ON SOME PROPERTIES OF THE FUNCTIONS OF ONE OR TWO REAL VARIABLES.
Tiberiu Popoviciu,
Former Student of the École Normale Supérieure
by
Request on March 8, 1933.
Introduction.
In function theory, we seek to delve deeper into the study of very general functions that, in some way, resemble known functions. The simplest functions are polynomials, so it is quite natural to study functions to which certain properties of polynomials apply. It is this kind of problem that we address in the first part of this work.
Oris the order determinantwhose general outline isAnd.
Theredivided difference of a degié polynomialis constantly equal to the same number; this number is zero if the polynomial is of degreeWe examine the functions whose nth divided difference is bounded. We also consider the nth total variation (or the total variation of order) of a function, which is by definition equal to the upper limit of the sum
when varying the pointsand their number in all
possible ways over the domain of the function. We will say that the function has a bounded nth variation if its total variation of orderis finished. We then study the functions whoseThe divided difference does not change sign. We will say that such a function is of order. Forwe have monotonic functions and forordinary convex (or concave) functions. We point out the main properties of these functions and show their relationship with bounded divided nth difference functions and bounded nth variation functions.
If the functionis at (jth difference divided by bounds we can obviously determinesuch as the functioneither of orderWe also show that a function with bounded nth variation is the difference of two functions of order.
We also study the differentiation of the functions defined previously, after having completed some of Stieltjes' research on the nth derivative of a function. We examine the limitation of the derivative of a function of orderdefined within an interval. We thus find that the order functionsbehave much like polynomials of degreeat least within a suitably chosen inner interval
In the second part we try to extend to functions of two variables the results obtained for functions of a single variable.
The difference divided by orderoffor thepointsis equal to the quotient
Oris the determinant whose general line isAndWe assume, of course, that the pointsare such that the determinantbe different from zero.
We study these divided differences and show that a complete analogy can be established between the case of one and the case of two variables.
In the last Chapter we give a generalization of convex functions and doubly convex functions (See P. Montel, Journal de Math. 9th series, t. 7 (1928), p. 29-60) of two variables.
We are pleased to express here our deep gratitude to MP Montel who greatly encouraged us and whose valuable advice was very useful in the writing of this work.
Part one.
ON SOME PROPERTIES OF HIGHER-ORDER CONVEX FUNCTIONS OF A REAL VARIABLE
CHAPTER 1.
-ON THE DIVIDED DIFFERENCES OF THE FUNCTIONS OF A REAL VARIABLE.
§ 1. - Bounded divided difference functions and functions
with horned variation.
1.
We consider functionsdefined, uniform and real of the real variableon a linear and bounded set E. To each point of E corresponds a finite and well-defined value forWe designate by a the left end and bythe right end of set E. The pointsAndare determined regardless of E. We denote by, the successive derived sets of k. We say that a setis completely inside E if all its points belong to E and if its endpointsare intercursed within the interval (), ().
We say that a sequence of points on the axis of the variableis - ordered, or that these points are ordered if their abscissas, referred to a fixed origin, are arranged in non-decreasing order. We also assume, unless otherwise stated, that all the points in such a sequence are distinct.
We call the polynomial of smallest degree l (Lagrange-Hermite polynomial)
satisfying the conditions (1): (accents denote derivations)
( 2 ) Hermite generalized Lagrange's polynomials in his memoir "On Lagrange's interpolation formula". Journal für die Reine und Bangew. Math t. 84 (1878) p. 70.
We know this polynomial is unique.
Finally, following M. Nörlund (2), we call it the divided difference of order:of the functionfor distinct pointsthe expression defined by the recurrence relation
(1)
The quantity (l) is symmetric with respect to the pointsand can be expressed in the form of a quotient
Or
And
is the Van der Monde determinant of quantitiesFrom formula
(1) we can deduce others which we will point out as they are used. Note here that
(2)
It follows that if
takes on E the same values ​​as a polynomial. We then say thatis a polynomial function.
2. Consider the divided differences
(2) NE Nöblund “Lessons on Interpolation Series.” p. 2.
on all groups ofdistinct points of E. If E contains fewer thanpoints we can indifferently assume that the nth divided difference does not exist or that it is identically zero.
Let's ask
This number will be called the nth bound ofoncan also be referred to asor evenwhen there is no ambiguity and bywhen it is a range ().
We say that the function is bounded divided nth difference on E ifIt's over.
The caseis that of bounded functions;that of functions satisfying an ordinary Lipschitz condition.
3. Considerordered points
(3)
—
and be
(4)
(i)
the divided differences of a function defined at these points.
The sum
(5)
is the nth variation ofon points (3).
That isdefined on a set E. The variationson all ordered sequences of E have an upper limitWe refer to this number asOrand we call it the nth total variation ofon E.
We will say that the function is bounded on E with nth variation ifIt's over.
The caseis that of ordinary bounded variation functions of Jordanhas already been implicitly considered by Mr. De la
( 3 ) For the study of these functions see H. Lebesgue “Lessons on integration … etc."ed. (1928) p. 96; or even L. Tonelli „Fondamenti di Calcolo della variazioni” t. I, p. 40.
Vallée Poussin ( 4 ) and studied in a general way by M.A. Winternitz.
S. 2. - Properties of functions whose nth difference divided
is bounded.
4. Letdistinct points (). We have, according to formula (1)
DoingAdding term by term and removing identically null terms, we deduce the following formula:
(6)
(Forwe have formula (1) itself).
This formula allows us to write
(7)
therefore any function with a bounded divided difference nth is also ()th difference divided bounded.
In particular, any bounded divided difference function with nth difference is bounded.
We can also see that the function has a bounded number of derivatives if ; it is therefore also continuous in this case.
Continuity also results from the following formula:
(8). §
(4) Ch. de la Vallée Poussin "Note on the approximation by a polynomial of a function whose derivative has bounded variation"Bull. Aead. Belgium1908 p. 403.
( 5 ) A. Winternitz "Uber eine Klasse von linearen Funktional Ungleichungen und über konvexe Funktionale 4. Berichte kön, sächsischen Gesellschs der Wissensch. zu Leipzig t. 69 (1917) p. 349.
(6) By the max notation) Orwe designate the largest of the numbers. Similar notation for the smallest of these numbers.
length of the smallest interval containing
the points
Eithera point ofnot belonging to E. If, regardless of how the pointE tends towardsSince the function tends towards the same finite and well-defined limit, we can still say that the function is continuous at the pointby takingequal to this limit.
There always exists a countable subsetof E such thatbelongs toand that the function continuesbe completely determined by its values ​​on.
Formula (1) also allows us to establish the following:
(9)
If the followingis ordered, we can see that thedivided freneis included between the divided differences.
Eithera partial sequence extracted from the ordered sequenceand such that.
By repeatedly applying formula (9) we obtain
(10)
where theare positive, independent of the function, and have a sum equal to 1.
It follows that
( 7 ) It can be noted in general that if the sum
depends explicitly only onbeing a partial sequence ofit is necessarily of the form
A special case of formula (10) was used by MA Marchaud in his Thesis "On the derivatives and differences of functions of real variables" (Paris 1927) p. 32.
and
Suppose that E is an interval and arepoints of this interval.
Let's suppose thatand let's write
Formula (8) shows thatis a continuous function ofFor, equal forhasand forhas.
We can therefore deduce the following property:
Ifis an intervalif,
, there exists in every interval containing all the pointsa divided difference taking any value betweenei.
The property is not true forbecause in this case we always havein formula (8).
In particular, if the nth divided difference remains in modulus greater than a positive number, it retains a constant sign.
Eitheran ordered sequence such asin itself a partial sequence () and such that
being a positive number.
Let's consider the divided differences
Now suppose thatand let's apply formula (10). We then see that there must be at least one indexfor whichFrom this inequality and the property previously demonstrated, we deduce that
Ifthere exists, in the smallest interval containing the points, an interval of any length we want where there is at least one zero divided difference.
By applying the property to the functionand looking more closely at the demonstration, we see that if, there is a pointin the smallest interval containing the pointssuch that in every intervalmiddleand lengththere exists at least one divided difference taking the value
We can also see that, from formula (6), we can deduce that if E is an interval and if
we can find in the interval () at least one nth divided difference equals zero.
5. It follows from the definition that the nth bound on a subset is at most equal to.
Eithera point ofAndthe parts ofrespectively included in the closed intervalsWe will show that if the set E is dense in the interval () the nth iborne ofis equal toon at least one of the sets.
ForThe property is obvious, regardless of E.
Let us therefore assumeand consider a sequence of positive numberstending towards zero withBy definition, there exists a divided difference such that
If the pointsare on the same side of the pointwe take this difference divided and we designate it byOtherwise, by applying formula (9) if necessary, we can assume thatintervenes in the divided difference under consideration.
So be it
(12)
The sequelbeing ordered. Let's apply formula (9) by inserting a new point between,[which is always possible since E is assumed to be dense in the interval ()] and take the one of the divided differences that satisfies inequality (12). By repeating this procedure, two cases can arise:
10. Or, there always remainspoints to the left ofAnd so there are divided differences.verifying (12), the pointsbeing as close as we want to c, we can then find an ordered sequence., c such that formula (8) gives us
and then
We take this difference divided for.
Or, at some point, there is onlypoints on the left: ofand we are brought back to the case.
Finally, it therefore still exists inOra difference dividedverifying inequalities
The sequel
therefore has a limitNow, there is certainly an infinite partial sequence located entirely inOrAnd this sequel obviously has the same limitation., which proves ownership.
We can easily deduce that
the nth bound of a function defined and with nth difference divided by bounds on a dense set in an interval () is the same as on a subset contained within a subinterval of (), of any length you want.
The previous demonstration also shows us that if E is dense in an interval, the upper limit ofis equal to its greatest limit.
Formula (9) further shows us that ifthe nth difference divided is constantly equal toin the smallest interval containing the points.
The study of functions whose divided nth difference is a constant A is equivalent to that of functions with zero nth difference, sinceis such a function. Therefore, it is a polynomial function. To be more precise, we will say that it is a polynomial function of orderIt takes on E the values ​​of a polynomial of degree.
If the terminalis reached bythe function is polynomial of orderon the part of E contained within the smallest interval containing the points. If, the degenerate of the polynomial: is indeed equal to6.
Between two terminalsThere is generally no relationship. Let's return to formula (7). Relation (1) shows us that
(13)
Ordepends on the pointsThe minimum A ofdepends only on the set E. We then have
(14)
Ordepend only on the set E.
Generally speaking, between three boundsir:always has a relationship of the formwhere A and B depend only on the set E.
In particular, suppose that E is a closed intervalWe can write
The results of No. 5 show us that in order to minimize the coefficient ofin formula (7) it is permissible to take
We then obtain formula
(15)
Let's take another one
The minimum of the coefficient ofis equal to ( 8 )
(8) The maximum of the inverse of this quantity is indeed equal to the maximum of the polynomialdeviating as little as possible from zero in the interval (). See Ch. de la Vallée Potjssin, "Lessons on the Approximation of Functions of a Real Variable," Chapter VI. The polynomial in question is:
See: S. Bernstein "Lectures on Extreme Properties . . . etc." p. 6.
with
We then have
-hence the relation
'(17)
In relations (15), (16), (17) we can obviously replaceby a smaller number.
The preceding inequalities are those of Mr. Hadamardwhen we assume the existence of the nth derivative. We obtained them by a very simple method.
7. IfAndare at nth difference divided by bounded,, ef whereis a constant are also at nth difference divided bounded.
The product of two functions with a bounded divided nth difference is still a bounded divided nth difference. This follows from the formula
(18)
which can be easily verified by induction using (1).
More generally, ifAndare at nth difference divided bounded ,It is too. This will result from a formula giving the difference - divided by a function of a function.
Let's state this.
We obviously have a relationship of the form
(19)
(9) Voir par ex. T. Carleman "Les fonctions quasi-analytiques" (Paris, 1926) Chap. II.
