Posts by Tiberiu Popoviciu

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur la distribution des zeros de certains polynômes minimisants, Bul. de la Sect. Sci. de l’Acad, Roumaine, 16 (1934), pp. 214-217 (in French).

PDF

About this paper

Journal

Bul. de la Sect. Sci. de l’Acad, Roumaine

Publisher Name

Romanian Society of Mathematical Sciences

DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1934 a -Popoviciu- Bull. Section. Sci. Acad. Rum. - On the distribution of zeros of certain polynomials
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE DISTRIBUTION OF ZEROS IN CERTAIN MINIMIZING POLYNOMIES

BY

TIBERIU POPOVICIU

Former student of the Ecole Normale Supérieure.
Note presented to the Romanian Academy by Mr. G. Tiţeica, MAR
I. f ( x ) f ( x ) f(x)f(x)f(x)a real, uniform function defined for the values x 1 < x 2 < < x n x 1 < x 2 < < x n x_(1) < x_(2) < dots < x_(n)x_{1}<x_{2}<\ldots<x_{n}x1<x2<<xnof the real variable x x xxxLet's consider the expression
(I) E ( f ) = i = 1 n λ i ( f ( x i ) ) 2 (I) E ( f ) = i = 1 n λ i f x i 2 {:(I)E(f)=sum_(i=1)^(n)lambda_(i)(f(x_(i)))^(2):}\begin{equation*} \mathrm{E}(f)=\sum_{i=1}^{n} \lambda_{i}\left(f\left(x_{i}\right)\right)^{2} \tag{I} \end{equation*}(I)E(f)=i=1nλi(f(xi))2
λ 1 , λ 2 , , λ n λ 1 , λ 2 , , λ n lambda_(1),lambda_(2),dots,lambda_(n)\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}λ1,λ2,,λnbeing positive coefficients. Among all the polynomials P ( x ) P ( x ) P(x)P(x)P(x)of degree m < n m < n m < nm<nm<nof the shape x m + x m + x^(m)+dotsx^{m}+\ldotsxm+there is one for which E ( P ) E ( P ) E(P)E(P)E(P)is the minimum. That is P m P m P_(m)P_{m}Pmthis polynomial, which we can call the minimizing polynomial of degree m m mmmof expression (1). The polynomial P m P m P_(m)P_{m}Pmis such that for any other polynomial Q ( x ) Q ( x ) Q(x)Q(x)Q(x)of degree < m < m < m<m<mwe have
(2) i = 1 n λ i P m ( x i ) Q ( x i ) = 0 (2) i = 1 n λ i P m x i Q x i = 0 {:(2)sum_(i=1)^(n)lambda_(i)P_(m)(x_(i))Q(x_(i))=0:}\begin{equation*} \sum_{i=1}^{n} \lambda_{i} P_{m}\left(x_{i}\right) Q\left(x_{i}\right)=0 \tag{2} \end{equation*}(2)i=1nλiPm(xi)Q(xi)=0
It is easy to deduce that
  1. The polynomial P m P m P_(m)P_{m}Pmhas all its real zeros, distinct and located within the interval ( x 1 , x n x 1 , x n x_(1),x_(n)x_{1}, x_{n}x1,xn).
  2. The sequel
    (3)
P m ( x 1 ) , P m ( x 2 ) , P m ( x u ) P m x 1 , P m x 2 , P m x u P_(m)(x_(1)),P_(m)(x_(2)),dotsP_(m)(x_(u))P_{m}\left(x_{1}\right), P_{m}\left(x_{2}\right), \ldots P_{m}\left(x_{u}\right)Pm(x1),Pm(x2),Pm(xu)
presents at least m m mmmSign variations.
In the following (3) we remove the zero terms. We will also say, to simplify the language, that the zeros of the polynomial P m ( x ) P m ( x ) P_(m)(x)P_{m}(x)Pm(x)separate the zeros of the polynomial P n ( x ) = ( x x 1 ) ( x x 2 ) ( x x n ) P n ( x ) = x x 1 x x 2 x x n P_(n)(x)=(x-x_(1))(x-x_(2))dots(x-x_(n))P_{n}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)Pn(x)=(xx1)(xx2)(xxn)Polynomials P m ( x ) , P n ( x ) P m ( x ) , P n ( x ) P_(m)(x),P_(n)(x)P_{m}(x), P_{n}(x)Pm(x),Pn(x)have at most n m 1 n m 1 n-m-1n-m-1nm1common zeros.
