T. Popoviciu, Sur la distribution des zeros de certains polynômes minimisants, Bul. de la Sect. Sci. de l’Acad, Roumaine, 16 (1934), pp. 214-217 (in French).
1934 a -Popoviciu- Bull. Section. Sci. Acad. Rum. - On the distribution of zeros of certain polynomials
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
ON THE DISTRIBUTION OF ZEROS IN CERTAIN MINIMIZING POLYNOMIES
BY
TIBERIU POPOVICIU
Former student of the Ecole Normale Supérieure.
Note presented to the Romanian Academy by Mr. G. Tiţeica, MAR
I.f(x)f(x)a real, uniform function defined for the valuesx_(1) < x_(2) < dots < x_(n)x_{1}<x_{2}<\ldots<x_{n}of the real variablexxLet's consider the expression
lambda_(1),lambda_(2),dots,lambda_(n)\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}being positive coefficients. Among all the polynomialsP(x)P(x)of degreem < nm<nof the shapex^(m)+dotsx^{m}+\ldotsthere is one for whichE(P)E(P)is the minimum. That isP_(m)P_{m}this polynomial, which we can call the minimizing polynomial of degreemmof expression (1). The polynomialP_(m)P_{m}is such that for any other polynomialQ(x)Q(x)of degree< m<mwe have
presents at leastmmSign variations.
In the following (3) we remove the zero terms. We will also say, to simplify the language, that the zeros of the polynomialP_(m)(x)P_{m}(x)separate the zeros of the polynomialP_(n)(x)=(x-x_(1))(x-x_(2))dots(x-x_(n))P_{n}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)PolynomialsP_(m)(x),P_(n)(x)P_{m}(x), P_{n}(x)have at mostn-m-1n-m-1common zeros.
2. Now let 1' be the expression
{:(4)I(f)=int_(a)^(b)p(x)(f(x))^(2)dx:}\begin{equation*}
I(f)=\int_{a}^{b} p(x)(f(x))^{2} d x \tag{4}
\end{equation*}
(a,ba, b) being a finite interval andp(x)p(x)a non-negative summable function in(a,b)(a, b)Let us now designate byP_(n)(x)P_{n}(x)the polynomial that minimizes the expressionI(P)I(P)in the field of polynomialsPPof degreennof the shapex^(n)+dotsx^{n}+\ldotsLetx_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}the zeros ofP_(n)\mathrm{P}_{n}which, as we know, are all real and distinct.
An arbitrary polynomialQ(x)Q(x)of degree< n<nis written in the form
are separated by the zeros of any preceding polynomial.
Note: The property remains true if we substitute into expression (4)dxd xbyd alpha(x),alpha(x)d \alpha(x), \alpha(x)being a non-decreasing function and if we take Stieltjes integrals (expression (I) is of this form). We can also consider an infinite interval. We choose, of course, the functionsalpha(x),p(x)\alpha(x), p(x)so that the integrals involved in determining the minimizing polynomials are meaningful (that the moments exist).
3. LetF(x)F(x)a polynomial of degreennhaving all its zeros real and distinct, and let us form the Sturm sequence of this polynomial
which shows that sequence (5) is orthogonal, therefore.
If the zeros of the polynomialF(x)F(x)are all real and distinct, the zeros of a polynomial in the STURM sequence (5) are separated by the zeros of any polynomial that follows it.
Note. The property remains true ifF_(1)(x)F_{1}(x)is a polynomial of degreenn-I whose zeros separate those ofF(x)F(x)4.
Let us consider more generally a sequence of functions
uniform and continuous in the interval (a,ba, b) and suppose that for allnnand for any sequence of pointsxi_(0) < xi, < xi_(2)dots < xi_(n)\xi_{0}<\xi,<\xi_{2} \ldots<\xi_{n}, of (a,ba, b) the determinant
{:[|f_(0)(xi_(i))f_(1)(xi_(i))dotsf_(n)(xi_(i))|],[i=0","1","2","dots","n]:}\begin{gathered}
\left|f_{0}\left(\xi_{i}\right) f_{1}\left(\xi_{i}\right) \ldots f_{n}\left(\xi_{i}\right)\right| \\
i=0,1,2, \ldots, n
\end{gathered}
either> O>OWe then know that a linear combination of the form
enjoys the following properties
I.varphi_(n)\varphi_{n}is completely determined by its values ​​inn+1n+1points of the interval (a,ba, b
2 .varphi_(n)\varphi_{n}cancels out at mostnntimes in (a,ba, b3.
ifvarphi_(n)\varphi_{n}cancels outnntimes in (a,ba, b) it changes sign at each of its zeros.