( 10 ) C’est l’analogun en termes finis de la formule de Leibnitz. Pour des points équidistants elle a été signalée par M. E. Jacobsthal „Mittelwertbildung und Reihentransformation" Math. Zeitschr. t. 6 (1920) p. 100.
les ne dépendant que de la fonction . Ces : quantités peuvent se calculer à l’aide des relations de récurrence
Si nous désignons par des différences divisées : d’ordre de la fonction sur des points , convenablement choisis le coefficient est de la forme
(20)
avec
(21)
Par exemple si est à nème différence divisée bornée, l’est : aussi si , ou bien si est un entier positif. Si . sur est à nème différence divisée bornée quel que soit . On en déduit que le quotient de deux fonctions à nème différence divisée bornée l’est aussi si le dénominateur reste en module plus grand qu’un nombre positif. Nous en déduisons aussi que le module d’une fonction à nème différence divisée bornée n’est pas en général à nème différence : divisée bornée si .
Considérons une famille de fonctions ( ) définies sur un même ensemble E. Désignons par la limite supérieure des nèmes bornes des fonctions de cette famille. On voit tout d’abord que si est fini. toute fonction limite de la famille est à nème différence divisée bornéeet sa borne ne dépasse pas . Si est fini, il ne résulte pas encoreque sont finis. Mais si sont finisil résulte des inégalités de M. Hadamard que sont aussi finis. Si les fonctions de la famille ne sont pas définies surle même ensemble des circonstances toutes différentes peuvent se présenter.
Considérons une suite d’ensembles finis chacun contenant le précédent et ayant pour limite , évidemment dénom-. brable ; inversement, tout ensemble dénombrable peut s’obtenir de
(11) La somme (20) s’étend à toutes les solutions en nombres entiers et. positifs du système (21) et à chaque solution correspondent termes … La formule (19) donne à la limite la dérivée kème d’une fonction de fonction
(12) On considère bien entendu une branche réelle de la fonction .
cette manière. Soit une suite de fonctions étant définie sur , et telle que
Il existe alors au moins une fonction limite définie sur wérifiant les inégalités
La démostration est immédiate .
§ 3. Propriétés des fonctions à nème variation bornée.
8.
La formule (6) donne
(22) donc, toute fonction à nème variation bornée est à nème différence divisée bornée.
La réciproque n’est pas vraie.
De (1) et de (5) nous déduisons , donc toute tonciion à ( )ème différence divisée bornée est à nème variation bornée.
La réciproque n’est pas vraie ( (14).
Il èn résulte que toute fonction à nème variation bornée est aussi à ème variation bornée. En particulier une telle fonction est toujours bornée.
Posons en mettant en évidence les points (3). Soit la limite supérieure des lorsque les points varient sur E, leur nombre restant fixe. A tout correspond donc au moins une suite (3) telle que
On démontre facilement, à l’aide de la formule (9), que si on ajoute un nouveau point , compris par exemple entre , on a
d’où
(13) La démonstration se fait par la méthode diagonale bien connue. Grâce aux travaux de M. Montel, c’est aujourd’hui une méthode courante dans ce genre de problèmes.
( 14 ) Il est facile de mettre en défaut la réciproque par des fonctions convenablement choisies et par des intégrations répétées.
donc
La quantité tend donc pour vers une limite, qui est nécessairement égale à . Si E contient points . Si E contient une infinité de points est aussi la plus grande des limites des .
Il est à peu près évident que, si E* est un sous-ensemble de E, on a .
Prenons un point appartenant à et désignons par , des parties de E comprises dans les intervalles fermés .
Il est facile de voir que
Supposons maintenant que appartienne à E. Soit la variation sur les points (3) auxquels on ajoute le point et les variations sur les points de cette suite qui sont respectivement dans et . On peut prendre les points (3) de manière que
d’où
Nous avons donc dans ce cas
(23)
9.
Si , une fonction à nème variation bornée est continue.
Soit E* un sous ensemble dénombrable de E, tel que E-E* apparđienne tout entier au dérivé de ( peut coïncider avec E ).
A toute variation et à tout nombre , on peut faire correspondre une variation sur telle que , donc : .
Mais on a aussi , donc :
Nous pouvons toujours trouver une suite d’ensemble finis , chacun contenant le précédent, telle que la fonction soit complètement déterminée par ces valeurs sur la limite de cette suite, et telle aussi qua
Ces propriétés résultent de la continuité. Elles restent donc vraies pour si la fonction est continue. On voit aussi que dans ce cas (23) reste vraie même si est un point de :
10. Si sont à nème variation bornée il en est de même pour et étant une constante.
La formule (19) permet de montrer que si est à nème variation bornée et F à ème différence divisée bornée, est à nème variation bornée. l’est aussi pourvu que ou bien égal à un nombre entier positif. La propriété est vraie quel que soit si . On en déduit que le quotient de deux fonctions à nème variation bornée est à nème variation bornée si le dénominateur reste en module plusgrand qu’un nombre positif.
Il est à remarquer que peut ne pas être à nème variatione bornée si . Par exemple la fonction
est à variation bornée ordinaire (d’ordre 0 ) tandis que is unbounded in variation.
If the nth total variation of the functions of a family () remains below a fixed number, any limit function has a total variation of orderat most equal to that number.
Finally, as in No. 7, a sequence of functions,, defined respectively on finite setsand such
then there exists at least one limit function defined on the limit setand verifying the inequalities
Formula (22) also shows us, by reasoning analogous to that used in No. 6, that
being a fixed number dependent on the sets, this inequality being verified by all functionsThe limitcan then be determined and it also verifies the inequality
CHAPTER II.
DEFINITION AND MAIN PROPERTIES OF HIGHER-ORDER CONVEX FUNCTIONS.
§. 1. - Classification of functions of a real variable with respect to polynomials.
11. Considerordered points of the set E
(24)
and represent the functionby the pointscoordinates.
The pointcan have three different positions relative to the representative curve (L) of the polynomial
It can be above, on or below (L). We will say that the function is convex, polynomial, or concave for the points (24) according to the three cases.
Analytically, we will have the three relationships
Formula (2) allows us to write these relations in the form
(25)
In this form, we see that the definition is independent of the order of the points.
If the points (24) are ordered, we can also write
because in this case,In general ,
the pointwill have a precise arrangement with respect to the polynomial
(26)
The function is, for example, convex if the pointis above or below this line depending on whetheris even or odd.
We can give the general definition:
The function will be called convex, non-concave, polynomial, non-convex or concave of orderon the set E following the differences divided by orderacross all groups ofpoints of E.
These functions form the class of order functions.
For, we have monotonic functions. Forordinary convex or concave functions.
If the functionis convex or concave,is respectively concave or convex. We can take the non-concave function of orderas a type of order functionConvex and polynomial functions can then be considered special cases. In the study of order functionsUnless otherwise stated, these will always be non-concave functions.
It can happen that a function possesses several convexity properties of different orders. We will say that it belongs to the class () if it possesses order propertiesTo highlight the nature of the function, we will assign numbersclues in the following manner:depending on whether the function is non-concave, convex, polynomial, non-convex or concave of orderIt is sometimes useful to distinguish functions of invariable sign. For the sake of uniformity in notation, we will agree to call them functions of order -1, and we will assign this number of indices, as above, depending on whether the function remains12.
If we make the change of variables
we obtain easily
Therefore, changing the coordinate axes does not change the order of the function. Changing the units on the axes, or shifting the origin, does not change the convexity of the function. The nature of the function does not change if the orientation of both axes is changed, since the function is of even order, or if the orientation of the x-axis is changed, since the function is of odd order. In all other cases, the non-concave (convex) function changes to a non-convex (concave) function.
Let, the endpoints of a subset completely inside E. In the following (24) let us take the pointin the interval
(,) closed on the right andin the meantime () closed on the left. The function is, by definition, contained between the two polynomials L
Any order functionis bounded on any subset completely inside the set on which this function is defined.
If E contains its endpoints, we can takeand we then see that a function of orderdefined on a set containing its endpoints is bounded.
We can also note that ifIf a function belongs to a given class on E, it will belong to the same class on every subset of E, provided, of course, that convexity and polynomiality are considered special cases of non-concavity.
13. Let us now consider functions defined on a finite set.
Let us take a function defined on the ordered sequence (3) and use the notation (4); we then see that
The necessary and sufficient conditions for the tonction to be non-concave (convex, polynomial) of orderof (3) are:
These conditions are, by definition, necessary. Let us show that they are sufficient.
It suffices to show that of the hypothesis
One can conclude,
Let's construct L polynomials
(27)
(28)
and let the pointWe can verify from the figure that if the signs corresponded, not the polynomial (28) would have more in common with at least one of the polynomials (27)points (15) which can only happen if the three polynomials (27), (28) coincide. There is then a contradiction, which demonstrates the property. By repeating this process
(15) If two polynomials coincide without intersecting, this point counts at least as two points of intersection.
we can reach all the groups ofpoints of (3). The property also results very simply from formula (10).
The function being non-concave of orderon (3) the continuation
(29)
does not show any change in signFormula (1) then shows that the sequence
is non-decreasing. IfIf the sequence is convex, it is increasing, and if it is polynomial, the sequence has all its terms equal.
A polynomial function of orderis also polynomial of order: greater than, it can only be convex, polynomials; or concave of orderFor a diorder functionor also to ardre-It suffices to add an additional condition, as we have shown: this demonstrates the monotonicity of the sequence (30). This condition is highlighted in the following table.
nature of orderof the function
additional property
impossibility
Now, for the function to be of order, n we needconditions at most (including a possible additive constant corresponding to the order -1). For the function to be of class: given, it suffices to equate the divided differences,Andto suitably chosen numbers,being equal to 1 ordepending on the nature of the class. We can see immediately that the system is still compatible under the stated restrictions, therefore:
There exist functions of a given class with a lead of m pointsprovided that this class meets the following conditions:
The order conditionSince it is polynomial, all higher-order conditions are polynomial.
( 16 ) A sequencepresents a variation in sign betweenif. Ifthere is a variation in sign betweenwhen(17 )
It is, moreover, necessarily to beard20.
The order conditionbeing the smallest condition for polymomiality, the order conditionis convexity or concavity.
Eitheran order functiondefined on any set. I say that if it is polynomial on an ordered sequenceit will necessarily be polynomial over the entire part of E contained within the closed interval ().
Letpoints of E innot necessarily all distinct fromIt is obviously sufficient to show that
However, among the pointsthere is at leastwhich is distinct from, For example, suppose.
11. It suffices to consider the two polynomials
to see that ifis not found on
The function cannot be of order n. Analytically, the property is immediate by virtue of formula (10).
14. If the functionis of orderOn (3) the sequence (29) does not show any sign variations. We can then deduce that the sequence
()
presentsSign variations at most ( 18 ).
Suppose thatbe defined and of orderon E. We will assume that any function defined on less thanpoints of orderand that its convex nature is the most unfavorable for the properties we have in mind.
We will say that two differences divided by any order
are consecutive if we have
or generally
Let's consider the points dans l’intervalle ( ) tels que . Soit la partie de E comprise dans l’inter-
00footnotetext: (18) Cela sésulte du fait que si , présente . variations, la suite, présente variations au plus.
valle et la partie de comprise dans . Le point appartient à l’un au moins des ensembles et . Nous dirons alors quo sont deux sous-ensembles consécutifs de .
Soit maintenant un point intérieur à l’intervalle ( ). Je disque la fonetion est d’ordre dans le roisinage gauche et dons le voisinage droit de e.