2. Now let 1' be the expression
(4) I ( f ) = a b p ( x ) ( f ( x ) ) 2 d x (4) I ( f ) = a b p ( x ) ( f ( x ) ) 2 d x {:(4)I(f)=int_(a)^(b)p(x)(f(x))^(2)dx:}\begin{equation*} I(f)=\int_{a}^{b} p(x)(f(x))^{2} d x \tag{4} \end{equation*}(4)I(f)=hasbp(x)(f(x))2dx
( a , b a , b a,ba, bhas,b) being a finite interval and p ( x ) p ( x ) p(x)p(x)p(x)a non-negative summable function in ( a , b ) ( a , b ) (a,b)(a, b)(has,b)Let us now designate by P n ( x ) P n ( x ) P_(n)(x)P_{n}(x)Pn(x)the polynomial that minimizes the expression I ( P ) I ( P ) I(P)I(P)I(P)in the field of polynomials P P PPPof degree n n nnnof the shape x n + x n + x^(n)+dotsx^{n}+\ldotsxn+Let x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xnthe zeros of P n P n P_(n)\mathrm{P}_{n}Pnwhich, as we know, are all real and distinct.
An arbitrary polynomial Q ( x ) Q ( x ) Q(x)Q(x)Q(x)of degree < n < n < n<n<nis written in the form
Q ( x ) = P n ( x ) i = 1 n ( Q ( x i ) ( x x i ) P n ( x i ) ) Q ( x ) = P n ( x ) i = 1 n Q x i x x i P n x i Q(x)=P_(n)(x)sum_(i=1)^(n)((Q(x_(i)))/((x-x_(i))P_(n)^(')(x_(i))))Q(x)=P_{n}(x) \sum_{i=1}^{n}\left(\frac{Q\left(x_{i}\right)}{\left(x-x_{i}\right) P_{n}^{\prime}\left(x_{i}\right)}\right)Q(x)=Pn(x)i=1n(Q(xi)(xxi)Pn(xi))
Taking into account the orthogonality condition, we have
with
I ( Q ) = E ( Q ) I ( Q ) = E ( Q ) I(Q)=E(Q)I(Q)=E(Q)I(Q)=E(Q)
λ i = a b p ( x ) ( P n ( x ) ( x x i ) P n ( x i ) ) 2 d x > 0 , i = 1 , 2 , , n λ i = a b p ( x ) P n ( x ) x x i P n x i 2 d x > 0 , i = 1 , 2 , , n lambda_(i)=int_(a)^(b)p(x)((P_(n)(x))/((x-x_(i))P_(n)^(')(x_(i))))^(2)*dx > 0,i=1,2,dots,n\lambda_{i}=\int_{a}^{b} p(x)\left(\frac{P_{n}(x)}{\left(x-x_{i}\right) P_{n}^{\prime}\left(x_{i}\right)}\right)^{2} \cdot d x>0, i=1,2, \ldots, nλi=hasbp(x)(Pn(x)(xxi)Pn(xi))2dx>0,i=1,2,,n
We deduce the following property:
The zeros of a polynomial in the sequence of minimizing polynomials (orthogonal polynomials)
P 1 , P 2 , , P n , P 1 , P 2 , , P n , P_(1),P_(2),dots,P_(n),dotsP_{1}, P_{2}, \ldots, P_{n}, \ldotsP1,P2,,Pn,
are separated by the zeros of any preceding polynomial.
Note: The property remains true if we substitute into expression (4) d x d x dxd xdxby d α ( x ) , α ( x ) d α ( x ) , α ( x ) d alpha(x),alpha(x)d \alpha(x), \alpha(x)dα(x),α(x)being a non-decreasing function and if we take Stieltjes integrals (expression (I) is of this form). We can also consider an infinite interval. We choose, of course, the functions α ( x ) , p ( x ) α ( x ) , p ( x ) alpha(x),p(x)\alpha(x), p(x)α(x),p(x)so that the integrals involved in determining the minimizing polynomials are meaningful (that the moments exist).
