{xm-1}^{(m-1)}has a normal divided difference of order(1.0)(1,0)narrow-minded.

Suppose that the functionf(x,y)f(x,y)has a normal divided difference of order (m,0m,0) and that this normal divided difference is such that the divided difference has a finite and well-determined limit when the points on which it is taken tend in any way towards a limit point.

It follows that the normal divided difference considered is bounded and that the partiolle derivativemfxm\frac{\partial^{m}f}{\partial x^{m}}exists and is continuous. Conversely, ifmfxm\frac{\partial^{m}f}{\partial x^{m}}exists and is continuous the normal divided difference function of order (m,0m,0) bounded. It should be noted that the characteristic functionϕ(θ)\phi(\theta)that of this normal divided difference generally depends on the function considered.

We can also demonstrate the following property:
For the tonctionf(x,y)f(x,y)has a partial derivativemfxm\frac{\partial^{m}f}{\partial x^{m}}continuous at every point of E, it is sufficient that there exists a normal divided difference of order (m,0m,0) such that no matter how the points on which a divided difference is taken tend towards a limit point, the divided difference tends towards a finite and well-determined limit.

Let's add that we can make the same construction for the order(0,n)(0,n)and thus introduce normal divided differences of order (0,n0,n) which will enjoy the same properties with respect to the variableyy42.
Let's define the subsetE1*\mathrm{E}_{1}^{*}so that its elementseeall groups ofk=(m+1)(n+1)k=(m+1)(n+1)pointsMi,j(xi,j,yi,j)M_{i,j}\left(x_{i,j},y_{i,j}\right),i=1.2,,m+1,j=1.2,,n+1i=1,2,\ldots,m+1,j=1,2,\ldots,n+1meeting the following conditions:

1'. The sequels

x1,j,x2,j,,xm+1,jj=1.2,,n+1yi,1,yi,2,,yi,n+1i=1.2,,m+1\begin{array}[]{lr}x_{1,j},x_{2,j},\ldots,x_{m+1,j}&j=1,2,\ldots,n+1\\ y_{i,1},y_{i,2},\ldots,y_{i,n+1}&i=1,2,\ldots,m+1\end{array}

are ordered.
202^{0}We have inequalities

|yi+1,jyi,j|ϕ(xi+1,jxi,j),i=1.2,,nj=1.2,,m+1|xi,j+1xi,j|ϕ(yi,j+1yi,j),i=1.2,,mj=1.2,,n+1\begin{array}[]{lll}\left|y_{i+1,j}-y_{i,j}\right|\leq\phi\left(x_{i+1,j}-x_{i,j}\right),&i=1,2,\ldots,n&j=1,2,\ldots,m+1\\ \left|x_{i,j+1}-x_{i,j}\right|\leq\phi\left(y_{i,j+1}-y_{i,j}\right),&i=1,2,\ldots,m&j=1,2,\ldots,n+1\end{array}

Orϕ(θ)\phi(\theta)is a positive and non-decreasing function forθ>0\theta>0
We can determine the function ϕ(θ)\phi(\theta)so that we also haveVm,n(e)0\mathrm{V}_{m,n}(e)\neq 0, whatever the pointsMi,j\mathrm{M}_{i,j}We will assume that this is always the case. We see that if the functionϕ(θ)\phi(\theta)checks this property; any smaller function will check the same property.

We call the divided difference of order (m, n) the divided difference on E corresponding to such a subsetE*1\mathrm{E}^{*}{}_{1}. The functionϕ(θ)\phi(\theta)is its characteristic function.

A normal divided difference of order (m,nm,n) is more extensive than the partial divided difference of the same order. Therefore, any normal divided difference is complete.

Let us further demonstrate that every normal divided difference is closed.
Indeed, letPi,(xi,yj)i=1.2,,m+1j=1.2,,n+1\mathrm{P}_{i,}\left(x_{i},y_{j}\right)i=1,2,\ldots,m+1j=1,2,\ldots,n+1the nodes of an ordered network (m+1,n+1m+1,n+1). Let us designate byeeall of thesek=(m+1)(n+1)k=(m+1)(n+1)Points attached to each PCintPi,jP_{i,j}a circle having this point as its center and a radius the positive numberppLet us consider the setsee^{\prime}ofkkpointsPi,\mathrm{P}^{\prime}{}_{i,}, such that each is in or on the circumference of the circle corresponding to the pointPi,j\mathrm{P}_{i,j}same indicesiiAndjjThere is aρe\rho_{e}depending on the seteesuch as:10ifρ<ρ:1^{0}\mathrm{si}\rho<\rhowe haveVm,n(e)0\mathrm{V}_{m,n}\left(e^{\prime}\right)\neq 0regardless ofee^{\prime} ;202^{0}ifρρe\rho\geq\rho_{e}there is aee^{\prime}whose determinantVm,n\mathrm{V}_{m,n}is zero.ρe\rho_{e}is independent of a translation of the point groupPi,/\mathrm{P}_{i,/}.

Let us now consider the subsetE*\mathrm{E}^{*}, the elements of which areee^{\prime}obtained by taking forρ\rhoa value<ρe<\rho_{e}independent of translation. It can easily be shown that the divided difference on E corresponding to such a subset is closed, by expressing the closure condition in a suitable way. Now, given a normal divided difference, there always exists a divided difference on E of the latter form that is less extensive, which proves the property.

We can state the following property:

If a normal divided difference of order (m,nm,n) of a function s'zero identically, this function reduces on E to a polynomial of degreemminxxand degreenninyynot containing a term inxmynx^{m}y^{n}.

Without going into details, let's just say that it can be shown that if the characteristic function tends sufficiently rapidly towards zero withθ\theta, the normal divided difference is also regular. This regularity is obviously always that of the partial divided difference of the same order.
43. Consider a normal divided difference of order (m,nm,n). :EitherE*1\mathrm{E}^{*}{}_{1}the subset corresponding to this normal divided difference andϕ(θ)\phi(\theta)its characteristic function. We assumed that points of an element of E* 1 are all distinct. Suppose that a sequence of elements ofE*1\mathrm{E}^{*}{}_{1}tends towards a borderline groupeeof(n+1)(n+1)(n+1)(n+1)points and areMi,j(xi,j,yi,j)i=1.2,,m+1,j=1.2,,n+1\mathrm{M}_{i,j}\left(x_{i,j},y_{i,j}\right)i=1,2,\ldots,m+1,j=1,2,\ldots,n+1the points ofeesuch as

x1,jx2,jxm+1,jj=1.2,,n+1yi,1yi,2yi,n+1i=1.2,,m+1\begin{array}[]{ll}x_{1,j}\leq x_{2,j}\leq\ldots\leq x_{m+1,j}&j=1,2,\ldots,n+1\\ y_{i,1}\leq y_{i,2}\leq\ldots\leq y_{i,n+1}&i=1,2,\ldots,m+1\end{array}

The pointseeare not necessarily all distinct. It can easily be seen that if the characteristic functionϕ(θ)\phi(\theta)tends quite rapidly towards zero withθ\theta, a multiple point ofeeis always formed by a group of(p+1)(q+1)(p+1)(q+1)points combined such asMr+i,s+ J i=0,1,2,,p,j=0,1,2,,q\mathrm{M}_{r+i,s+\text{ J }}i=0,1,2,\ldots,p,j=0,1,2,\ldots,q.

