Posts by Tiberiu Popoviciu

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Remarques sur le maximum d’un determinant dont tout les éléments sont non-negatifs, Mathematica 13 (1937), pp. 212-222 (in French).

PDF

About this paper

Journal

Mathematica

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

BULETINUL SOCIETATII DE STINTE DIN CLUJ (ROMANIA) BULLETIN OF THE SOCIETY OF SCIENCES OF CLUJ (ROMANIEY)

Volume VIII, pp. 572-582.
June 23, 1937.

REMARKS ON THE MAXIMUM OF A DETERMINANT WHOSE ELEMENTS ARE ALL NON-NEGATED

by
Tiberiu Popoviciu
in Cernăuți.
Received February 26, 1937.

  1. 1.
    • EitherΔ=has1k\Delta=\left\|a_{1k}\right\|a determinant with real elements and ordernσn_{\sigma}According to the well-known theorem of MJ Hadamard we have

|Δ|2=1n(=1nhastk2)|\Delta|^{2}\leq\prod_{=1}^{n}\left(\sum_{=1}^{n}a_{tk}^{2}\right)

so
(1)

|Δ|nn𝕄n if |hasLk|𝕄|\Delta|\leq\sqrt{n^{n}}\mathbb{M}^{n}\text{ if }\left|a_{lk}\right|\leq\mathbb{M}\text{. }

EitherF=F(x1,x2,,xn)=i,k=1ncikxixk\mathrm{F}=\mathrm{F}\left(x_{1},x_{2},\ldots,x_{n}\right)=\sum_{i,k=1}^{n}c_{ik}x_{i}x_{k}a positive definite quadratic form. Considering the linear transformation which brings backF\mathrm{F}^{-}to its canonical formi=1nxi2\sum_{i=1}^{n}x_{i}^{2}, we immediately find that

|Δ|2i=1nF(hasi1,hasi2,,hasin)(1)δ,|\Delta|^{2}\leq\frac{\prod_{i=1}^{n}\mathrm{\penalty 10000\ F}\left(a_{i1},a_{i2},\ldots,a_{in}\right)^{(1)}}{\delta}, (2)

Orδ\deltais the determinant of the form F. Inequality (2) is only a consequence of that of MJ Hadamard. Simple examples
(1) We obtain this formula by multiplying the determinant line by line by any determinant of ordernnAnd0\neq 0.

More generally,F(x1,x2,,xn)\mathrm{F}\left(x_{1},x_{2},\ldots,x_{n}\right)being a positive definite Hermitian form, with determinantδ\delta, we have
( absolute value of hasik)2i=1nF(hasi1,hasi,,hasin)δ\left(\text{ absolute value of }\left\|a_{i\mathrm{k}}\right\|\right)^{2}\leq\frac{\prod_{i=1}^{n}\mathrm{\penalty 10000\ F}\left(a_{i1},a_{i},\ldots,a_{in}\right)}{\delta}
for a determinanthasik\left\|a_{ik}\right\|with any real or complex elements.
We show that a suitable choice of the form F allows, in certain cases, to give, by formula (2), a limitation better than that of MJ Hadamard, for the absolute value of the determinant.
2. - In particular, we focus our attention on formula (1). We will assume that thehasika_{ik}be all0\geq 0and we will show that we can then lower the factornn\sqrt{n^{n}}in the second member of formula (1). We can obviously takeM=1\mathrm{M}=1for the demonstrations and our problem can then be stated as follows:

Determine the form F which, under the hypothesis0hasdk10\leq a_{dk}\leq 1, generally gives the best limitation (2).

We can immediately see that this other problem must be solved:

Determine the quadratic form F , positive definite, of determinantδ\delta, so that

max0xi1F(x1,x2,,xn)δn\max_{0\leq x_{i}\leq 1}\frac{F\left(x_{1},x_{2},\ldots,x_{n}\right)}{\sqrt[n]{\delta}} (3)