Pour fixer les idées, démontrons la propriété pour le voisinage gauche. Considérons donc l’intervalle ( ) ouvert ò droite. Il faut démontrer qu’on peut trouver un point à gauche de tel que dansl’intervalle ( ) ouvert à droite la fonction soit d’ordre . Si n’appartient pas à E’ ou bien si c est point limite seulement de droite la propriété est évidente puisq’il n’y a alors qu’un nombre fini de points à gauche de c. Supposons donc que c soit point limite de gauche de et supposons que le point n’existe pas. On peut alors trouver un point à gauche de tel que dans l’intervalle ( ) ouvert à droite il existe deux différences divisées non nulles et de signes contraires. Les résultats du No. 13 nous montrent qu’on peut supposer que soient consécutives. Soit le point le plus proche de qui intervient dans ces différences divisées. Dansl’intervalle ( ) ouvert à droite on peut trouver deux différences divisées consécutives non nulles et de signes contraires. Soit le point le plus proche de qui intervient dans ces différences divisées. On continue le procédé jusqu’à ce qu’on arrive au point . Nous avons ainsi une suite de différences divisées con-sécutives
(32)
qui, par construction, présente au moins variations de signes.-
Considérons tous les points qui interviennent dans les différences. divisées (32) et formons la suite (31) correspondante. Gette suite a, pardéfinition au plus variations de signes. Or il y a contradiction puisque : (32) en est une suite partielle ( 19 ). L’existence du point est donc établie.
On démontre de la même manière la propriété pour le koisinago : droit de .
La propriété est vraie même pour .
Il résulte immédiatement de cette propriété qu’on pout décomposear l’ensenible E en un nombre fini d’ensemble consécutifs
(19) Il est clair qu’une suite présente au moins autant de variations de : signes qu’une quelconque de ses suites partielles.
(33)
tel que sur chacun la fonction soit d’ordre .
Les ensembles et peuvent éventuellement être formés par les seuls points et et alors ils n’ont pas de point commun avec resp. .
Supposons que la décomposition (33) soit faite de manière qu’on ne puisse pas remplacer ces ensembles par un nombre plus petit d’ensembles vérifiant la même propriété. On peut alors supposer que de deux ensembles l’un au moins a au moins points.
Montrons qu’on peut former une suite de différences divisées
(34)
toutes différentes de zéro et de signes alternés En effet il existe par hypothèse dans deux différences divisées non nulles et des signes contraires. On peut les supposer conséculives (No. 13) ; soient . De plus on peut toujours supposer qu’ou bien soit dans , ou bien soit dans . On voit alors qu’on peut trouver une différence divisée consécutive à et située dans telle que . En effet si celà n’était possible pour aucun choix de la fonction serait d’ordre sur . Et ainsi de suite.
Formons la suite (31) correspondant à tous les points qui interviennent dans (34). Cette suite a au plus variations ; (34) en est une suite partielle, donc, , d’où .
On peut donc énoncer la propriété :
Si la fonction est d’ordre sur l’ensemble E , on peut décomposer cet ensemble en ensembles consécutifs au plus sur chacun la fonction étant d’ordre .
Cette décomposition peut en général être effectuée d’une infinité de manières. Dans certains cas, par exemple si la fonction est convexe et si E est un intervalle, la décomposition est unique. On peut le démontrer très facilement.
Si la fonction jouit d’une propriété de convexité ordinaire. Une telle fonction se décompose en au plus deux fonctions monotones et en au plus trois fonctions de signe constant. Les ensembles extrèmes de décomposition peuvent se composer effectivement des points et seuls. Soit par exemple la fonction
Nous avons les décompositions :
si les ensembles sont (point 0 ), (intervalle )
si les ensembles sont (point 0 ), (int. ), (point 1 ).
15. Démontrons encore la propriété suivante
Toute fonction d’ordre définie sur un ensemble fermé alteint son maximum et son minimum.
Démontrons la propriété relative au maximum. Nous savons déjà que la fonction est bornée, il existe donc un nombre A tel que
et ceci pour tout nombre entier et positif.
Soit une suite monotone, par exemple
(35)
telle que .
A uńe extraction de suite près on peut supposer que la suite (35) soit telle qu’on ait étant le point limite de la suite.
Il suffit évidemment d’examiner le cas où la suite (35) est infinie. On a alors nécessairement pour tout .
De l’inégalité
nous déduisons
B étant une constante finie, done
d’où
On démontre de la même manière la propriété relative au minimum.
De la définition résulte qu’une fonction convexe (ou concave) d’ordre ne peut prendre plus de fois la même valeur. Démontrons la propriété suivante :
Une fonction convexe (ou concave) d’ordre n définie sur un ensem–ble dense dans un intervalle atteint son maximum en ou et son minimum en ou points au plus, désignant l’entier égal ou immédiatement inférieur à
Pour fixer lés idées, supposons et démontions la propriété relative au minimum.
Supposons que contrairement à l’énoncé, le minimum A soit atteint aux points ordonnés
(36)
-en tout autre point la fonction étant plus grande que A.
On peut toujours intercaler entre les points (36) les points de E tels que la suite
(37) soit ordonnée.
Développant le premier membre de la relation
nous avons
(38)
Nous avons par hypothèse
U’inégalité (38) devient donc
(39)
Nous savons que et que , ce qui est en contradiction avec l’inégalité (39). La proeprietí est donc démontrée.
On procède de même dans les autres clas.
(²) En effet si la suite est ordonnée on a .
Si la fonction est convexe et si le nombre des points cù le maximum est atteint est , l’une des extrémités ou bien toutes les deux se trouvent parmi ces points suivant que est pair ou impair. Si le nombre des points où le minimum est atteint est , l’une des extrémités se trouve parmi ces points lorsque est pair.
16. Si et sont deux fonctions de même classe, et où est une constante positive sont c ncore de même classe. On ne peut en général rien dire sur la classe du produit de deux fonctions. La formule (18) permet d’écrire les propriétés suivantes :
onctions
c l a s s e s
De même la fonction de fonction peut s’étudicr avec la formule (19). On a par exemple les propriétés
fonctions
c l a s s e s
F
Il est possible d’établir des résultals plus précis. On peut monts er par exemple que si F est de la classe et si est d’ordre . est aussi d’ordre 1.
On en déduit par exemple que si est de la classe ( 0,1 ’, ) la fonction est de la même classe et est de la classe .
Si ñous considérons la convexité et la polynomialité comme cas particuliers de la non-concavité on peut énoncer la propriété :
La limite d’une suite convergente de fonctions d’une même classe : est une fonction de la même classe.
Nous avons encore la propriété suivante :
Une fonction continue sur l’ensemble fermé et d’une classe donnée sur un sous-ensemble , tel que , est de la même. classe sur E.
Cette proposition est vraie sans restrictions. Elle est immédiate
pour la non-concavité et la polynomialité et elle résulte pcur la con-vexité de la propriété démontrée à la fin du No. 13.
Soit maintenant une suite de fonctions
(40)
définies sur les ensembles finis , compris chacun dans le suivant.
Si et si les fonctions (40). sont de la même classe il existe une fonction limite , définie sur l’ensemble limite , vérifiant les conditions signalées au No. 10 , et quis soit de la même classe.
§ 2. - Relations entre les fonctions d’ordre et de classe donnés et les fonctions étudiées au Chap. I.
17.
Supposons que la fonction soit définie sur l’ensemble , formé par l’ensemble E et un point isolé . On vérifie facilement que si est à nème différence divisée bornée sur E , elle est aussi à nème différence divisée bornée sur .
Considérons maintenant une fonction d’ordre sur E. Soient les extrémités d’un sous-ensemble complètement intérieur à E. En vertu de a remarque faite nous pourrons supposer qu’il y ait au. moins points dans l’intervalle ( ) open to the right and at leastpointsin the meantime () open on the left. Let us finallypoints of the considered subset. Because the sequence (30) is monotonic, it follows that the difference dividedis included between the divided differences ; done
Any function of order n esì with nth divided difference bounded on every completely interior subset E.
It follows that any function of orderon E is continuous on every subset completely interior to E.
Ifis a completely interior subset of E on a.
For any sequence of points (3) ofwe deduce from this.
done:
Any order functionon E is at nth bounded variation on every subset completely inside E.
In the following section, we will establish a converse of this property.
18. Let us consider the functions defined on a finite set (3). It is easy to see that any function defined on this set can be decomposed into the difference of two functions of the class ().
Let us indeed state
(41)
It is clear that we can takebig enough so that we also haveThen we can takebig enough so that we also haveetc…. etc….
The decompositions (41) are obtained by writing
(42)
Consider the system
adelinear equations inTaking into account that the sequence (3) is ordered and applying the fundamental formula (1) we easily find that in generalis a linear and homogeneous expression of-whose coefficients are non-negative.
Be it nowany solution to the system of inequalities (42) andthe solution qn'on obtains if we replace all the signsbyThe system thus obtained is indeed compatible and the solution is completely determined.
From the previous analysis, we deduce that we have
It is also easy to see that all the equalities can only take place at the same time if (42) is a system of equalities.
The decomposition (41) can be done in an infinite number of ways.
Among these decompositions hehas one for which the functions. are the smallest possible (*1). From the above, it follows that this canonical decomposition is obtained by the formulas
(43)
This decomposition has the following properties:
. Therefunction limitsAndis at most equal to the calle of20.
The total variation of orderfunctionsAnddoes not exceed that of30.
The functionsare bounded by a quantity dependent on only the properties up to the orderofand of an interval which contains the points (3), but not of the number of these points.
, Andare immediate. To demonstrate property 30, note that by denoting bythe limits and total variations: ofwe have
what we obtain by suitably adding relations (43). Taking (1) into account, we deduce
Or () is an interval containing the points (3). By repeating co: process we arrive at the limitation
(21) A functionis "smaller" than another functionif weon the common set of the two sets where the functions are defined, the sign < taking place for at least one value of the variable.
This formula also applies toIt is rather crude, but sufficient to demonstrate the propertysince it does not deprive Mr.
Let us now consider any functionto nth bounded variation on a setand supposeSince the function is continuous, it is completely determined by its values ​​on a countable subset.such asbelongs to the derivative of.
Let us now consider E* as the limit of a sequence of finite setseach containing the previous one and are
The minimal decompositions on these sets.
are also bounded, of the classand their total variation of orderdoes not exceedWe then know that the functionshave at least one limitonand consequently thealso have a limitsuch as
By the principle of continuity, we deduce the following property:
Every function with bounded nth variation is the difference of two functions of the classand whose nth total variation does not exceed that of.
Eitherthe minimum decomposition on the sequence (3). Let's add a new point to points (3).and eitherthe minimum decomposition on the new sequence obtained (on (3)). It is easily shown using formulas (43) that we haveon (3) (23). We deduce that the sequences (44) do indeed have a limit.
It follows that the decomposition obtained above for any set also satisfies the minimum property, that is to say-
00footnotetext: (22) Pour le cas M. A. Winternitz (voir loc. cit. 5) a démontré que toute fonction à première variation bornée (Funktion von beschränkter Drehung) est la différence de deux fonctions d’ordre 1. La méthode de cet -auteur est différente de celle employée ici.
(23) L’égalité peut d’ailleurs avoir lieu partout. Si on a certaimement .
to say that among all the functionsclassverifying equalityThose obtained above are the smallest possible. Otherwise, in fact, it would show that there exists afor whichis not the minimum decomposition on-which is impossible.
We assumed. Ifthe functionis not generally continuous, but its points of discontinuity form a countable set. It suffices to take the set E* such that it contains the set of discontinuities; the method is then applicable and necessarily leads to the minimum decomposition into two non-negative and non-decreasing functions, which is well known.
CHAPTER III.
ON THE DERIVATIVES OF THE FUNCTIONS OF A REAL VARIABLE.
§ 1. - Some remarks on the definition
of the derivative of order.
19.
We will now assume that the functioneither decorated on E. When the pointstend towards a pointofthe difference divided
(45)
does not generally tend towards any limit.
We will designate bythe limit of the divided difference (45), if it exists, is finite and well-determined when the pointstend in some way towards.
Suppose that the pointbelongs to E, we will then designate bythe limit of the difference dividedif it exists, is finite and well-defined when the pointstend in some way towards.
It can easily be demonstrated that in order thatexists, it is necessary and sufficient that for every numberwe can match a numbersuch as
(46), In.