We will try to make sense of the difference divided for such a groupee, containing coincident points. Let's always assume that the pointsMr+i,s+j0ip,0jq\mathrm{M}_{r+i,s+j}0\leq i\leq p,0\leq j\leq qcome together at the pointM(x,y)\mathrm{M}(x,y)Let's assume they are distinct at first. We substitute intoUm,n(e;f)\mathrm{U}_{m,n}(e;f)the lines corresponding to the pointsMr+i,s+j\mathrm{M}_{r+i,s+j}by(p+1)(q+1)(p+1)(q+1)other lines that can be deduced from the line

1xx2xmyyxyx2yxmynynxynxmf(x,y)1xx^{2}\ldots x^{m}yyxyx^{2}\ldots yx^{m}\ldots y^{n}y^{n}x\ldots y^{n}x^{m}\quad f(x,y)

by the following procedure: The line corresponding to the point is replacedMr+i,s+/\mathrm{M}_{r+i,s+/}by (80) in which each term has been substituted for its divided difference of order (i,ji,j) taken on the pointsMr+α,s+βα=0,1,2,,i,β=0,1,2,,j\mathrm{M}_{r+\alpha,s+\beta}\alpha=0,1,2,\ldots,i,\quad\beta=0,1,2,\ldots,jWe perform this operation becausei=0,1,2,,p,j=0,1,2,,qi=0,1,2,\ldots,p,j=0,1,2,\ldots,q[we are asking of course[Mr,s;f]0.0==f(xr,s,yr,s)\left[\mathrm{M}_{r,s};f\right]_{0,0}==f\left(x_{r,s},y_{r,s}\right)Let's now tighten the pointsMri,s+j\mathrm{M}_{r-i,s+j}towardsM()52\mathrm{M}\left({}^{52}\right)It is then easy to see that if the characteristic function tends sufficiently
( 52 ) We assume of course that these points constantly belong to elements ofE*1E^{*}{}_{1}.
quickly towards zero withθ\theta, the line corresponding to the pointMr+i,s+j\mathrm{M}_{r+i,s+j}tends towards what we deduce from (85), if we apply the operation to its terms:i+jxiyj\frac{\partial^{i+j}}{\partial x^{i}\partial y^{j}}provided, of course, that the derivativei+ifxiyj\frac{\partial^{i+i}f}{\partial x^{i}\partial y^{j}}exists and is continuous. We can chooseϕ(θ)\phi(\theta)so that this is true fori=0,1,2,,p,j=0,1,2,,qi=0,1,2,\ldots,p,j=0,1,2,\ldots,q.

Finally, we can chooseϕ(θ)\phi(\theta)so that the previous process applies to all multiple points ofeeprovided that all the introduced derivatives exist and are continuous. The determinantVm,n(e)\mathrm{V}_{m,n}(e) ; will be defined by equalityVm,n(e)=Um,n(e;xmyn)\mathrm{V}_{m,n}(e)=\mathrm{U}_{m,n}\left(e;x^{m}y^{n}\right)and ifϕ(θ)\phi(\theta)is quite small and tends towards zero quite quickly withθ\thetawe will still haveVm,n(e)0V_{m,n}(e)\neq 0.

It is therefore possible to define, under the conditions indicated, the difference divided by e by the ratio

[e;f]m,n=Um,n(e;f)Vm,n(e)[e;f]_{m,n}=\frac{\mathrm{U}_{m,n}(e;f)}{\mathrm{V}_{m,n}(e)}

Let's add to the setE1*\mathrm{E}_{1}^{*}all the limits of elements on which the divided difference can be defined in this way. We then see that if a sequence of elements ofE1*\mathrm{E}_{1}^{*}tends towards such a limiting groupee, the corresponding divided differences have a limit[e;f]m,n[e;f]_{m,n}.

Let us assume in particular thatf(x,y)f(x,y)either continuous and have a derivativem+n2fxm1yn1\frac{\partial^{m+n-2}f}{\partial x^{m-1}\partial y^{n-1}}continuous; therefore all derivativesr+sfxrysrm12\frac{\partial^{r+s}f}{\partial x^{r}\partial y^{s}}r\leq m-1_{2}.sn1s\leq n-1exist and are continuous. We then know that the function has a normal divided difference of order (m,nm,n) which can be extended over any limit group containing at least four distinct points.

Let us further suppose that the derivativem+n2fxm1yn1\frac{\partial^{m+n-2}f}{\partial x^{m-1}\partial y^{n-1}}has a normal divided difference of order(1.0)(1,0)and a normal divided difference of order (0,1) bounded in E. By considerations analogous to those made above, it is shown that the function then has a normal divided difference of order (m,nm,n) which can be extended over any limit group e containing at least two distinct points. It should be noted that if ea contains only two distinct points, the value of[e;f]m,n[e;f]_{m,n}may not be determined; we can only affirm that this quantity remains bounded.

Eithere(p)p=J,2,e^{(p)}p=\mathrm{J},2,\ldotsa series of elements ofE*1\mathrm{E}^{*}{}_{1}tending towards
( 53 ) The rate at which the characteristic function must tend towards zero forθ0\theta\rightarrow 0generally depends on the functionf(x,y)f(x,y)This speed can be specified using the oscillation moduli of various orders of the functionf(x,y)f(x,y)
boundary group eeof this nature. The following[e(p);f]m,np=1.2,\left[e^{(p)};f\right]_{m,n}p=1,2,\ldotsdoes not necessarily tend towards a limit; we can only state that all limit values ​​of this sequence are finite (the set of limit values ​​being closed, it will necessarily be bounded).