be as small as possible.
The functionF(x1,x2,,xn)F\left(x_{1},x_{2},\ldots,x_{n}\right)is convex in the Jensen sense, - we therefore have
F(x1+x12,x2+x22,,xn+xn2)<12[F(x1,x2,,xn)+F(x1,x2,,xn)]\mathrm{F}\left(\frac{x_{1}+x_{1}^{\prime}}{2},\frac{x_{2}+x_{2}^{\prime}}{2},\ldots,\frac{x_{n}+x_{n}^{\prime}}{2}\right)<\frac{1}{2}\left[\mathrm{\penalty 10000\ F}\left(x_{1},x_{2},\ldots,x_{n}\right)+\mathrm{F}\left(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n}^{\prime}\right)\right],
provided that|x1x1|+|x2x2|++|xnxn|>0\left|x_{1}-x_{1}^{\prime}\right|+\left|x_{2}-x_{2}^{\prime}\right|+\ldots+\left|x_{n}-x_{n}^{\prime}\right|>0. We then know that, in the (convex) domain0xi10\leq x_{i}\leq 1, it can only reach its maximum on the boundary. The function being a fortiori convex with respect to each group of variables, we conclude that

max0xi1F(x1,x2,,xn)\max_{0\leq x_{i}\leq 1}F\left(x_{1},x_{2},\ldots,x_{n}\right)

:can only be achieved ifx1,x2,,xnx_{1},x_{2},\ldots,x_{n}are all equal to 0 or 1. - This maximum is therefore equal to one of the2n2^{n}numbers that we obtain by replacing all the variables in Fxix_{i}by 0 or 1. The value is 0 forx1=x2==xn=0x_{1}=x_{2}=\ldots=x_{n}=0and we can therefore leave it aside; the others are then divided intonngroups. Thehth h^{\text{th }}group of values ​​is formed by the(nk)\binom{n}{k}numbers that we obtain by giving tonk+1n-k+1variables the value 1 and to the othersk1k-1variables the value 0. The arithmetic mean of the numbers in thekth k^{\text{th }}group is equal to

(nk+1)i=1ncitn+(nk)(nk+1)i,k=1ncikn(n1)(n-k+1)\frac{\sum_{i=1}^{n}c_{it}}{n}+(nk)(n-k+1)\frac{\sum_{i,k=1}^{n}c_{ik}}{n(n-1)}

by agreeing to designate byi,k=1n\sum_{i,k=1}^{n}a summation where the valuesi=Eii=E_{i}are excluded.
3. - To find the minimum of expression (3) it is sufficient to consider only forms F symmetric with respect to the variables… This property will result from the following lemma:

Lemma. If the quadratic formF=i,k=1ncikxLxk\mathrm{F}=\sum_{i,k=1}^{n}c_{ik}x_{l}x_{k}is positive definite, ifδ\deltais its determinant and ifδ1\delta_{1}is the determinant of the symmetric quadratic form

G=C(i=1nxi2)+D(i,k=1nxixk)\mathrm{G}=\mathrm{C}\left(\sum_{i=1}^{n}x_{i}^{2}\right)+\mathrm{D}\left(\sum_{i,k=1}^{n}x_{i}x_{k}\right)

Or

C=i=1ncitn,D=i,k=1nci,kn(n1)\mathrm{C}=\frac{\sum_{i=1}^{n}c_{it}}{n},\quad\mathrm{D}=\frac{\sum_{i,k=1}^{n}c_{i,k}^{\prime}}{n(n-1)}

wehashas :
10. The form G is positive definite.
20.δδ12^{0}.\quad\delta\leq\delta_{1}, equality being possible only ifFG\mathrm{F}\equiv\mathrm{G}, so if F is symmetric.

The determinantδ\deltais a function of the coefficientscikc_{ik}(it is a polynomial incikc_{ik}). Suppose that these coefficients vary in such a way that the form remains positive definite and that

i=1nciL=HAS= const ,i,k=1ncik=B= const. \sum_{i=1}^{n}c_{il}=\mathrm{A}=\text{ const },\quad\sum_{i,k=1}^{n}c_{ik}=\mathrm{B}=\text{ const. }

The domain of variation of theckc_{k}is then open and obviously limited. On the border of this domainδ\deltabecomes null()2\left({}^{2}\right). The maximum ofδ\delta. is therefore reached inside and we obtain it by applying the rules of differential calculus. If we denote byC1k\mathrm{C}_{1k}minors (with their

00footnotetext:( 2 ) Thecikc_{ik}must remain positive. We also havecikckkcik2>0c_{ik}c_{kk}-c_{ik}^{2}>0so the domain is well bounded. The boundary obviously corresponds to the forms which are only positive.

signs) ofδ\delta, it is necessary for the maximum that

δcd=λ,δcik=μ,i,I,k=1.2,,n,Ik\frac{\partial\delta}{\partial c_{d}}=\lambda,\quad\frac{\partial\delta}{\partial c_{ik}}=\mu,\quad i,j,k=1,2,\ldots,n,\quad j\neq k

so that

C11=C22==Cmn,Cik=Crk(ik,ik)\mathrm{C}_{11}=\mathrm{C}_{22}=\ldots=\mathrm{C}_{mn},\quad\mathrm{C}_{ik}=\mathrm{C}_{r^{\prime}k^{\prime}}\quad\left(i\neq k,i^{\prime}\neq k^{\prime}\right) (5)

It is therefore necessary that the adjoining form and, consequently, that the form itself be symmetrical.