This inequality can also be replaced by the following (formula (6)):
(47), In ( 24 )
​denotes the midpoint intervaland length.
We can also takeso that
(48)
The same properties hold true forby including* the pointin all the divided differences of formulas (46), (47) and (48).
Formula (9) shows that ifexists, the divided difference (45) tends towardswhen the pointstend towardsprovided that the quotient
remains bounded. Indeed, in this case, any limit of (45) is finite, and from any sequence of divided differences converging to a limit, we can extract a new sequence such that
has a limit, which is finite by hypothesis. Formula (9) then shows that this sequence of divided differences tends towards.
We will assume that E is closed.
The existence ofentails by definition that ofBy definition ,
theth derivativeis the derivative of thethe th derivative and, by definition, also the first derivativeis identical to.
can therefore be defined on the setand it is evident that its existence implies that ofin all aspects ofin a neighborhoodofWhen we talk about the continuity ofat one pointofwe assume, of course, that this derivative exists in the neighborhood of20.
From (46) we deduce that ifexists at a pointof :the function is a divided nth difference function bounded in the neighborhood ofIf the function is atnth difference divided bounded,exists at every point ofand is continuous (on). Ifexists in. every point ofIt is continuous, therefore necessarily bounded. It follows that the function has a bounded nth difference. In this case, inequality (46) holds uniformly on E.
Ifexists at a pointalso exists at this point and:
(25) This remark allows us to defineeven at a point ofwhich does not belong to E, but it is unnecessary to consider this extension.
in its neighborhood, but it should be noted thatcan exist at a point (of) without existing in its vicinity ( 26 ).
Ifexists at a pointalso exists at this point, but not generally in its vicinity ( 27 ).
Finallycan exist at a point and even be continuous withoutexists ( 28 ).
We can demonstrate the following property:
(26) Let the function
The wholeis formed by the points
At the pointsdoes not exist, on the contraryInSOexists and is equal to zero.
(27) Consider the function defined forin the following way
For
We check thatexists and is equal to zero, whileobviously does not exist at points
(28) It suffices to take the function
exists in every respect, butdoes not exist.
Ifexists at a point ofthe nth derivativeexists at this point and we have equality:
Indeed, there is a numbersuch as inthe nth difference divided bydoes not exceed the finite number A in modulus. All limitsexist inWe can then prove the property by induction. It is obvious forLet us therefore assume that it is true forand let's take it apart toTo allcorresponds to asuch that ifis a point ofInand ifare close enough toAndsufficiently close towe have at the same time
But, hypothetically
We have done
Formula (6) gives
which demonstrates the property.
We deduce that so thatexists and either continues onit is enough thatexists on, but it should be noted that this condition is not generally necessary.
Let us also note that, from the existence of, we cannot generally conclude that of21.
More precise properties can be obtained if E is a closed win interval (). Stieltjes demonstrated ( 29 ) in fact that:
Ifexists and is continuous at the pointexists and we have
Comparing this with what was said above, we see that:
The necessary and sufficient condition for a functionubéfinite and bounded in the interval () has a continuous nth derivative - in this interval is that the divided nth difference is uniformly continuous in ().
We already know that the nth difference divided is uniformly continuous if at every numberand in every respectofwe can match a numbersuch that one has
In the case of an interval, if
exists and is continuous at the pointalso exists at this point. Let us suppose, in fact, that inexists and either continues to the pointTo allcorresponds to asuch as
SO
exists and is obviously equal toIt is important
to note that even in the case of an interval(Or) can exist at a point without existing in its neighbor (image (30)). Similarly ifexists to the pointalso exists at the point, but not generally in its neighborhood ( 31 ).
(29) TJ Stieltjes „Over Lagrange's interpolatie-formulae" Verslagen cen Mendeelingen der Koninklijke Akademie van Wetenschappen te Ansterdam 2nd ser. t. XVII (1882), p. 239.
(30) See the example given in note ( 27 ).
(31) The example in note ( 27 ) verifies the property.
Stieltues also proved the following proposition ( 32 ): -
Ifis defined and bounded in () and ifexists at a single point,also exists at this point and we have
This is a necessary condition for the existence of the nth derivative, but it is not sufficient in general. Instead, we will demonstrate the following property:
The necessary and sufficient condition for the functiondefined and bounded within the interval () has an nth derivative at every point of () is thatexists at every point of ().
We know that the condition is necessary. Let's show that it is sufficient.
In this caseexists everywhere and is continuous, therefore.
It will suffice to show thathas a derivative at every point of (). Eithera point of () ; we can findAndsuch as
given, one can find, such as
(49)In.
Leta point ofpoints in the vicinity ofAndpoints in the vicinity ofWe can find the pointsInsuch
.
Gold,Since it's continuous, we can choose the pointssuch that one has both
(50)
Let's consider another pointIn, and let's correspond to it*-
(32) TJ STIELTJES „Einige bemerkingen omtrent de differentialquotienten. van eene functie van eene veranderlijke" Niéuw. Archief for Wiskunde t. IX, (I882), p. 106-111.
place the points in the same waysuch that the corresponding inequalities (49), (50) are satisfied. It is always possible to take these points in such a way that we also have
Formula (6) then gives us
"which demonstrates the property.
22. Now suppose thateither bounded and summable in (The function
is then continuous forWe will demonstrate the more general property (always assuming) :
Ifis a bounded divided nth difference, the divided nth difference of the functionis uniformly continuous in every interval.
We know that this property means that at anyand in every respectofwe can match asuch that we have (51)In
Let's make the change of variables .
which is legitimate ( 33 ) and let's remove the factorWe can consider, with a slight change in notation,
We have (formula (8)):
(52)
However, the functionand all its divided differences are bounded in the interval (). The same applies, by hypothesis, to the function:until orderincluded in () and for all values ​​ofIt therefore suffices to demonstrate that for any numberwe can match a numbersuch that one has
provided thatremain within a length interval.
The general case follows immediately from the caseWe know, in fact, thatexists and is continuous. Furthermore, we can find a pointInand included in the smallest interval containing the pointssuch that in any interval containing the pointthere exists a difference divided equal toThis point se trouve toujours dans le plus petit intervalle où les points, sur lesquels ces différences divisées sont prises, sont situés. Supposonsque ait une nème dérivée au point , alors en vertu du second théorème de Stifltjes
De même nous pouvons trouver de manière que si a une : nème dérivée au point , on a
00footnotetext: (33) Voir H. Lebesgue, "Sur les intégrales singulières", Ann. Fac. Toulouse 3ème s. t. L. (1909), pp. 25-117, sp. p. 44.
Les points sont dans un intervalle de longueur . D’autre part existe partout et est à première différence divisée bornée, en vertu d’un théorème de M. Lebesgue existe donc presque partout et est évidemment bornée. En vertu des propriétés bien connues des fonctions sommables il résulte que le prob’ème se réduit à la continuité d’une expression de la forme . Ce que nous savonsêtre exact ( 34 ).
On sait que la dérivée d’ordre est définie par l’égalité :
étant entier .
La première proposition énoncée au No. 21 nous permet d’éerire les conditions nécessaires et suffisantes pour l’existence d’une dérivée continue d’ordre . En vertu de la propriété exprimée par la formule (51) nous déduisons que si est à nène différence divisée bornée la. dérivée d’ordre existe et est continue dans pour . C’est un théorème de M. P. Montel, énoncé d’une façon un peut différente. M. Montel a moniré que, la fonction étant supposée bornée, il suffit de considérer seulement les différences divisées pises sur des points équidistants ( 35 ) :
Les propriétés démontrées au No. 21 permettent d’écrire lés conditions nécessaires et suffisantes pour l’existence, dans l’intervalle ( ) ouvert à gauche, de la dérivée d’ordre ou bien de la dérivée continue d’ordre . Pratiquement ces enoncés ne présentent pas beaucoup d’intérêt. Il est possible par diverses transformations d’en déduire les critères donnés par M. Marchaud. Nous n’msistons pas sur cette question qui nous eloignerait trop de notre sujet et nous renverrons au memorie de M. A. Marchaud ( 36 ).
§. 2. - Remarques sur les dérivées des fonctions étudiées aux Chap. I. et II.
23.
Nous déduisons de ce qui précède qu’une fonction d’ordre n sur E a des dérivées continues d’ordre sur tout sousensemble complèlement intérieur à E. Si la fonction est définie dans un intervalle elle a des dérivées continues d’ordre dans tout intervalle complètement intérieur.
(34) A la rigueur ceci ne résulte que si est dans ce qui n’est pas en contradiction avec notre hypolhèse initiale.
(35) P. Montel "Sur les polynomes d’approximation" Bull. de la Soc. Math. t. 46 (1918) pp. 151-192 sp. p. 183.
(36) Voir loc, cit. (7).
Posons
Cette expression s’annule identiquement lorsque est un polynome de degré n. Done, pourvu que tous les points
(53)
soient distincts, elle est nécessairement de la forme
(54)
This formula can be determined as follows: Subtract each row of the determinant from the next. Then, applying formula (6), the determinant decomposes (by virtue of Binet's formula giving the product of two tables) into a sum of determinants of orderof the same form but relating to divided second differences, each multiplied by a factor independent of the functionWe decompose each determinant in the same way until we arrive at formula (54). If we assume that the sequence (53) is ordered, we can write formula (6) so that the factors introduced are always positive, and this process effectively leads to (54). It follows that if the sequence (53) is ordered, the coefficientsin (54) are positive.
If the derivativeexists and is continuous, we have
iftend towards the pointof Since sequence (53) is ordered, from formulas (54) and (55) we deduce that if the function
is non-concave of orderits derived nonconcave orderThe converse of this property is not true in general. The derivativemay be of orderwithout the function being to credit can be convex of orderand the order function, without being convex. The (The mth derivative of a function of order
m is of order 1. Such a function has a left-hand derivative and a right-hand derivative, which are functions of order 0. If theThe derivative exists, and it has a constant sign.
If E is an interval and if the derivativeis non-concave of orderthe functionis necessarily non-concave of orderFurthermore, ifis convex,is also convex, and conversely, since one of these functions cannot be polynomial without the other also being polynomial in the same interval. In the case where E is an interval, ifexists, the conditionis necessary and sufficient for the function to be non-concave of orderthe conditionis sufficient for it to be convex.
In the case of an interval, the properties of the function are simply deduced from those of the derivative by the easily established formula
(56)24.
We have seen that a function with bounded nth variation is a function with bounded nth difference divided by the function; therefore, a function with bounded nth variation has continuous derivatives of the same order.If it is defined within a closed interval () the continuous derivatives of orderexist in the open interval at left.
We will also demonstrate that the derivative of a bounded nth variation function is at ()th bounded variation.
Let's write the general formula (54) for thepoints
Doing, We have
It is then obvious that ifis an ordered sequence, at all, corresponds to asuch that one has
provided thatNow
consider an ordered sequence of
(57)
According to the previous property, we can always take the ; points of E
(58)
so that,given, we have
We deduce that
(59)
ButHaving finished, with a slight change of notation we can also say that, given the sequence (57), we can determine the sequence (58) such that the left-hand side of (59) is
given in advance.
But the first member of (59) can be determined by a suitable choice of the sequence (57) so that it differs by less thanof: the quantity
(60)
Finally, sequence (57) can be taken such that quantity (60) differs by less thanof.
It follows that
done
This inequality is rather crude, but sufficient to demonstrate the property.being at a limited variation numberis therefore a first bounded variation of t. We follow thatthen admits a left-hand derivative and a right-hand derivative which are of bounded variation of order25.
Let us first suppose that E is an interval (We can give a precise meaning to thethe divided difference of a function of order, even if the points are not all distinct.