We can now state the following property:
If the derivativem+n2fxm1yn1\frac{\partial^{m+n-2}f}{\partial x^{m-1}\partial y^{n-1}}of the functionf(x,y)f(x,y)exists and has a normal divided difference of order(1.0)(1,0)and a normal divided difference of order(0.1)(0,1)bounded in E. If, in addition, the functionf(x,y)f(x,y)has a normal divided difference of order (m,nm,nbounded at every point ac E, it also has a normal divided difference of order (m,nm,n) boonée in E.

The function does indeed have a normal divided difference of order(m,n)(m,n)less extensive than the given one and which can be extended over any limit group having at most two distinct points. This normal divided difference is obviously bounded at every point of E. Suppose that it is not bounded in E and then consider a sequence of elementse(p)e^{(p)}ofE1*\mathrm{E}_{1}^{*}tending towards a borderline groupeesuch as[e(p);f]m,n\left[e^{(p)};f\right]_{m,n}tends towards++\inftyWe deduce that all points ofeemust be identical. Therefore, there would exist a point where the normal divided difference under consideration is unbounded, which is impossible. The property is thus proven.

This property completes and generalizes some results of No. 40.
44. The extension on any limit group is possible, in the sense of the previous No., if the function is a polynomial and if the normal divided difference considered is regular.

Suppose that the function is a divided-intercept function bounded with respect toxxfor any value ofyyand tonth n^{\text{ème }}difference divided bounded with respect toyyfor any value ofxxConsider a normal and regular divided difference of order (m,nm,n) of this function, having as its characteristic functionϕ(0)\phi(0)Suppose that this normal divided difference is not bounded at a pointM(x,y)M(x,y)ofEE.

We will demonstrate, under these assumptions, that the normal divided difference of order (m+1,nm+1,n), of the same characteristic functionϕ(θ)\phi(\theta)cannot be bovnée in E:

101^{0}the points𝕄i,j(p)(xi,j(p),yi,j(p)),1im+1.1jn+1,x1,j<x2,j<<xm+1.1;yi,1<yi,2<<yi,n+1\mathbb{M}_{i,j}^{(p)}\left(x_{i,j}^{(p)},y_{i,j}^{(p)}\right),1\leq i\leq m+1,1\leq j\leq n+1,x_{1,j}<x_{2,j}<\ldots\ldots<x_{m+1,1};y_{i,1}<y_{i,2}<\ldots<y_{i,n+1}ofe(p)e^{(p)}all tend towards M.20,[e(p);f]m,n2^{0},\left[e^{(p)};f\right]_{m,n}tends towards++\inftyWe are modifyingUm,n(e(p);f)\mathrm{U}_{m,n}\left(e^{(p)};f\right)as in the previous No.; we therefore replace the line corresponding to the pointMi,j(p)\mathrm{M}_{i,j}^{(p)}by (85) in which each term has been substituted for its divided difference of order (i1,j1i-1,j-1) taken on the pointsMα,β(p),1αiM_{\alpha,\beta}^{(p)},1\leq\alpha\leq i,1βj1\leq\beta\leq\equiv jWe perform the same operation onVm,n(e(p))\mathrm{V}_{m,n}\left(e^{(p)}\right)by replacingffbyxmynx^{m}y^{n}In this way the report[e(p);f]m,n\left[e^{(p)};f\right]_{m,n}It doesn't change. Either nowe1(p)e_{1}^{(p)}the group of(m+2)(n+1)(m+2)(n+1)points formed bye(ρ)e^{(\rho)}and by the pointsP1,j(ρ)(x0,ym+1,j(ρ))1jn+1,x0\mathrm{P}_{1,j}^{(\rho)}\left(x_{0},y_{m+1,j}^{(\rho)}\right)1\leq j\leq n+1,x_{0}being fixed and>x+ρ>x+\rhoAt the limit, the pointsP1,j(p)\mathrm{P}_{1,j}^{(p)}will merge with the point (x0,yx_{0},y). We are also modifying the report[e1(p);t]m+1,n\left[e_{1}^{(p)};t\right]_{m+1,n}as above.

Let's dopp\rightarrow\infty, so either|[e1(p);f]m+1,n|\left|\left[e_{1}^{(p)};f\right]_{m+1,n}\right|has an infinite limit, or else it remains bounded. In the latter case, it is immediately apparent that at least one of the divided differences must

[M1.1(p),M1.2(p),,Mi,j(p);t]i1,j1\displaystyle{\left[\mathrm{M}_{1,1}^{(p)},\mathrm{M}_{1,2}^{(p)},\ldots,\mathrm{M}_{i,j}^{(p)};t\right]_{i-1,j-1}} (86)
i=1.2,,m+1,j=1.2,,n+1\displaystyle i=1,2,\ldots,m+1,\quad j=1,2,\ldots,n+1

(the systemi=m+1,j=n+1i=m+1,\quad j=n+1being excluded.)
or unbounded.
Suppose that (86) is unbounded fori=r+1,j=s+1,rmi=r+1,j=s+1,r\leq m,sn,r+s<m+ns\leq n,r+s<m+nand that the differences divided (86) fori=1.2,,r+1,j=1.2,,s+1,i+j<r+s+2i=1,2,\ldots,r+1,j=1,2,\ldots,s+1,i+j<r+s+2remain limited. One can always determinerrAndssin this way (ifr=s=0r=s=0the function is unbounded at the pointMM).

Let us designate bye2(p)e_{2}^{(p)}the whole of(m+2)(n+1)(m+2)(n+1)points

Mi,j(p)i=1.2,,r,j=1.2,,s(xi,1(p),yj)i=1.2,,r+1,j=1.2,,ns(xi,yj)i=1.2,,mr+1,j=1.2,,ns(xi,yr+1,j(p))i=1.2,,mr+1,j=1.2,,s+1} (none if n=s ) \left.\begin{array}[]{ll}\mathrm{M}_{i,j}^{(p)}&i=1,2,\ldots,r,j=1,2,\ldots,s\\ \left(x_{i,1}^{(p)},y_{j}\right)&i=1,2,\ldots,r+1,j=1,2,\ldots,n-s\\ \left(x_{i},y_{j}\right)&i=1,2,\ldots,m-r+1,j=1,2,\ldots,n-s\\ \left(x_{i},y_{r+1,j}^{(p)}\right)&i=1,2,\ldots,m-r+1,j=1,2,\ldots,s+1\end{array}\right\}\text{ (aucun si }n=s\text{ ) }

Orx+p<x1<x2<<xnr+1;y1<y2<<yns<ypx+p<x_{1}<x_{2}<\ldots<x_{n-r+1};y_{1}<y_{2}<\ldots<y_{n-s}<y-pare fixed x-coordinates and y-coordinates.