3. Let F ( x ) F ( x ) F(x)F(x)F(x)a polynomial of degree n n nnnhaving all its zeros real and distinct, and let us form the Sturm sequence of this polynomial
(5) F ( x ) , F 1 ( x ) , F 2 ( x ) , , F n ( x ) ( F 1 ( x ) = F ( x ) ) (5) F ( x ) , F 1 ( x ) , F 2 ( x ) , , F n ( x ) F 1 ( x ) = F ( x ) {:(5)F(x)","F_(1)(x)","F_(2)(x)","dots","F_(n)(x)quad(F_(1)(x)=F^(')(x)):}\begin{equation*} F(x), F_{1}(x), F_{2}(x), \ldots, F_{n}(x) \quad\left(F_{1}(x)=F^{\prime}(x)\right) \tag{5} \end{equation*}(5)F(x),F1(x),F2(x),,Fn(x)(F1(x)=F(x))
KRONECKER demonstrated 1 1 ^(1){ }^{1}1) that if x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xnare the zeros of F ( x ) F ( x ) F(x)F(x)F(x)we have
i = 1 n F k ( x i ) F h ( x i ) ( F ( x i ) ) 2 = 0 ( k h ) i = 1 n F k x i F h x i F x i 2 = 0 ( k h ) sum_(i=1)^(n)(F_(k)(x_(i))F_(h)(x_(i)))/((F^(')(x_(i)))^(2))=0quad(k!=h)\sum_{i=1}^{n} \frac{F_{k}\left(x_{i}\right) F_{h}\left(x_{i}\right)}{\left(F^{\prime}\left(x_{i}\right)\right)^{2}}=0 \quad(k \neq h)i=1nFk(xi)Fh(xi)(F(xi))2=0(kh)
which shows that sequence (5) is orthogonal, therefore.
If the zeros of the polynomial F ( x ) F ( x ) F(x)F(x)F(x)are all real and distinct, the zeros of a polynomial in the STURM sequence (5) are separated by the zeros of any polynomial that follows it.
Note. The property remains true if F 1 ( x ) F 1 ( x ) F_(1)(x)F_{1}(x)F1(x)is a polynomial of degree n n nnn-I whose zeros separate those of F ( x ) F ( x ) F(x)F(x)F(x)4.
Let us consider more generally a sequence of functions
f 0 ( x ) , f 1 ( x ) , f n ( x ) , f 0 ( x ) , f 1 ( x ) , f n ( x ) , f_(0)(x),f_(1)(x),dotsf_(n)(x),dotsf_{0}(x), f_{1}(x), \ldots f_{n}(x), \ldotsf0(x),f1(x),fn(x),
uniform and continuous in the interval ( a , b a , b a,ba, bhas,b) and suppose that for all n n nnnand for any sequence of points ξ 0 < ξ , < ξ 2 < ξ n ξ 0 < ξ , < ξ 2 < ξ n xi_(0) < xi, < xi_(2)dots < xi_(n)\xi_{0}<\xi,<\xi_{2} \ldots<\xi_{n}ξ0<ξ,<ξ2<ξn, of ( a , b a , b a,ba, bhas,b) the determinant
| f 0 ( ξ i ) f 1 ( ξ i ) f n ( ξ i ) | i = 0 , 1 , 2 , , n f 0 ξ i f 1 ξ i f n ξ i i = 0 , 1 , 2 , , n {:[|f_(0)(xi_(i))f_(1)(xi_(i))dotsf_(n)(xi_(i))|],[i=0","1","2","dots","n]:}\begin{gathered} \left|f_{0}\left(\xi_{i}\right) f_{1}\left(\xi_{i}\right) \ldots f_{n}\left(\xi_{i}\right)\right| \\ i=0,1,2, \ldots, n \end{gathered}|f0(ξi)f1(ξi)fn(ξi)|i=0,1,2,,n
either > O > O > O>O>OWe then know that a linear combination of the form
(6) φ n = c 0 f 0 + c 1 f 1 + + c n f n ( c 0 , c 1 , , c n constantes ) (6) φ n = c 0 f 0 + c 1 f 1 + + c n f n c 0 , c 1 , , c n  constantes  {:[(6)varphi_(n)=c_(0)f_(0)+c_(1)f_(1)+dots+c_(n)f_(n)],[(c_(0),c_(1),dots,c_(n)" constantes ")]:}\begin{align*} & \varphi_{n}=c_{0} f_{0}+c_{1} f_{1}+\ldots+c_{n} f_{n} \tag{6}\\ & \left(c_{0}, c_{1}, \ldots, c_{n} \text { constantes }\right) \end{align*}(6)φn=c0f0+c1f1++cnfn(c0,c1,,cn constants )