It is about giving meaning to the divided difference
(61)
the pointsbeing distinct. If we consider (61) as the quotient of two determinants (see No. 1), it appears in indeterminate form.To resolve the uncertainty, we replace each group of points with the corresponding points.bydistinct points tending towardsWe can then obtain, using a well-known method (L'Hôpital's rule), the true value of the quotient (61). This amounts to defining the determinant
as being equal to the determinantwhere, generally speaking, the order lines are replaced,by :
…………
. .
..2 0. ! .).
is obtained by doingand we can easily see that this expression is different from zero, therefore the divided difference is perfectly defined.
The previous operation is justified ifsince the function has a continuous derivative of orderThe same applies if,. IfAndWe must introduce the nth derivative. This derivative does not exist in general, but there is always an nth left-hand derivative and an nth right-hand derivative. It follows that we can still give meaning to the divided difference, provided we let thepoints of the second group towardson the same side.
For example, if these points remain constantly to the left ofthe formula found is valid provided thatrepresents the nth left-hand derivative.
It is clear that these considerations are only valid within the interval (), more precisely, everywhere derivatives exist.
We can now complete the properties of functions of order n. Ifis non-concave of orderwe have
the points being distinct or not. We will also see that ifis of orderand if we have
The function is a polynomial of orderin the meantime ( Moreover, all these properties can be translated geometrically using L polynomials .
If the set E is arbitrary, the preceding considerations still apply, provided that the points where several coincide belong to a derived set of suitable order. The derivatives can also be extended by the expressionacross the entire setIt is easy to verify that this extension allows for the complete generalization of the properties. For example, ifis non-concave of orderIt is shown that everywhere they existare also non-concave in order26 respectively
. Suppose thatlet be points of the derived set. We can takesufficiently close to the respective points of the preceding sequence such that,given, we have
with formula (54)
assuming the function has a bounded nth difference divided function.
We deduce
from where
(62)
When the set E is an interval () Formula (56) allows us to write (forpoints)
We also have
We deduce from this
from where
Comparing with (62) we deduce equality for the case of an interval.
(63)
27.
We already know that ifis of bounded nth variationis at ()th bounded variation. We also know that if
(38) It can easily be verified that this equality does not hold in general if the set E is arbitrary. This is, moreover, obvious a priori since: the differentiation does not exist on isolated points of E.
function is continuous (which always holds if) we can consider only equidistant points for the study of variation. Suppose that E is an intervaland that To all
corresponds to a sequence
64.
such that
(665) (nth variation ofon (64).
We can always assume (as a result of continuity),.
It is easy to see that
"and comparing with (65) it follows that
from where
Now, at allcorresponds to a numbersuch as
Provided that.
Using formulas (6) and (10) we can write
(66)
all the differences divided by the second member being of orderulesare independent ofand also ofand they are non-mogative if.
We can find a sequel
such as,given, we have
We takesmall enough,
And
However, formula (66) shows that the sum of the right-hand side is less than
Or
oddeven.
Ifis odd, you just need to doto see that
Relation (1) then allows us to show that this equality also holds forpeer.
We deduce from this
hence
So, finally we have
(67)
We assumed thateither continuous. MA Winternitz has shown that we also have ( 39 )
being of bounded first variation andits right-hand derivative.
§ 3. - On the limitation of the derivative of a function of order.
28.
Eithernon-concave of orderin the meantime (). Ifit admits a continuous, therefore bounded, derivative in every completely interior interval.
The sequelbeing ordered, we have
hence, by expanding
(68)
To find a limitation ofin the meantime ()you just need to take the pointsIn
() the pointsIn (and to determine appropriately(one can always choose between two consecutive values ​​ofso thatWe can then take the modules in (68).
Eitherthe terminal ofand let's ask
The second member of (68) can be written
and this expression allows us to write
being suitably chosen.
Let's look for a better limitation for sufficiently internal points.
We will assume thatLet's then ask...
And
. ofodd.
We deduce that
odd.
Let us also designate bythe polynomialtaking the valuesto the points, We have
ment if we ask
we deduce from this
29.
We can see that ifis fixedis positive and never cancels out. If two pointsAndcoincidebecomes infinite, so it certainly reaches its minimum for distinct points. Finallyis homogeneous of degree -1 inAndand depends only on the mutual differences of these numbers. It follows that for the minimum, at least one of the equalities, must be verified.
Supposeand let's write the conditions
The value thus found forwill be.
We have
SO
assuming the pointsdistinct.
We finally deduce
To
highlight the numberlet us denote this polynomial.
Now suppose thatand let's write
we then obtain fora valueAs above, we find
Let us denote this polynomial by.
We have
It can also be demonstrated that equality is indeed achieved for a particular position of the point.
The polynomialis a Chebyshev polynomial ( 40 ) in a
00footnotetext: (40) Voir S. Beinstein loc. cit. (8).
a certain interval (, )
For formula (69) to be applicable, it is necessary to write thatis the Kth root ofand that, which is the largest root of the derivative, is at most equal to,
Eliminating
​we find
The pointsare distributed as follows:
In the same way we have
the conditions for the applicability of formula (70) are
from where
The paintingsare distributed as follows:
30.
Ifis in the intervalpolynomials,suitable for limitation. We have
SO
and we will then certainly be able to write
Similarly, we find
with
We have in
and finally
In the same way we have
We can also write in
from where finally
In a similar way
Note that
And
We can therefore see that:
The derivatives of a functionbounded and orderlyin the intex-
valley () checks the inequalities ()
belonging to the inter-flight () with
We have introduced the coefficient 2 here; it comes from the fact that, in the proof, we have assumedThe general case reduces to this one by considering the functionwhich is still of orderand we obviously have
MP Montel was kind enough to point out to us that, in the vicinity of the extremitiesOrthe second limitation is comparable to the first for large values ​​ofIt suffices to note thatis of the order of.
Formulas (71) closely resemble those given by Markoff and M.S. Bernstein for the limitation of the derivative of a polynomial ( 41 ). It can be seen that a function of orderbehaves roughly like a polynomial of degree n in a subinterval, which, moreover, can be approached as closely as one wants toFor.
Chapter IV.
ON CONVEX FUNCTIONS IN THE SENSE OF M. JENSEN.
31. In his famous memoir MJ Jensen ( 42 ) defines convex (ordinary) functions by considering only second divided differences taken on equidistant points.
See S. Bernstein loc. cit.( 42
) JLWV Jensen, "On Convex Functions and Inequalities Between Mean Values," Acta Math., vol. 30 (1906), p. 175. M. L. Galvani was the first to consider functions defined on arbitrary sets. See his memoir "Sulle funzioni convesse di una o due variabili definite in un aggregato qualunque," Rendiconti di Palermo, vol. 41 (1916), p. 103.
Let us assume, for the sake of clarity, that E is an interval () and consider the divided differences
Let's suppose thatlet be bounded and let us set
is the oscillation modulus of orderof the function.
Let's
We have, so ifis finished
MA Marchaud has shown that in this case the function is continuous ( 43 ).
Let's takeordered pointsand divide the interval () inequal parts by points
Eitherthe pointwhich is closest to(or one of them if there are two). Formula (10) then gives us
But
and since the function is continuous, we can find a numbersuch as
being any given number, provided that. It follows that
Ifis finite and if the function is bounded it is also a bounded nth difference divided function and we have
(43) A. Marghaud loc, cit. (7). .
We can also define a total variationon equidistant points by setting
Ifis limited, the same is true for, butcan be limited withoutthe evening.
It is further demonstrated, as above, that ifis finished and the functionbounded, it has a bounded nth variation and we have
Of course, this property is only true forWe generally have32.
We can finally consider functionsverifying the inequality
(72)
I say first that if such a function is bounded it is continuous in the open interval () ().
From formula (10) it follows that we have
(73)
provided that the pointsrationally divide the interval (). So thenan interior point of () and let'sfixed pointsordered and to the left ofand eithera point near, which we can assume to be to the right ofTo clarify things. We have
(74)
pourvu que la condition de rationalité soit vérifiée. Or, nous pouvons toujours prendre les points de manière que divisent rationnellement l’intervalle ( ). Alors, ou bien divisent rationnellement l’intervalle ( ), ou bien nous pouvons rem-
placer les points par d’autres aussi près qu’on veut des tels que cette propriété soit vérifiee. En développant alors l’inégalité (74) nous avons
(75)
La quantité A est bornée la fonction l’étant aussi par hypothèse. Dans les points ordonnés sont, ou .bien fixes ou bien on remplace par des points aussi voisins qu’on veut ; on peut donc s’arranger toujours de manière que reste plus grand qu’un nombre positif.
Il en résulte que reste borné quand varie.
Par le même procédé nous obtenons
(76)
étant borné lorsque varie. Pour celà il suffit de prendre par exemple à droite de . On procède de la même manière si est à gauche de .
Les inégalités (75), (76) prouvent la continuité.
Comme au No. précédent nous obtenons la propriété suivante :
Si une fonction bornée définie dans l’intervalle ( ) vérifie l’inégalité (72), elle est non-concave d’ordre (au sens du Chap. II).
Signalons encore la propriété suivante ( 44 ) :
Si une fonction mesurable (au sens de M. Lebesgue) vérifie l’inégaLité (72), dans ( ) elle est continue en tout point intérieur.
Supposons le contraire et soit un point de discontinuité intérieur à ( ). Il résulte de ce qui précède que dans tout intervalle entourant il existe un point tel que
(77)
A étant un nombre positif aussi grand qu’on veut.
Soit a un nombre positif tel que l’intervalle ( ) soit complètement intérieur à ( ). Dans l’intervalle ( ) il existe un point tel que
(78)
où est égal à ou suivant que est pair ou impair.
00footnotetext: ( 44 ) Pour voir W. Sierpinski "Sur les fonctions convexes mesurables". Fundamenta Math. t. I (1920), p, 125.
Considérons l’un des intervalles de longueur ayant comme extrémité. Nous avons
en supposant par exemple et .
On -voit alors qu’on a
au moins pour un . En effet autrement il aurait certainement contradiction avec (78).
Il en résulte que les points , pour lesquels on a (77), forment un ensemble de mesure et alors la fonction ne peut être mesurable en vertu d’un théorème de M. Borel.
SECONDE PARTIE.
SUR LES FONCTIONS CONVEXES D’ORDRE SUPÉRIEUR DE DEUX VARIABLES RÉELLES.
CHAPITRE V.
SUR LES DIFFÉRENCES DIVJSÉES DES FONCTIONS DE DEUX variables réelles.
§ 1. - Théorie générale des différences divisées.
33.
Considérons une fonction réelle et uniforme sur un en-semble plan borné dont la nature sera précisée plus loin.
On peut généraliser la notion de dufférence divicée pour le cas des fonctions de deux variables indépendantes d’une infinité de manières. Nous étudierons la généralisation qui paraît présenter le plus d’intérêt.
Soient points de l’ensemble E. Désignons par les coordonnées du point et posons
(79)
où, suivant une notation usitée, nous n’avons écrit que la ligne générale du déterminant.
Pour abréger, nous désignerons aussi par e l’ensemble des points. et par le déterminant (79).
Désignons par ou le détérminant qu’on déduit de (79) en remplaçant les éléments de la dernière : colonne par
Appelons courbe d’ordre ( ) une courbe algébrique représentée. par l’équation où est un polynome de degré ena et de degré en .
Considérons alors le quotient
(80)
Remarqouns que la différence divisée d’ordre ( ) est symétrique par rapport aux points .
Soit l’ensemble dont les éléments sont les groupes de points de E non situés sur une courbe d’ordre . A chaque élément de correspond, pour la fonction ), une dififérence divisée d’ordre ( ).
Prenons un sous-ensemble de . L’ensemble de toutes les différences divisées d’ordre ( ) forme ce que nous appelerons une différence divisée d’ordre ( ) sur E de la fonction .
La différence divisée d’ordre ( ) sur E est donc une fonction d’ensemble égale au quotient (80) en tout élément de . Ainsi à tout sous-ensemble correspond uue différence divisée d’ordre ( ) sur E.