Doingpp\rightarrow\inftythe difference divided[ec(p);f]m+1,n\left[e_{c}^{(p)};f\right]_{m+1,n}does not remain confined, which demonstrates ownership.

It is demonstrated in the same way that the normal divided difference of order (m,n+1m,n+1) and more generally than the normal divided difference of order(m1,n1)m1m,n1n,m1+n1>m+n\left(m_{1},n_{1}\right)m_{1}\geq m,n_{1}\geq n,m_{1}+n_{1}>m+n, of the same characteristic functionϕ(θ)\phi(\theta), cannot be bounded in E.
45. Now suppose that the functionf(x,y)f(x,y)has a normal divided difference of order (m,nm,n) bounded in E. We will demonstrate that the partial divided difference of order (m,0m,0) and the partial divided difference of order (0,n0,n) are bounded in E. It suffices to show that these divided partial differences are bounded at every point of E. We obtain this property, for the order (m,0m,0) for example, by reasoning analogous to that used for the demonstration of the properties of No. 39 and by making use of the identity, easy to establish-

[M1,M2,,Mm+1;f]m,0=\left[\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{m+1};f\right]_{m,0}=

=i=1n(1)i+1V(y,y1,yi1,yi+1,,yn)V(y1,y2,,yn)[M1,i,M2,i,,Mm+1,i;f]m,0..+(1)nV(y,y1y2,,yn)V(y1,y2,,yn)[M1,M2,,Mm+1,M1.1,M1.2,,Mm+1,n;]m,n=\sum_{i=1}^{n}(-1)^{i+1}\frac{\mathrm{\penalty 10000\ V}\left(y,y_{1}\ldots,y_{i-1},y_{i+1},\ldots,y_{n}\right)}{\mathrm{V}\left(y_{1},y_{2},\ldots,y_{n}\right)}\left[\mathrm{M}_{1,i},\mathrm{M}_{2,i},\ldots,\mathrm{M}_{m+1,i};f\right]_{m,0..}+\frac{(-1)^{n}\mathrm{\penalty 10000\ V}\left(y,y_{1}y_{2},\ldots,y_{n}\right)}{\mathrm{V}\left(y_{1},y_{2},\ldots,y_{n}\right)}\left[\mathrm{M}_{1},\mathrm{M}_{2},\ldots,\mathrm{M}_{m+1},\mathrm{M}_{1,1},\mathrm{M}_{1,2},\ldots,\mathrm{M}_{m+1,n};\right]_{m,n}
Or,(x,iy)\left(x^{\prime}{}_{i},y\right)are the coordinates of the pointMi,i=1.2,,m+1\mathrm{M}_{i},i=1,2,\ldots,m+1And. (xi,yjx_{i},y_{j}) are the coordinates of the pointsMi,j,i=1.2,,m+1,j=1.2,,n\mathrm{M}_{i,\mathrm{j}},i=1,2,\ldots,m+1,j=1,2,\ldots,nHere we assume that the pointsMi,j\mathrm{M}_{i,\mathrm{j}}remain fixed and thatxi,yx_{i}^{\prime},yvary within the range permitted by the characteristic function of the difference: divided by the given.

The results of the previous issue show us that:
If a functionf(x,y)f(x,y)has a normal divided difference of order (m,nm,n) bounded in E, it also has a normal divided difference of order (m1,nm-1,n) and a normal divided difference of order (m,n1m,n-1) bounded inEo\mathrm{E}_{\mathrm{o}\ldots}

We deduce that the function also has a normal divided difference of order(m,0)(m,0)bounded in E. The derivativem1fxm1\frac{\partial^{m-1}f}{\partial x^{m-1}}Therefore, it exists and is continuous. Now, consider the normal divided difference of order (m1,nm-1,n) which is also bounded, and let us only consider the differences divided… taken from distributed pointsmmhasmmonn+1n+1parallel to the axisOXOXBy taking a limit, we deduce that the derivativefxm1(m1)f_{x^{m-1}}^{(m-1)}also has a normal divided difference of order (0,n0,n) bounded. It follows that:

If the functionf(x,y)f(x,y)has a normal divided difference of order (m,nm,n) bounded in E, it has a derivativefxm1yn1(m+n2)f_{x^{m-1}y^{n-1}}^{(m+n-2)}continues in all… point of E.

It can also be demonstrated more precisely that the derivativefxy(r+s)rm1,sn1f_{x^{\prime}y}^{(r+s)}r\leq m-1,s\leq n-1has a normal divided difference of order: (mr,nsm-r,n-s) bounded in E.

Suppose that a normal divided difference of order (m,nm,n), of the functionf(x,y)f(x,y), such that the divided difference has a finite and well-defined limit when the points on which it is taken tend in any way towards a limit point. This limit is equal at every point to1m!n!fxmyn(m+n)\frac{1}{m!n!}f_{x^{m}y^{n}}^{(m+n)}The derivativefxmyn(m+n)f_{x^{m}y^{n}}^{(m+n)}exists and is continuous in E. Of course, the limits in question only exist for a particular class of functions depending on the normal divided difference under consideration. This class includes polynomials if the normal divided difference is regular.

CHAPTER VI.

ON convex functions of two real variables.

S 1. - First extension of the notion of convexity.

  1. 46.

    Partial divided differences allow an immediate generalization of the convexity of any order for functions of two independent variables.

The functionf(x,y)f(x,y)'s will be convex, non-concave, polynomial, non-convex or concave of order (m,nm,n) on the set E following that we have

[x1,x2,,xm+2y1,y2,,yn+2;f]>0,0,=0,0,<0, on E. \left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+2}\\ y_{1},y_{2},\ldots,y_{n+2}\end{array};f\right]>0,\geq 0,=0,\leq 0,<0,\text{ sur E. }

We can distinguish this kind of convexity by the designation of partial convexity, non-concavity, etc., but we suppress this distinction, it being understood that we only speak in § of this kind of convexity.

The set of functions defined above constitutes the class of (partial) order functions (m,nm,n).

The valuem=1m=-1is not excluded. A function of order (1,n-1,n) is a function that enjoys the same convexity property of ordernnrelative to the variableyy, for any value daxxA function of order (m,1m,-1Finally, the order functions(1,1)(-1,-1)are functions with an invariable sign.

A geometric definition, analogous to that given for functions of one variable, is obtained using pseudo-polynomials.