enjoys the following properties
I. φ n φ n varphi_(n)\varphi_{n}φnis completely determined by its values ​​in n + 1 n + 1 n+1n+1n+1points of the interval ( a , b a , b a,ba, bhas,b
2 . φ n φ n varphi_(n)\varphi_{n}φncancels out at most n n nnntimes in ( a , b a , b a,ba, bhas,b3.
if φ n φ n varphi_(n)\varphi_{n}φncancels out n n nnntimes in ( a , b a , b a,ba, bhas,b) it changes sign at each of its zeros.
Let's now express
J ( f ) = a b p ( x ) | f ( x ) | q d x , q > I J ( f ) = a b p ( x ) | f ( x ) | q d x , q > I J(f)=int_(a)^(b)p(x)|f(x)|^(q)dx,quad q > IJ(f)=\int_{a}^{b} p(x)|f(x)|^{q} d x, \quad q>IJ(f)=hasbp(x)|f(x)|qdx,q>I
p ( x ) p ( x ) p(x)p(x)p(x)being the function defined above.
Among all linear combinations of the form (6), with c n = I c n = I c_(n)=Ic_{n}=\mathrm{I}cn=I, there is one for which J ( φ n ) J φ n J(varphi_(n))J\left(\varphi_{n}\right)J(φn)is the minimum. That is φ n ( q ) φ n ( q ) varphi_(n)^((q))\varphi_{n}{ }^{(q)}φn(q)this linear combination.
We have 1 1 ^(1){ }^{1}1)
b a p | φ n ( q ) | q 1 ( s g φ n ( q ) ) φ n 1 d x = 0 b a p φ n ( q ) q 1 s g φ n ( q ) φ n 1 d x = 0 int_(b)^(a)p|varphi_(n)^((q))|^(q-1)(sg*varphi_(n)^((q)))varphi_(n-1)dx=0\int_{b}^{a} p\left|\varphi_{n}^{(q)}\right|^{q-1}\left(s g \cdot \varphi_{n}^{(q)}\right) \varphi_{n-1} d x=0bhasp|φn(q)|q1(sgφn(q))φn1dx=0
Or φ n 1 φ n 1 varphi_(n-1)\varphi_{n-1}φn1is any linear combination between the n n nnnfirst functions f i f i f_(i)f_{i}fi.
It follows that φ n ( q ) φ n ( q ) varphi_(n)^((q))\varphi_{n}{ }^{(q)}φn(q)change sign at least n n nnnthree in ( a , b a , b a,ba, bhas,b). We also see that the expression
α | φ n ( q ) | q I sg φ n ( q ) + β | φ n ( q ) r | q I sg φ n I ( q ) α φ n ( q ) q I sg φ n ( q ) + β φ n ( q ) r q I sg φ n I ( q ) alpha|varphi_(n)^((q))|^(q-I)sg*varphi_(n)^((q))+beta|varphi_(n)^((q))r|^(q-I)sg*varphi_(n-I)^((q))\alpha\left|\varphi_{n}^{(q)}\right|^{q-\mathrm{I}} \operatorname{sg} \cdot \varphi_{n}^{(q)}+\beta\left|\varphi_{n}^{(q)} \mathrm{r}\right|^{q-\mathrm{I}} \operatorname{sg} \cdot \varphi_{n-\mathrm{I}}^{(q)}α|φn(q)|qIsgφn(q)+β|φn(q)r|qIsgφnI(q)
change sign at least n 1 n 1 n-1n-1n1times in ( a , b a , b a,ba, bhas,b) whatever α α alpha\alphaαAnd β β beta\betaβFrom this
it follows that α φ n ( q ) + β φ n 1 ( q ) α φ n ( q ) + β φ n 1 ( q ) alphavarphi_(n)^((q))+betavarphi_(n-1)^((q))\alpha \varphi_{n}^{(q)}+\beta \varphi_{n-1}^{(q)}αφn(q)+βφn1(q)change sign at least n n nnn-I times in ( a , b a , b a,ba, bhas,b) whatever a and β β beta\betaβWe can therefore conclude, as OD KELLOGG does for the case q = 2 1 q = 2 1 q=2^(1)q=2^{1}q=21), that
The zeros of φ n ( q ) φ n ( q ) varphi_(n)^((q))\varphi_{n}^{(q)}φn(q)are separated by those of φ n ( q ) φ n ( q ) varphi_(n)^((q))^(-)\varphi_{n}{ }^{(q)}{ }^{-}φn(q)5.
