and let's askV(x_(1),x_(2),dots,x_(n))=U(x_(1),x_(2),dots,x_(n);x^(n-1))\mathrm{V}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n} ; x^{n-1}\right)which is the Van der Monde determinant of quantitiesx_(1),x_(2),dots,x_(n)x_{1}, x_{2}, ..., x_{n}.
We have identity
(1)U(x_(1),x_(2),dots,x_(n);f(x))=sum_(i=1)^(i=n)(-1)^(ni)V(x_(1),x_(2),dots,x_(i-1),x_(i+1),dots,x_(n))f(x_(i))\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n} ; f(x)\right)=\sum_{i=1}^{i=n}(-1)^{ni} V\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) f\left(x_{i}\right)which we will need later.
Let us now recall that we say that the polynomialf(x)f(x)is convex of order (n-2n-2) (^(1){ }^{1}) in the interval (a,ba, b) if for any group of:nndistinct pointsx_(1),x_(2),dots,x_(n)x_{1}, x_{2}, ..., x_{n}from this interval we have the inequality
So that the polynomialf(x)f(x)either convex of order (n-2n-2) In (a,ba, b) it is necessary and sufficient thatf^((n-1))(x) >= 0f^{(n-1)}(x) \geq 0in this interval. Inequality (2) will hold for any system ofnnpoint not all together.
2. - So nowP(x)=(1-x_(1)x)(1-x_(2)x)dots,(1-x_(n)x)\mathrm{P}(x)=\left(1-x_{1} x\right)\left(1-x_{2} x\right) \ldots,\left(1-x_{n} x\right)a polynomial having all its zeros real and consider the expansion
(3)
where the summation is extended for all non-negative integer values ​​ofi_(1),i_(2),dots,i_(n)i_{1}, i_{2}, \ldots, i_{n}such asi_(1)+i_(2)+cdots+i_(n)=mi_{1}+i_{2}+\cdots+i_{n}=m.
Especially ifx_(1)=x_(2)=dots=x_(n)=1x_{1}=x_{2}=\ldots=x_{n}=1we have
varphi(x)=x^(n+k-1)(a_(0)+a_(1)xz+a_(2)(xz)^(2)+cdots+a_(2p)(xz)^(2p))\varphi(x)=x^{n+k-1}\left(a_{0}+a_{1} x z+a_{2}(xz)^{2}+\cdots+a_{2 p}(xz)^{2 p}\right)
If we notice that varphi^((n-1))(x)=(n-1)!x^(k)[((k+n-1)/(n-1))a_(0)+((k+n)/(n-1))a_(1)xz+cdots+((k+n+2p-1)/(n-1))a_(2p)(xz)^(2p)]\varphi^{(n-1)}(x)=(n-1)!x^{k}\left[\binom{k+n-1}{n-1} a_{0}+\binom{k+n}{n-1} a_{1} x z+\cdots+\binom{k+n+2 p-1}{n-1} a_{2 p}(x z)^{2 p}\right]
We can state the following properties:
Ifkkis even and if the polynomial
is positive as long as the rootsx_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}are not all equal.
Ifkkis odd and if the polynomial (5) is non-negative the polynomial (6) is positive as long as the rootsx_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}are non-negative and not all equal.
4. - Laguerre demonstrated the following proposition:
If the equationP(x)=0\mathrm{P}(x)=0to all its real roots the polynomial
is positive.
Let us always assume that Laguerre's theorem is true when all the zeros of the polynomialP(x)\mathrm{P}(x)are equal. In other words, the polynomial
and the fact thatQ_(0,beta)Q_{0, \beta}is independent ofbeta(Q_(0,beta)=1+z+z^(2)+cdots+z^(2p))\beta\left(Q_{0, \beta}=1+z+z^{2}+\cdots+z^{2 p}\right)show us that the polynomialQ_(alpha,beta)Q_{\alpha, \beta}is positive.
So doinga_(1)=a_(2)=cdots=a_(2p)=1a_{1}=a_{2}=\cdots=a_{2 p}=1In (5) we deduce the following properties:
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur le prolongement des fonctions convexes d’ordre supérieur, Bul. Mathematique de la Soc.…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur la distribution des zeros de certains polynômes minimisants, Bul. de la Sect.…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarques sur les équations algebriques dont les équations derivées ont toutes leurs racines…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur l’approximation des fonctions convexes d’ordre supérieur (I), Mathematica, 10 (1935), pp. 49-54…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Quelques propriétés des équations algebriques dont les équations derivées ont toutes leurs racines…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur une condition suffisante pour qu’un polynôme soit positif, Mathematica, 11 (1935), pp.…
Abstract AuthorsT. Popoviciu Tiberiu Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les équations algebriques ayant toutes leurs racines réelles, Mathematica, 9…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarques sur la definition fonctionnelle d’un polynôme d’une variable réelle, Mathematica, 12 (1936),…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (II), Mathematica, 12 (1936), pp. 227-233…