So indeed

P(x1,x2,,xm+1y1,y2,,yn+1;f(xy)\mathrm{P}\left(\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\binom{x}{y}\right.

pseudo-polynomial key of order (m,nm,n) taking the values ​​off(x,y)f(x,y)on the networkx=xi,i=1.2,,m+1,y=yj,j=1.2,,n+1x=x_{i},i=1,2,\ldots,m+1,y=y_{j},j=1,2,\ldots,n+1where we can assume that the sequencesx1,x2,,xm+1,y1,y2,,yn+1x_{1},x_{2},\ldots,x_{m+1},y_{1},y_{2},\ldots,y_{n+1}be ordered. Formula (83) then shows us that non-concavity (convexity) is expressed by the fact that the function must be at every point of the rectangle

(xi,yj)(xi,yj+1)(xi+1,yj)(xi+1,yj+1)\begin{array}[]{ll}\left(x_{i},y_{\mathrm{j}}\right)&\left(x_{i},y_{\mathrm{j}+1}\right)\\ \left(x_{i+1},y_{\mathrm{j}}\right)&\left(x_{i+1},y_{\mathrm{j}+1}\right)\end{array}

inon below (above) or not above (below) the pseudopolynomial (88) depending on whethern+mijn+m-i-jis even or odd. This property applies to the entire rectangle E, by agreeing to set in (89)x0=has,xm+2=b,yo=c,yn+2=dx_{0}=a,x_{m+2}=b,y_{o}=c,y_{n+2}=d.

Finally, let us say that we can also consider functions possessing several convexity properties and thus define various classes of functions, as in the case of a single variable.
47. The properties of convex functions of a single variable do not generalize entirely to this case. For example, a function of order (n,nn,n) in the closed rectangle (81), is not necessarily bounded. But:

If a function of order (m,nm,n) in rectangle E is bounded on a lattice of order(m+2,n+2)(m+2,n+2)It is bounded within the smallest rectangle containing the nodes of this network.

In particular, if the sides of E belong to the lattice, the function is bounded throughout the rectangle E.

We also see that:
If the function is of order (m,nm,n) and if we have

[x1,x2,,xm+2y1,y2,,yn+2;f]=0\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+2}\\ y_{1},y_{2},\ldots,y_{n+2}\end{array};\mathrm{f}\right]=0

it is polynomial, therefore reduces to a pseudo-polynomial of order (m,nm,n) in the smallest rectangle containing the points (xi,yjx_{i},y_{j}).

The demonstration is immediate.
48. Considerpq(pm+2,qn+2)pq(p\geq m+2,q\geq n+2)pointsM(xi,yj)i=1.2,,p\mathrm{M}\left(x_{i},y_{j}\right)i=1,2,\ldots,p,j=1.2,,qj=1,2,\ldots,q, in rectangle E and suppose that the sequencesx1,x2,,xpx_{1},x_{2},\ldots,x_{p} ;y1,y2,,yqy_{1},y_{2},\ldots,y_{q}are ordered. We then see, as in the case of a single variable, that the necessary and sufficient conditions for non-concavity (convexity) of order (m,nm,n) on the points are

[xL,xi+1,,xi+m+1yj,yj+1y,yj+n+1;f]0(>0)i=1.2,,pm1,j=1.2,,qn1.\begin{gathered}{\left[\begin{array}[]{l}x_{l},x_{i+1},\ldots,x_{i+m+1}\\ y_{j},y_{j+1}y\ldots,y_{j+n+1};f\end{array}\right]\geq 0,(>0)}\\ i=1,2,\ldots,p-m-1,j=1,2,\ldots,q-n-1.\end{gathered}

Formula (1) shows us that the sequences

[x1,x2,,xm+1yj,yj+1,,yi+n+1;f],[x2,x3,,xm+2yj,yj+1,,yj+n+1;f],\displaystyle{\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1}\\ y_{j},y_{j+1},\ldots,y_{i+n+1}\end{array};f\right],\left[\begin{array}[]{l}x_{2},x_{3},\ldots,x_{m+2}\\ y_{j},y_{j+1},\ldots,y_{j+n+1}\end{array};f\right],\ldots}
[xi,xi+1,,xi+m+1y1,y2,,yn+1;f],[xi,xi+1,,xi+m+1y2,y3,,yn+2;f],\displaystyle{\left[\begin{array}[]{l}x_{i},x_{i+1},\ldots,x_{i+m+1}\\ y_{1},y_{2},\ldots,y_{n+1}\end{array};f\right],\left[\begin{array}[]{l}x_{i},x_{i+1},\ldots,x_{i+m+1}\\ y_{2},y_{3},\ldots,y_{n+2}\end{array};f\right],\ldots}

are ordered. It is easy to deduce that:
If the function is of order (m,nm,n) in rectangle E and if the partial divided differences of order (m+1,nm+1,n), (m,n+1m,n+1) are bounded: on a network of order(2m+2.2n+2)x=xi,i=1.2,,2m+2(2m+2,2n+2)x=x_{i},i=1,2,\ldots,2m+2,y=yj,j=1.2,,2n+2y=y_{j},j=1,2,\ldots,2n+2, these divided differences will be bounded within: the entire rectangle

(xm+1,yn+1)(xm+1,yn+2)(xm+2,yn+1)(xm+2,yn+2)\begin{array}[]{ll}\left(x_{m+1},y_{n+1}\right)&\left(x_{m+1},y_{n+2}\right)\\ \left(x_{m+2},y_{n+1}\right)&\left(x_{m+2},y_{n+2}\right)\end{array}

If, in addition, the partial divided differences of order (m+1.0m+1,0). And (0,n+10,n+1) are bounded on a network of order (m+1,n+1m+1,n+1), included in rectangle (90), all the partial divided differences of order<(m+1,n+1)<(m+1,n+1)are bounded within this rectangle. We demonstrate: again, exactly as in No. 13 for functions of one variable, that:

There are functions of a given class that exist in advance of thepqpqpoints considered provided that if (m,nm,n) is the highest-order polynomiality; all higher-order properties are polynomiality.

It should be noted that here a polynomial function of order(m,n)(m,n)is not necessarily of order (m1,nm-1,n) Or (m,n1m,n-1
49. We have the following property :

If a function is of order(1,1)(1,-1)and order(1.1)(-1,1)It is continuous with respect to the set of variables at every internal point…

This property was demonstrated by MP Montel by assuming that the function is non-concave of order(1,1)(1,-1)and non-concave: of order(1.1)()54(-1,1)\left({}^{54}\right).
M. N. Kritikos a généralisé la propriété précédente de la manière suivante : ( 55 )
(54) P. Montel „Sur les fonctions doublement convexes et les fonctions doublement sous-harmoniques" Praktika de l’Acad. d’Athènes 6, (1931), p. 374. Une telle fonction est dite doublement convexe.
(55) N. Kritikos „Sur les fonctions multiplement convexes ou concaves ∗∗. Praktiza de l’Acad. d’Athènes, 7 1932, p. 44. Voir aussi un mémoire demême auteur paru dans le Bulletin de la Soc. Math. de Grèce, t. XI (1930) pp. 21-28.