Un sous-ensemble : est toujours caractérisé par certaines propriétés restrictives que doivent vérifier les groupes de points donnant ales éléments de ce sous-ensemble.
34. Supposons que tout point de E appartienne à au moins un "élément de . Nous dirons alors que la différence divisée d’ordre ( ) sur E , correspondant à , est complète.
Il est à peu près évident qu’une différence divisée sur. E non complète ne présente aucune utilité pour l’étude de la fonction sur E.
Soit un groupe de points de E , ce groupe étant un élément de , l’ensemble de tous les points de E tels que chacun d’eux donne, avec points de , un élément de l’ ensemble de tous les points de E tels que chacun d’eux donne, avec points de , un élément de etc.
On a et la somme est contenue dans E.
Supposons qu’on puisse trouver de manière qu’on ait . - Nous dirons alors que la différence divisée sur E , correspondant à , est close.
Il est clajr que la propriété d’être close entraine celle d’ètre complète.
Soient deux sous-ensembles de tels que Nous dirons alors que la différence divisée d’ordre ( ) sur E , correspondant au sous-ensemble est plus élendue que celle correspondant au sous-ensemble . On peut aussi dire que la différence divisée sur E , correspondant à , est moins étendue que celle correspondant à .
Si une différence divisée sur E est complète ou close, toute différence divisée sur E plus étendue sera a fortiori complète ou close.
Nous supposons bien entendu qu’il existe au moins une différence divisée d’ordre ( ) donc que l’ensemble E ne soit pas vide. Pourqu’il en soit ainsi il taut et il suffit que les points de E ne soient pas. tous sur une courbe d’ordre ( ).
Une différence divisée d’ordre ( ) sur E est nulle identiquement si les différences divisées sont nulles pour tout élément de l’ensemble. correspondant.
Si une différence divisée close d’ordre ( If the function is zero on E, then the function reduces on E to the values ​​of a polynomial of degree.inand degreeinnot containing a term in.
Let us consider a sequence of setsexpressing... the closure. We will demonstrate the property step by step. The property is true on the setThis is immediately apparent when noting that, among thepoints of, there is alwaysthrough which passes a curved scule of order (It now suffices to show that if the property is true on the setit will also be true across the boardThis results from the fact that the points ofwhich are not found inare obtained from there in the following way: We take inpoints through which a single curve of order () ; either () this curve. We take the points that are not on (C) and that with thepoints. The chosen points give an element of the setcorresponding to the difference divided over E considered. By taking all possible curves (C), we obtain all the points of35.
Let us establish yet another property of certain divided differences on E. For a divided difference on E to be usable for the study of functions, it is necessary that, at least for simple functions, it leads to simple differential properties for the function..
Eithera point on the derivativeofand an element offormed
by the pointsLet's call the distance from the pointto the element e the greatest of the distances from the pointto the points.
Let's agree that the sequence of elements of/ tends towards the pointofif the distance from the pointto the elementtends towards zero when.
We will say that a difference divided by E is regular if, for whatever reason, a sequence of elementsof E tends towards the pointofthe difference dividedtends towards a finite and well-defined limit, and this:
10. For any point M' which is the limit of at least one sequence of elements of
For a couple of numbersnon-negative integers ( 45 ).
The regularity conditions are not all independent. First, forthe limit in question is always equal to zero and forIt is obviously equal to 1. These properties belong to all differences divided over E.
Let us designate bythe limit of the difference dividedto the point, in the case of regularity. Therefore, we have
We can write
Yourbeing independent ofAnd.
Let us designate bythe fundamental symmetric functions of the abscissas of the points formingand bythe functions
00footnotetext: (45) Les considérations précédentes s’appliquent aux fonctions d’une variable ∗ La différence divisée générale, envisagée dans la première partie, est close. Si la fonction est définie dans un intervalle, la différence divisée prise sur des points équidistants est complète mais n’est pas close. La question de régularité ne se pose pas. Toute différence divisée est régulière. C’est précisement à cause de cette propriété que les questions exposées dans la première cpartie presentaient une aussi grande simplicité.
fundamental symmetrics of the ordinates of these points. We have
This shows us that:
There are only a finite number of independent regularity conditions.
In particular, it is sufficient that the regularity condition be met forand then we have
We have thus foundConditions of regularity. These conditions are not all independent yet and can be reduced in various ways. We will not dwell on this point here.
Regularity does not lead to closure and conversely closure does not lead to regularity ( 46 ).
If a difference divided over E is regular, any less extensive difference divided over E is also regular and exhibits the same regularity (the limits are the same).
§. 2. - On a particular divided difference.
36.
If the subsetcoincides with E, we obtain the most extensive divided difference over E. Since E is not empty, it can easily be shown that this divided difference over E is closed. However, this divided difference over E does not appear to be of great interest for the study of the function, as it is not generally smooth. Let
00footnotetext: (46) C’est précisement sur ce point que le cas de deux variables diffère essentiellement de celui d’une variable.
for example the four points
and the function ; We have
Ifthe four points tend towards the pointand the divided difference can tend towards any limit.
37. We will assume, for simplicity, that E is a closed rectangle ( 47 )
(81)
Let's call with Mr. Marchaud, order network () the figure formed byparallel to the axisAndparallel to the axisOf course, we only consider the points of the network that belong to rectangle E.
We call the partial divided difference of order () the difference divided over E corresponding to the subsetwhose elements are the nodes (or points of intersection) of all the networks. of order ().
The partial divided difference of order (The system is complete but not closed. It is also regular, and its regularity is expressed by the equalities.
The term "partial divided difference" can be explained as follows: Let's take the same divided difference of the function with respect to
and the nth difference divided by
By changing the order of the two variableswe also define the quantity
(47) It is clear that a more complicated set could be taken. (48) Thesis loc. cit. (7).
We can easily see that we have identical
Expression (82) is precisely the divided difference of orderof the functionon the points.
Let us also call, with Mr. Marchaud (49), a pseudo-polynomial of order () any function of the form
A pseudo-polynomial of orderis completely determined by its values ​​on an ordered network ().
This property is analogous to the uniqueness property of L polynomials.
Let us designate by
the pseudo-polynomial of ordercoinciding with the functionon the network
It is easy to see that
(83)
38.
It can easily be seen that the general solution of the equation
is a pseudo-polynomial of order ().
to maintain greater symmetry in the names.
Mathemat ca VIII.
Partial divided differences of orderof a pseudo-polynomial of order () are generally unbounded. The pseudo-polynomial itself is generally unbounded. We have the following property:
For a pseudo-polynomial of order () has all its differences divided by partial orderbounded it is necessary and sufficient that its divided partial differences of order (), () are bounded.
Suppose the functionzero on the network
Let's apply formula (6) to partial divided differences
we then see that if lx partial divided difference of order () is bounded the partial divided differences of order (), () are also limited.
It follows that all partial divided differences of orderare bounded. We can therefore state the following property:
So that the partial divided differences of orderof a functionto be bounded it is necessary and sufficient that:
10. The partial divided difference of order () is bounded.
20. Partial divided differences of orderare bounded on a network of order ().
We also see that:
Any function whose partial divided difference of order () is bounded is the sum of a function having all its differences divided by partial orderbounded and of a pseudo-polynomial of order.
The fact that the partial divided difference of orderis bounded means that the function is bounded.
It can also be noted that
therefore, if the partial divided differences of orderAndare bounded the function is continuous.
Let us recall once again a theorem of MP Montel (50) under a slightly modified farm.
If the partial divided differences of order (), () of a ? function are bounded, the partial divided difference of order () is bounded provided that
We first show that the property is true for a pseudo-polynomial of order () (the conditions,are then sufficient). We then demonstrate the property for a function that vanishes on a lattice of order () (the first two conditions can then be replaced byThe demonstration can be done using the functionsintroduced by Mr. Marchaud in his Thesis ( 51 ).
S. 3. - Study of another particular divided difference.
39.
To simplify, we will again assume that E is a rectangle (81).
Eitherthe subset ofwhose elements are all the groupsofpointsmeeting the following conditions:
The sequelis ordered.
. We have
Oris a positive and non-decreasing function forWe
will say that the difference divided by order () on E corresponding tois a normal divided difference of order (The functionis its characteristic function.
A normal difference of order () is closed; it is aregular ifis quite small and tends towards zero quite rapidly.
We will say that a difference divided over E is bounded at the pointof E if there exists a circle centered at M where this divided difference is bounded. We also say that the divided difference over E is not bounded at point M if it is not bounded in any circle centered at M.
Let's demonstrate the following property:
If a tonctionhas a normal divided difference of order
00footnotetext: (50) Voir loc. cit. (35).
(51) Voir le troisième Chapitre de sa Thèse.
() bounded in E, it also has a normal divisible difference of order: () bounded at every point of E.
—
We can demonstrate this using formula (6) from the first part, which is applicable here in the form
(84)
Or (), () are the coordinates of the points.
Eithera point ofand consider a circle with centerand radiusLet's take the fixed pointsi outside the circle and on the same side of the vertical line passing through M. Suppose we take them to the right of this vertical line so that the followingLet's consider the points.within the circle as follows:be ordered. The sequenceswill then be ordered.
We can then see that we can always fix the pointsand take the raysmall enough so that whatever the points Misverifying the condition, the groups of pointsalso verify the conditionFormula (84) then demonstrates the property.
We will specify the results obtained:
Let us denote bythe circle with center M and radiusWe
can say that there is asuch that the function has a normal divided difference of orderbarnée inregardless of point M.
For all points M located to the left of the vertical line with abscissawe take the pointssuch that one has,being a sufficiently small fixed positive number. The property follows for all these points, taking into account that the characteristic functionof the normal divided difference of order (The given value is decreasing. The same applies to points M that are to the right of the vertical line with abscissaThe stated property results from this.
I say again that: the difference divides normal diorder () is uniformly bounded in circles.
This statement means that there exists a positive number, such as damæ:
the circlethe divided differences of the normal divided difference considered, do not exceed in modulus the number A, whatever M.
Indeed, otherwise it is easy to find that there is a pointsuch as in the circlethe normal divided difference of order () is not bounded; which is impossible.
40. Suppose that the functionhas a normal divided difference of order () which is bounded within the circle-whatever M in E.
We will show that in this case the function has a (different) normal divided difference of order () bounded in rectangle E.
Eitherthe characteristic function of the given normal divided difference. Consider the normal divided difference of order () whose characteristic functionis defined as follows:
We will show that there is always a choiceso that "this normal divided difference satisfies the property.
Letpoints in E satisfying inequalities:
On each pair of "consecutive" pointswe perform the following operation: Ifwe leave the points unchanged, ifwe share the segmentin two equal parts by an additional point; in general, ifwe share the segmentin- equal parts byextra points.
Let's tidy up the pointsand all the additional points introduced in the order of growth of their x-coordinates. We then see that we can choose, so that whatever the pointsany group ofconsecutive points of the obtained sequence satisfy the following properties:
10. The group ofpoints is an element of the subsetcorrespond to the given normal divided difference (whose characteristic function is).
. THEpoints of the group are in a circle of radiushaving as its center a point of.
The stated property then follows, possibly applying formula (10) from the first part and taking into account the fact that the given normal divided difference is uniformly bounded in circles..
Taking into account the results of the previous No., we can state the property:
If a functionhas a normal divided difference of order () bounded in E, it also has a normal divided difference of order. () bounded in E.
We also see that the function has a normal divided difference of order () bounded in E for.
Note. Consider the normal divided difference of order () whose characteristic function isbeing a positive number ∘ For this normal divided difference to be bounded in E, it is necessary and sufficient that it be bounded at every point of E. Indeed, it can be shown, using formula (10), that if it is not bounded in E, there exists a point where it is unbounded.
41. If the functionhas a normal divided difference of orderbounded, it is continuous at every point of.
Eithera point ofAnda sequence of points in E tending towards M. We see that for every numberwe can match a numberand an abscissasuch that one has
For ; SO
If the function has a normal divided difference of order () bounded, it has at every point of E a partial derivative of order,We intend to show that:
If the functionhas a nonmale divided difference of orderbounded, the partial derivativeexists at every point and has a normal divided difference of order () limited.