Let's now express
J(f)=int_(a)^(b)p(x)|f(x)|^(q)dx,quad q > IJ(f)=\int_{a}^{b} p(x)|f(x)|^{q} d x, \quad q>I
p(x)p(x)being the function defined above.
Among all linear combinations of the form (6), withc_(n)=Ic_{n}=\mathrm{I}, there is one for whichJ(varphi_(n))J\left(\varphi_{n}\right)is the minimum. That isvarphi_(n)^((q))\varphi_{n}{ }^{(q)}this linear combination.
We have^(1){ }^{1})
int_(b)^(a)p|varphi_(n)^((q))|^(q-1)(sg*varphi_(n)^((q)))varphi_(n-1)dx=0\int_{b}^{a} p\left|\varphi_{n}^{(q)}\right|^{q-1}\left(s g \cdot \varphi_{n}^{(q)}\right) \varphi_{n-1} d x=0
Orvarphi_(n-1)\varphi_{n-1}is any linear combination between thennfirst functionsf_(i)f_{i}.
It follows thatvarphi_(n)^((q))\varphi_{n}{ }^{(q)}change sign at leastnnthree in (a,ba, b). We also see that the expression
change sign at leastn-1n-1times in (a,ba, b) whateveralpha\alphaAndbeta\betaFrom this
it follows thatalphavarphi_(n)^((q))+betavarphi_(n-1)^((q))\alpha \varphi_{n}^{(q)}+\beta \varphi_{n-1}^{(q)}change sign at leastnn-I times in (a,ba, b) whatever a andbeta\betaWe can therefore conclude, as OD KELLOGG does for the caseq=2^(1)q=2^{1}), that
The zeros ofvarphi_(n)^((q))\varphi_{n}^{(q)}are separated by those ofvarphi_(n)^((q))^(-)\varphi_{n}{ }^{(q)}{ }^{-}5.
Let us consider again the expressionJ(f-varphi_(n))f(x)J\left(f-\varphi_{n}\right) f(x)being a continuous function. Among all linear combinations of the form (6) there exists one - which we will denote byPhi_(n)^((q))\Phi_{n}^{(q)}- for whichJJ(f-varphi_(n)f-\varphi_{n}) reaches its minimum.
has all its real roots.
We know that ifq rarr oo,Phi_(n)^((q))q \rightarrow \infty, \Phi_{n}^{(q)}tends uniformly towards the Chebyshef polynomial of degreennof the functionf(x)f(x), SO
IfT_(0),T_(1),dots,T_(n),dotsT_{0}, T_{1}, \ldots, T_{n}, \ldotsare the Chebyshef polynomials of best approximation of the continuous functionf(x)f(x)in the meantime(a,b),l^(')é-(a, b), l ' e ́-equation of degreenn
T_(n)-T_(n-1)=0T_{n}-T_{n-1}=0
has all its real roots.
^(1)){ }^{1)}See G. MIGNOSI “Teorema di Sturm e sue estensioni” Rendiconti Circ. Mast. Palermo t. XLIX (1925) p. 84.
^(1)){ }^{1)}See the works of MD Jackson. Especially his book "The Theory of Approximation" New York 1930.
^(1){ }^{1}) OD KELLOGG "The Oscillation of Function of an Orthogonal Set”. Amer. Jurn. of Math. XXXVIII (1916) p. 1.
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur la distribution des zeros de certains polynômes minimisants, Bul. de la Sect.…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarques sur les équations algebriques dont les équations derivées ont toutes leurs racines…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur l’approximation des fonctions convexes d’ordre supérieur (I), Mathematica, 10 (1935), pp. 49-54…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Quelques propriétés des équations algebriques dont les équations derivées ont toutes leurs racines…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur une condition suffisante pour qu’un polynôme soit positif, Mathematica, 11 (1935), pp.…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les équations algebriques ayant toutes leurs racines réelles, Mathematica, 9 (1935), pp.…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Remarques sur la definition fonctionnelle d’un polynôme d’une variable réelle, Mathematica, 12 (1936),…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (II), Mathematica, 12 (1936), pp. 227-233…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinates T. Popoviciu, Sur un problème de maximum de Stieltjes, (French) C. R. Acad. Sci., Paris 202, 1645-1647…
Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Sur les directions d’indetermination complète d’une fonction elliptique, Bulletin des Sciences Mathématiques, 2e…