Si f(x,y)f(x,y) est d’ordre 1 par rapport à l’une des variables et continue par rapport à l’autre, elle est continue par rapport à l’ensemble des variables en tout point interieur.

Plus généralement, si la fonction est d’ordre nn par rapport à l’une des variables et continue par rapport à l’autre elle est continue par rapport à l’ensemble des variables. Cette propriété peut d’ailleurs se déduire du théorème de M. Kritikos, compte tenant des résultats du No. 14 de la première partie.

Une fonction d’ordre (m,1)(m,-1) continue par rapport à yy dans le rectangle E a une différence divisée partielle d’ordre ( m,0m,0 ) bornée dans tout rectangle complètement intérieur.

Soint en effet E(axb,cyd),a<a<b<b\mathrm{E}\left(a^{\prime}\leq x\leq b^{\prime},c^{\prime}\leq y\leq d^{\prime}\right),a<a^{\prime}<b^{\prime}<b, c<c<d<dc<c^{\prime}<d^{\prime}<d un rectangle complètement intérieur. Prenons les abscisses x1,x2,,xm+1x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m+1}^{\prime} à l’intérieur de ( a,aa,a ) et les abscisses x′′,1x′′,2,x′′m+1x^{\prime\prime}{}_{1},x^{\prime\prime}{}_{2},\ldots,x^{\prime\prime}{}_{m+1} à l’intérieur de ( b,bb^{\prime},b ). Nous savons (No. 17 de la première partie) que si x1,x2,,xm+1x_{1},x_{2},\ldots,x_{m+1} sont dans l’intervalle fermé ( a,ba^{\prime},b^{\prime} ), la différence divisée

[x1,x2,,xm+1;fy;]\left[\begin{array}[]{l}x_{1},x_{2},\ldots,x_{m+1};f\\ y;\end{array}\right]

est comprise entre les difiérences divisées

[x1,x2,,xm+1y;f],[x1′′,x2′′,,xm+1′′y;f]\left[\begin{array}[]{l}x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m+1}^{\prime}\\ y\end{array};f\right],\left[\begin{array}[]{l}x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{m+1}^{\prime\prime}\\ y\end{array};f\right]

Or, la fonction étant continue par rapport a yy elle est bornée sur l’ensemble des parallèles x=xi,x=xi′′i=1,2,,m+1x=x_{i}^{\prime},x=x_{i}^{\prime\prime}i=1,2,\ldots,m+1. ll en résulte que les différences divisées (91) restent bornées dans leur ensemble lorsque yy varie, se qui démontre la propriété.

En particulier une fonction qui est d’ordre ( m,1m,-1 ) et d’ordre (1,n)(-1,n) a une différence divisée partielle d’ordre ( m,0m,0 ) et une différence divisée partielle d’ordre ( 0,n0,n ) bornées dans tout rectangle complètement intérieur.

Tenant compte d’un théorème de M. P. Montel (56) on en déduit la propriété :

Une fonction qui est d’ordre ( m,1m,-1 ) et d’ordre ( 1,n-1,n ) a en tout point intérieur une dérivée r+sfxrys\frac{\partial^{r+s}f}{\partial x^{r}\partial y^{s}} continue par rapport à l’ensemble des variables, pourvu que

rm+sn<1\frac{r}{m}+\frac{s}{n}<1

(56) P. Montel loc, cit. (35).

Mathemalica VIH.

Si la fonction est d’ordre ( m,nm,n ) at si la dérivée partielle fxf^{\prime}x existe c’est une fonction d’ordre ( m1,nm-1,n ) présentant le même caractère de convexité et réciproquement. Plus généralement si tt est d’ordre ( m,nm,n ) et si fxy(r+s)sf_{xy}^{(r+s)}{}^{s} existe c’est une fonction d’ordre ( mr,nsm-r,n-s ). Si fx(m+1,n+2)yn+1f_{x}^{(m+1,n+2)}y^{n+1} existe, elle est non négative si la fonction est non-concave d’ordre ( m,nm,n ) et réciproquement. On suppose ici encore que E soit un rectangle.
50. Avant de tinir ce § disons qu’on peut définir la convexité avec d’autres différences divisées que les différences divisées parielles.

On peut par exemple donner des définitions à l’aide des différences divisées normales. Il est inutile de répéter comment on écrit ces conditions. Ces fonctions jouissent des propriétés plus restrictives que celles précédemment définies. Considérons par exemple une fonction qui est d’ordre ( m,1m,-1 ) par rapport à une différence divisée normale d’ordre ( m+1,0m+1,0 ). Une telle fonction a une différence divisée normale d’ordre ( m,0m,0 ) bornée dans tout rectangle complètement intérieur. Elle a donc des dérivées partielles itxii=1,2,,m1\frac{\partial^{i}t}{\partial x^{i}}i=1,2,\ldots,m-1 continues en tout point intérieur. La dérivée fxf^{\prime}x est d’ailleurs a son tour d’ordre ( m1,1m-1,-1 ) par rapport à une certaine différence divisée normale d’ordre ( m,0m,0 ). Il est à remarquer que si la dérivée f𝑥m+1(m+1){\underset{x}{f}}_{m+1}^{(m+1)} existe elle est d’un signe invariable, mais la récjproque n’est pas vraie. Il faut des conditions supplémentaires de continuité pour pouvoir affirmer que de l’inégalité fm+1m+1(m+1)0f_{\begin{subarray}{c}m+1\\ m+1\end{subarray}}^{(m+1)}\geq 0 résulte la non-concavité d’ordre (m,1)(m,-1) de la fonction par rapport à une différence divisée normale d’ordre ( m+1,0m+1,0 ).

§ 2. - Seconde extension de la notion de convexité.

  1. 51.

    Considérons une fonction f(x,y)f(x,y) définie, pour ne pas compliquer, sur un domaine fermé convexe et borné E. L’allure de la fonction sur une droite s’obtient en prenant le plan perpendiculaire sur XOY qui se projète sujvant cette droite et en considérant la fonction dans ce plan. L’axe OY dans ce plan est orientée vers le OZ positif.