To demonstrate the property, it suffices to take the points
so thatAndWe can then apply the reasoning used for functions of one variable in Chapter III. By letting tendtowardsWe can see thathas a normal divided difference of order () bounded corresponding to the same characteristic function.
From the previous property and from what was said in Nos. 39 and 40, we deduce that:
If the functionhas a normal divided difference of orderbounded, it has partial derivativescontinuous at every point of E.
The derivativehas a normal divided difference of order () bounded and in particularhas a normal divided difference of ordernarrow-minded.
Suppose that the functionhas a normal divided difference of order () and that this normal divided difference is such that the divided difference has a finite and well-determined limit when the points on which it is taken tend in any way towards a limit point.
It follows that the normal divided difference considered is bounded and that the partiolle derivativeexists and is continuous. Conversely, ifexists and is continuous the normal divided difference function of order () bounded. It should be noted that the characteristic functionthat of this normal divided difference generally depends on the function considered.
We can also demonstrate the following property:
For the tonctionhas a partial derivativecontinuous at every point of E, it is sufficient that there exists a normal divided difference of order () such that no matter how the points on which a divided difference is taken tend towards a limit point, the divided difference tends towards a finite and well-determined limit.
Let's add that we can make the same construction for the orderand thus introduce normal divided differences of order () which will enjoy the same properties with respect to the variable42.
Let's define the subsetso that its elementsall groups ofpoints,meeting the following conditions:
1'. The sequels
are ordered.
We have inequalities
Oris a positive and non-decreasing function for We can determine the function
so that we also have, whatever the pointsWe will assume that this is always the case. We see that if the functionchecks this property; any smaller function will check the same property.
We call the divided difference of order (m, n) the divided difference on E corresponding to such a subset. The functionis its characteristic function.
A normal divided difference of order () is more extensive than the partial divided difference of the same order. Therefore, any normal divided difference is complete.
Let us further demonstrate that every normal divided difference is closed.
Indeed, letthe nodes of an ordered network (). Let us designate byall of thesePoints attached to each PCinta circle having this point as its center and a radius the positive numberLet us consider the setsofpoints, such that each is in or on the circumference of the circle corresponding to the pointsame indicesAndThere is adepending on the setsuch aswe haveregardless of ;ifthere is awhose determinantis zero.is independent of a translation of the point group.
Let us now consider the subset, the elements of which areobtained by taking fora valueindependent of translation. It can easily be shown that the divided difference on E corresponding to such a subset is closed, by expressing the closure condition in a suitable way. Now, given a normal divided difference, there always exists a divided difference on E of the latter form that is less extensive, which proves the property.
We can state the following property:
If a normal divided difference of order () of a function s'zero identically, this function reduces on E to a polynomial of degreeinand degreeinnot containing a term in.
Without going into details, let's just say that it can be shown that if the characteristic function tends sufficiently rapidly towards zero with, the normal divided difference is also regular. This regularity is obviously always that of the partial divided difference of the same order.
43. Consider a normal divided difference of order (). :Eitherthe subset corresponding to this normal divided difference andits characteristic function. We assumed that points of an element of E* 1 are all distinct. Suppose that a sequence of elements oftends towards a borderline groupofpoints and arethe points ofsuch as
The pointsare not necessarily all distinct. It can easily be seen that if the characteristic functiontends quite rapidly towards zero with, a multiple point ofis always formed by a group ofpoints combined such as.
We will try to make sense of the difference divided for such a group, containing coincident points. Let's always assume that the pointscome together at the pointLet's assume they are distinct at first. We substitute intothe lines corresponding to the pointsbyother lines that can be deduced from the line
by the following procedure: The line corresponding to the point is replacedby (80) in which each term has been substituted for its divided difference of order () taken on the pointsWe perform this operation because[we are asking of courseLet's now tighten the pointstowardsIt is then easy to see that if the characteristic function tends sufficiently
( 52 ) We assume of course that these points constantly belong to elements of.
quickly towards zero with, the line corresponding to the pointtends towards what we deduce from (85), if we apply the operation to its terms:provided, of course, that the derivativeexists and is continuous. We can chooseso that this is true for.
Finally, we can chooseso that the previous process applies to all multiple points ofprovided that all the introduced derivatives exist and are continuous. The determinant ; will be defined by equalityand ifis quite small and tends towards zero quite quickly withwe will still have.
It is therefore possible to define, under the conditions indicated, the difference divided by e by the ratio
Let's add to the setall the limits of elements on which the divided difference can be defined in this way. We then see that if a sequence of elements oftends towards such a limiting group, the corresponding divided differences have a limit.
Let us assume in particular thateither continuous and have a derivativecontinuous; therefore all derivatives.exist and are continuous. We then know that the function has a normal divided difference of order () which can be extended over any limit group containing at least four distinct points.
Let us further suppose that the derivativehas a normal divided difference of orderand a normal divided difference of order (0,1) bounded in E. By considerations analogous to those made above, it is shown that the function then has a normal divided difference of order () which can be extended over any limit group e containing at least two distinct points. It should be noted that if ea contains only two distinct points, the value ofmay not be determined; we can only affirm that this quantity remains bounded.
Eithera series of elements oftending towards
( 53 ) The rate at which the characteristic function must tend towards zero forgenerally depends on the functionThis speed can be specified using the oscillation moduli of various orders of the function boundary group
of this nature. The followingdoes not necessarily tend towards a limit; we can only state that all limit values ​​of this sequence are finite (the set of limit values ​​being closed, it will necessarily be bounded).
We can now state the following property:
If the derivativeof the functionexists and has a normal divided difference of orderand a normal divided difference of orderbounded in E. If, in addition, the functionhas a normal divided difference of order (bounded at every point ac E, it also has a normal divided difference of order () boonée in E.
The function does indeed have a normal divided difference of orderless extensive than the given one and which can be extended over any limit group having at most two distinct points. This normal divided difference is obviously bounded at every point of E. Suppose that it is not bounded in E and then consider a sequence of elementsoftending towards a borderline groupsuch astends towardsWe deduce that all points ofmust be identical. Therefore, there would exist a point where the normal divided difference under consideration is unbounded, which is impossible. The property is thus proven.
This property completes and generalizes some results of No. 40.
44. The extension on any limit group is possible, in the sense of the previous No., if the function is a polynomial and if the normal divided difference considered is regular.
Suppose that the function is a divided-intercept function bounded with respect tofor any value ofand todifference divided bounded with respect tofor any value ofConsider a normal and regular divided difference of order () of this function, having as its characteristic functionSuppose that this normal divided difference is not bounded at a pointof.
We will demonstrate, under these assumptions, that the normal divided difference of order (), of the same characteristic functioncannot be bovnée in E:
the pointsofall tend towards M.tends towardsWe are modifyingas in the previous No.; we therefore replace the line corresponding to the pointby (85) in which each term has been substituted for its divided difference of order () taken on the points,We perform the same operation onby replacingbyIn this way the reportIt doesn't change. Either nowthe group ofpoints formed byand by the pointsbeing fixed andAt the limit, the pointswill merge with the point (). We are also modifying the reportas above.
Let's do, so eitherhas an infinite limit, or else it remains bounded. In the latter case, it is immediately apparent that at least one of the divided differences must
(86)
(the systembeing excluded.)
or unbounded.
Suppose that (86) is unbounded for,and that the differences divided (86) forremain limited. One can always determineAndin this way (ifthe function is unbounded at the point).
Let us designate bythe whole ofpoints
Orare fixed x-coordinates and y-coordinates.
Doingthe difference divideddoes not remain confined, which demonstrates ownership.
It is demonstrated in the same way that the normal divided difference of order () and more generally than the normal divided difference of order, of the same characteristic function, cannot be bounded in E.
45. Now suppose that the functionhas a normal divided difference of order () bounded in E. We will demonstrate that the partial divided difference of order () and the partial divided difference of order () are bounded in E. It suffices to show that these divided partial differences are bounded at every point of E. We obtain this property, for the order () for example, by reasoning analogous to that used for the demonstration of the properties of No. 39 and by making use of the identity, easy to establish-
Or,are the coordinates of the pointAnd. () are the coordinates of the pointsHere we assume that the pointsremain fixed and thatvary within the range permitted by the characteristic function of the difference: divided by the given.
The results of the previous issue show us that:
If a functionhas a normal divided difference of order () bounded in E, it also has a normal divided difference of order () and a normal divided difference of order () bounded in
We deduce that the function also has a normal divided difference of orderbounded in E. The derivativeTherefore, it exists and is continuous. Now, consider the normal divided difference of order () which is also bounded, and let us only consider the differences divided… taken from distributed pointshasonparallel to the axisBy taking a limit, we deduce that the derivativealso has a normal divided difference of order () bounded. It follows that:
If the functionhas a normal divided difference of order () bounded in E, it has a derivativecontinues in all… point of E.
It can also be demonstrated more precisely that the derivativehas a normal divided difference of order: () bounded in E.
Suppose that a normal divided difference of order (), of the function, such that the divided difference has a finite and well-defined limit when the points on which it is taken tend in any way towards a limit point. This limit is equal at every point toThe derivativeexists and is continuous in E. Of course, the limits in question only exist for a particular class of functions depending on the normal divided difference under consideration. This class includes polynomials if the normal divided difference is regular.
CHAPTER VI.
ON convex functions of two real variables.
S 1. - First extension of the notion of convexity.
46.
Partial divided differences allow an immediate generalization of the convexity of any order for functions of two independent variables.
The function's will be convex, non-concave, polynomial, non-convex or concave of order () on the set E following that we have
We can distinguish this kind of convexity by the designation of partial convexity, non-concavity, etc., but we suppress this distinction, it being understood that we only speak in § of this kind of convexity.
The set of functions defined above constitutes the class of (partial) order functions ().
The valueis not excluded. A function of order () is a function that enjoys the same convexity property of orderrelative to the variable, for any value daA function of order (Finally, the order functionsare functions with an invariable sign.
A geometric definition, analogous to that given for functions of one variable, is obtained using pseudo-polynomials.
So indeed
pseudo-polynomial key of order () taking the values ​​ofon the networkwhere we can assume that the sequencesbe ordered. Formula (83) then shows us that non-concavity (convexity) is expressed by the fact that the function must be at every point of the rectangle
inon below (above) or not above (below) the pseudopolynomial (88) depending on whetheris even or odd. This property applies to the entire rectangle E, by agreeing to set in (89).
Finally, let us say that we can also consider functions possessing several convexity properties and thus define various classes of functions, as in the case of a single variable.
47. The properties of convex functions of a single variable do not generalize entirely to this case. For example, a function of order () in the closed rectangle (81), is not necessarily bounded. But:
If a function of order () in rectangle E is bounded on a lattice of orderIt is bounded within the smallest rectangle containing the nodes of this network.
In particular, if the sides of E belong to the lattice, the function is bounded throughout the rectangle E.
We also see that:
If the function is of order () and if we have
it is polynomial, therefore reduces to a pseudo-polynomial of order () in the smallest rectangle containing the points ().
The demonstration is immediate.
48. Considerpoints,, in rectangle E and suppose that the sequences ;are ordered. We then see, as in the case of a single variable, that the necessary and sufficient conditions for non-concavity (convexity) of order () on the points are
Formula (1) shows us that the sequences
are ordered. It is easy to deduce that:
If the function is of order () in rectangle E and if the partial divided differences of order (), () are bounded: on a network of order,, these divided differences will be bounded within: the entire rectangle
If, in addition, the partial divided differences of order (). And () are bounded on a network of order (), included in rectangle (90), all the partial divided differences of orderare bounded within this rectangle. We demonstrate: again, exactly as in No. 13 for functions of one variable, that:
There are functions of a given class that exist in advance of thepoints considered provided that if () is the highest-order polynomiality; all higher-order properties are polynomiality.