Let us consider again the expression J ( f φ n ) f ( x ) J f φ n f ( x ) J(f-varphi_(n))f(x)J\left(f-\varphi_{n}\right) f(x)J(fφn)f(x)being a continuous function. Among all linear combinations of the form (6) there exists one - which we will denote by Φ n ( q ) Φ n ( q ) Phi_(n)^((q))\Phi_{n}^{(q)}Φn(q)- for which J J JJJ( f φ n f φ n f-varphi_(n)f-\varphi_{n}fφn) reaches its minimum.
As above, we show that the difference
| f Φ n ( q ) | q r ( sg . ( f Φ u ( q ) ) ) | f Φ n I q | q I ( sg . ( f Φ n I ( q ) ) ) f Φ n ( q ) q r sg . f Φ u ( q ) f Φ n I q q I sg . f Φ n I ( q ) |f-Phi_(n)^((q))|^(q-r)(sg.(f-Phi_(u)^((q))))-|f-Phi_(n-I)^(q)|^(q-I)(sg.(f-Phi_(n-I)^((q))))\left|f-\Phi_{n}^{(q)}\right|^{q-\mathrm{r}}\left(\operatorname{sg} .\left(f-\Phi_{u}^{(q)}\right)\right)-\left|f-\Phi_{n-\mathrm{I}}^{q}\right|^{q-\mathrm{I}}\left(\operatorname{sg} .\left(f-\Phi_{n-\mathrm{I}}^{(q)}\right)\right)|fΦn(q)|qr(sg.(fΦu(q)))|fΦnIq|qI(sg.(fΦnI(q)))
and consequently also the difference
Φ n ( q ) Φ n r ( q ) Φ n ( q ) Φ n r ( q ) Phi_(n)^((q))-Phi_(n-r)^((q))\Phi_{n}^{(q)}-\Phi_{n-\mathrm{r}}^{(q)}Φn(q)Φnr(q)
change sign at least n n nnn-I times in ( a , b a , b a,ba, bhas,bLet's return to the simple case of polynomials
, when the sequence of functions f i f i f_(i)f_{i}fireduces to
I , x , x 2 , , x n , I , x , x 2 , , x n , I,x,x^(2),dots,x^(n),dotsI, x, x^{2}, \ldots, x^{n}, \ldotsI,x,x2,,xn,
We then see that the equation
Φ n ( q ) Φ n I ( q ) = 0 Φ n ( q ) Φ n I ( q ) = 0 Phi_(n)^((q))-Phi_(n-I)^((q))=0\Phi_{n}^{(q)}-\Phi_{n-\mathrm{I}}^{(q)}=0Φn(q)ΦnI(q)=0
has all its real roots.
We know that if q , Φ n ( q ) q , Φ n ( q ) q rarr oo,Phi_(n)^((q))q \rightarrow \infty, \Phi_{n}^{(q)}q,Φn(q)tends uniformly towards the Chebyshef polynomial of degree n n nnnof the function f ( x ) f ( x ) f(x)f(x)f(x), SO
If T 0 , T 1 , , T n , T 0 , T 1 , , T n , T_(0),T_(1),dots,T_(n),dotsT_{0}, T_{1}, \ldots, T_{n}, \ldotsT0,T1,,Tn,are the Chebyshef polynomials of best approximation of the continuous function f ( x ) f ( x ) f(x)f(x)f(x)in the meantime ( a , b ) , l e ́ ( a , b ) , l e ́ (a,b),l^(')é-(a, b), l ' e ́-(has,b),Léequation of degree n n nnn
T n T n 1 = 0 T n T n 1 = 0 T_(n)-T_(n-1)=0T_{n}-T_{n-1}=0TnTn1=0
has all its real roots.

  1. 1 ) 1 ) ^(1)){ }^{1)}1)See G. MIGNOSI “Teorema di Sturm e sue estensioni” Rendiconti Circ. Mast. Palermo t. XLIX (1925) p. 84.
  2. 1 ) 1 ) ^(1)){ }^{1)}1)See the works of MD Jackson. Especially his book "The Theory of Approximation" New York 1930.
  3. 1 1 ^(1){ }^{1}1) OD KELLOGG "The Oscillation of Function of an Orthogonal Set”. Amer. Jurn. of Math. XXXVIII (1916) p. 1.

Related Posts

Notes on Higher-Order Convex Functions (II)

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (II), Mathematica, 12 (1936), pp. 227-233…

On a maximum problem of Stieltjes

Abstract AuthorsT. Popoviciu Keywords? Paper coordinates T. Popoviciu, Sur un problème de maximum de Stieltjes, (French) C. R. Acad. Sci., Paris 202, 1645-1647…