Nous nous proposons d’étudier les fonctions qui sont d’ordre nn sur toute droite contenant des points de E. Nous dirons d’une telle fonction qu’elle est d’irdre nn sur l’ensemble E.

Supposons que nn soit pair. Nous avons vu que le caractère de convexité d’une fonction d’une variable dépend de l’orientation de l’axe OX. Pour cette raison nous ne ferons pas de distinction entre lacon-
wexité et la concavité, resp. entre la non-concavité et la non-convexité sur une droite. Une fonction peut être d’ordre nn au sens strict ou au sens large suivant qu’elle est convexe (ou concave) resp. non-concave (ou non-convexe). Elle peut enfin être polynomiale sur une droite.

Supposons maintenant que nn soit impair. La nature de convexité d’une fonction d’une variable et d’ordre impair ze dépend pas de l’orientation de l’axe OX. On peut donc ici faire la distinction entre la convexité, non-concavité, polynomialité, non-convexité et la concavité sur une droite. Une fonction d’ordre impair nn sera dite convexe, nonconcave, …. etc. d’orde nn sur E si elle est convexe, non-concave, … etc. d’ordre nn sur toute droite de E.

On peut distinguer la sorte de convexité ainsi introduite en disant qu’il s’agit d’une convexité, non-concavité …. etc. totale d’ordre nn. Nous supprimons dans la suite cette dénomination étant sous endendu qu’il no s’agira que de cette sorte de convexité.

Considérons par exemple un polynome de degré n+1n+1

a0xn+1+a1xny+.+an+1yn+1+a_{0}x^{n+1}+a_{1}x^{n}y+\ldots.+a_{n+1}y^{n+1}+\ldots

C’est toujours une fonction d’ordre nn. Si nn est pair il y a toujours des droites sur lesquelles la fonction est polynomiale. Si nn est impair et si le polynome a0tn+1+a1tn++an+1a_{0}t^{n+1}+a_{1}t^{n}+\cdots+a_{n+1} est positif (non négatif) la fonction est convexe (non-concave) d’ordre nn. Sur cet exemple on voit bien qu’une fonction peut être d’ordre nn sans présenter un caractère de convexité déterminé.

On pourait également considérer des classes de fonctions présentant plusieurs propriétés de convexité déterminées.
52. Je dis que si la fonction est d’ordre n(n>0)n(n>0) elle présente le même caractère de convexité sur des droites parallèles.

On peut supposer que les droites soient parallèles à l’axe OX. La démonstration se fait alors très facilement en tenant compte du sfait que si la suite d’ordonnées y1,y2,,yp,y_{1},y_{2},\ldots,y_{p},\ldots tend vers l’ordonnée y0y_{0}, la suite de fonctions de x,f(x,y1),f(x,y2),,f(x,yp),x,f\left(x,y_{1}\right),f\left(x,y_{2}\right),\ldots,f\left(x,y_{p}\right),\ldots converge vers f(x,y0)f\left(x,y_{0}\right).

Une fonction d’ordre n(n>0)n(n>0) est en particulier d’ordre nn par rapport à chacune des variables  ; elle est donc d’ordre ( n,1n,-1 ) et d’ordre (1,n)(-1,n). Nous en déduisons que :

Toute fonction d’ordre nn sur E est continue en tout point intérieur sin>0-sin>0.

En particulier :
Toute fonction d’ordre nn sur 𝔼\mathbb{E} est bornée dans tout domaine comvolètement intérieur à E .

Je dis que cette propriété est vraie même pour n=0n=0. Soit {Mρ}\left\{\mathrm{M}_{\rho}\right\} une suite de points de E tendant vers un point limite intérieur M. Prenons un point MM^{\prime} et une droite Δ\Delta dans EE de manière que pour p>Np>\mathrm{N} l’intersection des droites MMp\mathrm{M}^{\prime}\mathrm{M}_{p} et Δ\Delta tombe à l’intérieur de E . Designons par Mp\mathrm{M}^{\prime}{}_{p} l’intersection des droites MMp\mathrm{M}^{\prime}\mathrm{M}_{p} et Δ\Delta. La valeur de la fonction en Mp\mathrm{M}_{p} est toujours comprise entre ses valeurs en M\mathrm{M}^{\prime} et Mp\mathrm{M}_{p}^{\prime}. On voit maintenant que si nous supposons que les valeurs de la fonction aux points MpM_{p} aient une limite infinie il arrive ou bien qu’en M’ la fonction ne soit pas bornée ou bien qu’elle ne soit pas bornéesur Δ\Delta au voisinage de l’intersection de cette droite avec MM’, ce qui est impossible. La propriété est donc démontrée.
53. Nous avons encore la propriété suivante :

Une fonction d’ordre nn dans le domaine 𝐄\mathbf{E} a des dérivécs partielles d’ordre <n<n continues en tout point intérieur.

En ce qui concerne les dérivées d’ordre nn, nous savons qu’en toutr point interieur elles existent suivant toute demi-droite issue de ce point.

Soient M1(x1,y1),M2(x2,y2)M_{1}\left(x_{1},y_{1}\right),M_{2}\left(x_{2},y_{2}\right) deux points et prenons la différencedivisée première sur la droite joignant ces deux points. Nous avons-

f(x1,y1)f(x2,y2)M1M2=cosα[x1,x2f(x,y1)]+sinα[y1,y2f(x2,y)]\frac{f\left(x_{1},y_{1}\right)-f\left(x_{2},y_{2}\right)}{M_{1}-M_{2}}=\cos\alpha\cdot\left[x_{1},x_{2}f\left(x,y_{1}\right)\right]+\sin\alpha\cdot\left[y_{1},y_{2}f\left(x_{2},y\right)\right]

α\alpha est l’angle de la droite M1M2\mathrm{M}_{1}\mathrm{M}_{2} avec l’axe OX .
Nous en déduisons facilement que la différence divisée d’ordro n+1n+1 sur n+2n+2 points Mi(xi,yi),i=1,2,,n+2\mathrm{M}_{i}\left(x_{i},y_{i}\right),i=1,2,\ldots,n+2 en ligne droite s’écrit

i=0n+1cosn+1iαsiniα[xi+1,xi+2,,xn+2y1,y2,,yi+1;f]\sum_{i=0}^{n+1}\cos^{n+1-i}\alpha\sin^{i}\alpha\cdot\left[\begin{array}[]{l}x_{i+1},x_{i+2},\ldots,x_{n+2}\\ y_{1},y_{2},\ldots,y_{i+1}\end{array};f\right]

Si la fonction est d’ordre nn cette expression est de signe invariable sur toute droite.