It should be noted that here a polynomial function of orderis not necessarily of order () Or ( 49. We have the following property :
If a function is of orderand orderIt is continuous with respect to the set of variables at every internal point…
This property was demonstrated by MP Montel by assuming that the function is non-concave of orderand non-concave: of order.
M. N. Kritikos a généralisé la propriété précédente de la manière suivante : ( 55 )
(54) P. Montel „Sur les fonctions doublement convexes et les fonctions doublement sous-harmoniques" Praktika de l’Acad. d’Athènes 6, (1931), p. 374. Une telle fonction est dite doublement convexe.
(55) N. Kritikos „Sur les fonctions multiplement convexes ou concaves ∗∗. Praktiza de l’Acad. d’Athènes, 7 1932, p. 44. Voir aussi un mémoire demême auteur paru dans le Bulletin de la Soc. Math. de Grèce, t. XI (1930) pp. 21-28.
Si est d’ordre 1 par rapport à l’une des variables et continue par rapport à l’autre, elle est continue par rapport à l’ensemble des variables en tout point interieur.
Plus généralement, si la fonction est d’ordre par rapport à l’une des variables et continue par rapport à l’autre elle est continue par rapport à l’ensemble des variables. Cette propriété peut d’ailleurs se déduire du théorème de M. Kritikos, compte tenant des résultats du No. 14 de la première partie.
Une fonction d’ordre continue par rapport à dans le rectangle E a une différence divisée partielle d’ordre ( ) bornée dans tout rectangle complètement intérieur.
Soint en effet , un rectangle complètement intérieur. Prenons les abscisses à l’intérieur de ( ) et les abscisses à l’intérieur de ( ). Nous savons (No. 17 de la première partie) que si sont dans l’intervalle fermé ( ), la différence divisée
est comprise entre les difiérences divisées
Or, la fonction étant continue par rapport a elle est bornée sur l’ensemble des parallèles . ll en résulte que les différences divisées (91) restent bornées dans leur ensemble lorsque varie, se qui démontre la propriété.
En particulier une fonction qui est d’ordre ( ) et d’ordre a une différence divisée partielle d’ordre ( ) et une différence divisée partielle d’ordre ( ) bornées dans tout rectangle complètement intérieur.
Tenant compte d’un théorème de M. P. Montel (56) on en déduit la propriété :
Une fonction qui est d’ordre ( ) et d’ordre ( ) a en tout point intérieur une dérivée continue par rapport à l’ensemble des variables, pourvu que
(56) P. Montel loc, cit. (35).
Mathemalica VIH.
Si la fonction est d’ordre ( ) at si la dérivée partielle existe c’est une fonction d’ordre ( ) présentant le même caractère de convexité et réciproquement. Plus généralement si est d’ordre ( ) et si existe c’est une fonction d’ordre ( ). Si existe, elle est non négative si la fonction est non-concave d’ordre ( ) et réciproquement. On suppose ici encore que E soit un rectangle.
50. Avant de tinir ce § disons qu’on peut définir la convexité avec d’autres différences divisées que les différences divisées parielles.
On peut par exemple donner des définitions à l’aide des différences divisées normales. Il est inutile de répéter comment on écrit ces conditions. Ces fonctions jouissent des propriétés plus restrictives que celles précédemment définies. Considérons par exemple une fonction qui est d’ordre ( ) par rapport à une différence divisée normale d’ordre ( ). Une telle fonction a une différence divisée normale d’ordre ( ) bornée dans tout rectangle complètement intérieur. Elle a donc des dérivées partielles continues en tout point intérieur. La dérivée est d’ailleurs a son tour d’ordre ( ) par rapport à une certaine différence divisée normale d’ordre ( ). Il est à remarquer que si la dérivée existe elle est d’un signe invariable, mais la récjproque n’est pas vraie. Il faut des conditions supplémentaires de continuité pour pouvoir affirmer que de l’inégalité résulte la non-concavité d’ordre de la fonction par rapport à une différence divisée normale d’ordre ( ).
§ 2. - Seconde extension de la notion de convexité.
51.
Considérons une fonction définie, pour ne pas compliquer, sur un domaine fermé convexe et borné E. L’allure de la fonction sur une droite s’obtient en prenant le plan perpendiculaire sur XOY qui se projète sujvant cette droite et en considérant la fonction dans ce plan. L’axe OY dans ce plan est orientée vers le OZ positif.
Nous nous proposons d’étudier les fonctions qui sont d’ordre sur toute droite contenant des points de E. Nous dirons d’une telle fonction qu’elle est d’irdre sur l’ensemble E.
Supposons que soit pair. Nous avons vu que le caractère de convexité d’une fonction d’une variable dépend de l’orientation de l’axe OX. Pour cette raison nous ne ferons pas de distinction entre lacon-
wexité et la concavité, resp. entre la non-concavité et la non-convexité sur une droite. Une fonction peut être d’ordre au sens strict ou au sens large suivant qu’elle est convexe (ou concave) resp. non-concave (ou non-convexe). Elle peut enfin être polynomiale sur une droite.
Supposons maintenant que soit impair. La nature de convexité d’une fonction d’une variable et d’ordre impair ze dépend pas de l’orientation de l’axe OX. On peut donc ici faire la distinction entre la convexité, non-concavité, polynomialité, non-convexité et la concavité sur une droite. Une fonction d’ordre impair sera dite convexe, nonconcave, …. etc. d’orde sur E si elle est convexe, non-concave, … etc. d’ordre sur toute droite de E.
On peut distinguer la sorte de convexité ainsi introduite en disant qu’il s’agit d’une convexité, non-concavité …. etc. totale d’ordre . Nous supprimons dans la suite cette dénomination étant sous endendu qu’il no s’agira que de cette sorte de convexité.
Considérons par exemple un polynome de degré
C’est toujours une fonction d’ordre . Si est pair il y a toujours des droites sur lesquelles la fonction est polynomiale. Si est impair et si le polynome est positif (non négatif) la fonction est convexe (non-concave) d’ordre . Sur cet exemple on voit bien qu’une fonction peut être d’ordre sans présenter un caractère de convexité déterminé.
On pourait également considérer des classes de fonctions présentant plusieurs propriétés de convexité déterminées.
52. Je dis que si la fonction est d’ordre elle présente le même caractère de convexité sur des droites parallèles.
On peut supposer que les droites soient parallèles à l’axe OX. La démonstration se fait alors très facilement en tenant compte du sfait que si la suite d’ordonnées tend vers l’ordonnée , la suite de fonctions de converge vers .
Une fonction d’ordre est en particulier d’ordre par rapport à chacune des variables ; elle est donc d’ordre ( ) et d’ordre . Nous en déduisons que :
Toute fonction d’ordre sur E est continue en tout point intérieur .
En particulier :
Toute fonction d’ordre sur est bornée dans tout domaine comvolètement intérieur à E .
Je dis que cette propriété est vraie même pour . Soit une suite de points de E tendant vers un point limite intérieur M. Prenons un point et une droite dans de manière que pour l’intersection des droites et tombe à l’intérieur de E . Designons par l’intersection des droites et . La valeur de la fonction en est toujours comprise entre ses valeurs en et . On voit maintenant que si nous supposons que les valeurs de la fonction aux points aient une limite infinie il arrive ou bien qu’en M’ la fonction ne soit pas bornée ou bien qu’elle ne soit pas bornéesur au voisinage de l’intersection de cette droite avec MM’, ce qui est impossible. La propriété est donc démontrée.
53. Nous avons encore la propriété suivante :
Une fonction d’ordre dans le domaine a des dérivécs partielles d’ordre continues en tout point intérieur.
En ce qui concerne les dérivées d’ordre , nous savons qu’en toutr point interieur elles existent suivant toute demi-droite issue de ce point.
Soient deux points et prenons la différencedivisée première sur la droite joignant ces deux points. Nous avons-
où est l’angle de la droite avec l’axe OX .
Nous en déduisons facilement que la différence divisée d’ordro sur points en ligne droite s’écrit
Si la fonction est d’ordre cette expression est de signe invariable sur toute droite.
Supposons en particulier que les dérivées d’ordre existent. Il faut alors et il suffit que la fonction
(92)
soit de signe invariable sur toute droite faisant l’angle avec l’axe .
Si la fonction est d’ordre impair et convexe (non-concave) lepolynome est non négatif en tout point où les dérivées existent. Reciproquement, si les dérivées existent et si en tout point intérieur le polynome (92) est non négatif resp. positif on peut affirmer quela fonction est non-concave resp. convexe d’ordre impair . Si , pour que la fonction soit non-concave d’ordre 1 il faut et il
suffit que et pour qu’elle soit convexe il suffit que assuming, of course, that second derivatives exist.
First-order functions are very close to the convex functions of Mr. Jensen ( 56 ). Mr. Jensen defines a convex function by the inequality
His pointsbelonging to the domain of the function. If such a function is bounded, it is non-concave of order 1, according to our definition.
54. - A polynomial function reduces to a polynomial on any line. We will demonstrate that:
A polynomial function of orderreduces on E to the variables of a polynomial of degree n.
Let's take in E thepointsand consider the polynomial of degreetaking the valuesto the pointsThis polynomial is well-defined. It suffices to pass through a pointofa suitable line and apply the polynomial property on this line to see that the function takes the same value at M as this polynomial.
Several other observations can be made about polynomial functions. For example, if the function is of orderand coincides with a polynomial of degreeon a certain number of line segments, it is also polynomial on any segment that has its endpoints on the segments considered and furthermore contains at leastother points belonging to the given segments.
If the function is of orderand if it reduces to the same polynomial of degreeon the segments, the pointsbeing on the BC segment andon segment AC, it is polynomial of orderin triangle ABC. To see that any segment, having its endpoints on the sides of the triangle, still contains at leastFor these points, it suffices to complete the given segments with those parallel to sides AC and BG. These parallels obviously containpoints belonging to the given segments.
(56) See JLW Jensen loc. cit. (42).
TABLE OF CONTENTS.
M. Biernacki. On the cubic equation ….. 196
J. Capoulade. On certain second-order and elliptic type partial differential equations with singular coefficients ….. 139
J. Chazy. The mathematical work of Painlevé ….. 201
J. Devisme. On the partial differential equations of Messrs. P. Humbert and M. Ghermanesco ….. 147
RH Germay. Essay on the principle of virtual work ….. 126
M. Ghermanesco. On the equation….. 134
C. Jacob. On a problem concerning gas jets ….. 205
Tib. Popoviciu. On some properties of functions of one or two real variables ….. 1
J. Rudnicki. Remark on a theorem of M. Walsh ….. 136
W. Sierpinski. On sets always of the first category ….. 191
W. Slebodzinski. On tensor differential forms and Poincaré's theorem ….. 86
JL Walsh. Note on the location of the roots of the derivative of a polynomial ….. 185
T. Wazewski. On an integral problem relating to the equation….. 103
EA Weiss. Zykliden als Bilder von Flächen 2. Ordnung in der Geraden-Kugeltransformation ….. 98
Editorial notes. ….. 212
Errata. ….. 212
Table of contents. ….. 213
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables réelles, Mathematica, 8…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur un théorème de Laguerre, Mathematica, 10 (1935), pp. 128-131 (in French) PDF1935…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur certaines équations fonctionnelles definissant des polynômes, Mathematica, 10 (1935), pp. 194-208 (in…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (I), Mathematica, 12 (1936), pp. 81-92…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les généralisations des fonctions convexes d’ordre supérieur (III), Bull. de la…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les généralisations des fonctions convexes d’ordre supérieur (IV), Disquisitiones mathematicae et…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur la formule des accroissements finis, Mathematica, 23 (1947-1948), pp. 123-126 (in French).…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur certaines polynômes minimisants, Bull. de la Sect. Sci. de L’Acad. Roumaine, 12…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les indicateurs, Bull. Sc. de l’Ecole Polytechnique de Timişoara, 3 (1930) nos.…