Supposons en particulier que les dérivées d’ordre n+1n+1 existent. Il faut alors et il suffit que la fonction

i=0n+1(n+1i)cosni+1αsiniαn+1Txni+1yi\sum_{i=0}^{n+1}\binom{n+1}{i}\cos^{n-i+1}\alpha\sin^{i}\alpha\cdot\frac{\partial^{n+1}T}{\partial x^{n-i+1}\partial y^{i}} (92)

soit de signe invariable sur toute droite faisant l’angle α\alpha avec l’axe OXOX.
Si la fonction est d’ordre impair et convexe (non-concave) lepolynome est non négatif en tout point où les dérivées existent. Reciproquement, si les dérivées existent et si en tout point intérieur le polynome (92) est non négatif resp. positif on peut affirmer quela fonction est non-concave resp. convexe d’ordre impair nn. Si n=1n=1, pour que la fonction soit non-concave d’ordre 1 il faut et il
suffit que f′′′x20,f′′f′′x2y2(f′′)xy20f^{\prime\prime\prime}{}_{x^{2}}\geq 0,f^{\prime\prime}{}_{x^{2}}f^{\prime\prime}{}_{y^{2}}-\left(f^{\prime\prime}{}_{xy}\right)^{2}\geq 0 et pour qu’elle soit convexe il suffit que f′′>x20,f′′f′′x2y2(f′′)xy2>0f^{\prime\prime}{}_{x^{2}}>0,f^{\prime\prime}{}_{x^{2}}f^{\prime\prime}{}_{y^{2}}-\left(f^{\prime\prime}{}_{xy}\right)^{2}>0assuming, of course, that second derivatives exist.

First-order functions are very close to the convex functions of Mr. Jensen ( 56 ). Mr. Jensen defines a convex function by the inequality

f(x+x2,y+y2)12(f(x,y)+f(x,y))f\left(\frac{x+x^{\prime}}{2},\frac{y+y^{\prime}}{2}\right)\leq\frac{1}{2}\left(f(x,y)+f\left(x^{\prime},y^{\prime}\right)\right)

His points(x,y),(x,y),(x+x2,y+y2)(x,y),\left(x^{\prime},y^{\prime}\right),\left(\frac{x+x^{\prime}}{2},\frac{y+y^{\prime}}{2}\right)belonging to the domain of the function. If such a function is bounded, it is non-concave of order 1, according to our definition.
54. - A polynomial function reduces to a polynomial on any line. We will demonstrate that:

A polynomial function of ordernnreduces on E to the variables of a polynomial of degree n.

Let's take in E the12(n+1)(n+2)\frac{1}{2}(n+1)(n+2)pointsML,j(xi,yj)i=1.2,,j,j=1.2,,n+1\mathrm{M}_{l,\mathrm{j}}\left(x_{i},y_{j}\right)i=1,2,\ldots\ldots,j,j=1,2,\ldots,n+1and consider the polynomial of degreenntaking the valuesf(xi,yi)f\left(x_{i},y_{i}\right)to the pointsMi,j\mathrm{M}_{i,\mathrm{j}}This polynomial is well-defined. It suffices to pass through a pointMMofEEa suitable line and apply the polynomial property on this line to see that the function takes the same value at M as this polynomial.

Several other observations can be made about polynomial functions. For example, if the function is of ordernnand coincides with a polynomial of degreennon a certain number of line segments, it is also polynomial on any segment that has its endpoints on the segments considered and furthermore contains at leastnnother points belonging to the given segments.

If the function is of ordernnand if it reduces to the same polynomial of degreennon the segmentsAB,AAi,BBi,i=1.2,,n1HASC,BC\mathrm{AB},\mathrm{AA}_{i},\mathrm{BB}_{i},i=1,2,\ldots,n-1\mathrm{AC},\mathrm{BC}, the pointsHAS1,HAS2,,HASn1\mathrm{A}_{1},\mathrm{\penalty 10000\ A}_{2},\ldots,\mathrm{\penalty 10000\ A}_{n-1}being on the BC segment andB1,B2,,Bn1\mathrm{B}_{1},\mathrm{\penalty 10000\ B}_{2},\ldots,\mathrm{\penalty 10000\ B}_{n-1}on segment AC, it is polynomial of ordernnin triangle ABC. To see that any segment, having its endpoints on the sides of the triangle, still contains at leastnnFor these points, it suffices to complete the given segments with those parallel to sides AC and BG. These parallels obviously containnnpoints belonging to the given segments.
(56) See JLW Jensen loc. cit. (42).

TABLE OF CONTENTS.

M. Biernacki. On the cubic equation ….. 196
J. Capoulade. On certain second-order and elliptic type partial differential equations with singular coefficients ….. 139
J. Chazy. The mathematical work of Painlevé ….. 201
J. Devisme. On the partial differential equations of Messrs. P. Humbert and M. Ghermanesco ….. 147
RH Germay. Essay on the principle of virtual work ….. 126
M. Ghermanesco. On the equationΔnu=0\Delta^{n}u=0….. 134
C. Jacob. On a problem concerning gas jets ….. 205
Tib. Popoviciu. On some properties of functions of one or two real variables ….. 1
J. Rudnicki. Remark on a theorem of M. Walsh ….. 136
W. Sierpinski. On sets always of the first category ….. 191
W. Slebodzinski. On tensor differential forms and Poincaré's theorem ….. 86
JL Walsh. Note on the location of the roots of the derivative of a polynomial ….. 185
T. Wazewski. On an integral problem relating to the equationzx+Q(x,y)zy=0\frac{\partial z}{\partial x}+Q(x,y)\frac{\partial z}{\partial y}=0….. 103
EA Weiss. Zykliden als Bilder von Flächen 2. Ordnung in der Geraden-Kugeltransformation ….. 98
Editorial notes. ….. 212
Errata. ….. 212
Table of contents. ….. 213

Related Posts

On a theorem of Laguerre

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur un théorème de Laguerre, Mathematica, 10 (1935), pp. 128-131 (in French) PDF1935…

Notes on Higher-Order Convex Functions (I)

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (I), Mathematica, 12 (1936), pp. 81-92…

On the finite increments formula

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur la formule des accroissements finis, Mathematica, 23 (1947-1948), pp. 123-126 (in French).…

On some minimizing polynomials

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur certaines polynômes minimisants, Bull. de la Sect. Sci. de L’Acad. Roumaine, 12…

On the indicators

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les indicateurs, Bull. Sc. de l’Ecole Polytechnique de Timişoara, 3 (1930) nos.…