Since the maximum must necessarily exist and since, on the other hand, system (5) has only the single solution G, the properties result 3 ).

Theorem I. If the form F is not symmetrical, we can construct another form for which the number (3) is smaller.

The form G constructed above answers the question. This follows immediately from the facts that (4) is an arithmetic mean, that this expression is the same for the formGGand that the lemma is proven.
4. - Let us now suppose thatF=i=1nxi2λi,k=1nxixk\mathrm{F}=\sum_{i=1}^{n}x_{i}^{2}-\lambda\sum_{i,k=1}^{n}x_{i}x_{k}(
3) Property 10 of the lemma can also be established directly. We can always writecik=I=1nαiIαkIc_{ik}=\sum_{j=1}^{n}\alpha_{ij}\alpha_{kj}where the real numbersαik\alpha_{ik}are such that the determinantαik0\left\|\alpha_{ik}\right\|\neq 0. We then have

G=I=1ni=1nαI2ni=1nxi2+I=1nı,k=1nαiIxkIn(n1)i,k=1nxixk==1n(n1)I=1n[(n1)(i=1nαiI2)(ı=1nxi2)+(ı,k=1nαiIαkI)(i,k=1nxixk)]==1n!I=1n[(α1Ix1+α2Ix2++αnIxn)2]\begin{gathered}\mathrm{G}=\frac{\sum_{j=1}^{n}\sum_{i=1}^{n}\alpha_{j}^{2}}{n}\sum_{i=1}^{n}x_{i}^{2}+\frac{\sum_{j=1}^{n}\sum_{\imath,k=1}^{n}\alpha_{ij}^{\prime}x_{kj}}{n(n-1)}\sum_{i,k=1}^{n}x_{i}x_{k}=\\ =\frac{1}{n(n-1)}\sum_{j=1}^{n}\left[(n-1)\left(\sum_{i=1}^{n}\alpha_{ij}^{2}\right)\left(\sum_{\imath=1}^{n}x_{i}^{2}\right)+\left(\sum_{\imath,k=1}^{n}\alpha_{ij}\alpha_{kj}\right)\left(\sum_{i,k=1}^{n}x_{i}x_{k}\right)\right]=\\ =\frac{1}{n!}\sum_{j=1}^{n}\left[\sum^{*}\left(\alpha_{1j}x_{1}+\alpha_{2j}x_{2}+\ldots+\alpha_{nj}x_{n}\right)^{2}\right]\end{gathered}

the sumΣ\Sigma^{*}being extended ton!n!permutations of variablesx1,x2,,xnx_{1},x_{2},\ldots,x_{n}. An analogous property holds for positive definite Hermitian forms.
symmetric. We haveδ=[1(n1)λ](1+λ)n1\delta=[1-(n-1)\lambda](1+\lambda)^{n-1}and for the form to be positive definite it is necessary that1<λ<1n1-1<\lambda<\frac{1}{n-1}.

Let's consider the numbers

Nk(λ)=Nk=(nk+1)1(nk)λδn\mathrm{N}_{\mathrm{k}}(\lambda)=\mathrm{N}_{\mathrm{k}}=(n-k+1)\frac{1-(n-k)\lambda}{\sqrt[n]{\delta}}
  • We need to determineλ\lambdasuch asmax1knNk\max_{1\leq k\leq n}\mathrm{\penalty 10000\ N}_{k}be as small as possible. We have

NkNk1=(k1k)1(2nkk1+1)λδ\mathrm{N}_{\mathrm{k}}-\mathrm{N}_{\mathrm{k}_{1}}=\left(k_{1}-k\right)\frac{1-\left(2n-k-k_{1}+1\right)\lambda}{\sqrt{\delta}} (6)

and we see immediately thatNk>Nk1\mathrm{N}_{\mathrm{k}}>\mathrm{N}_{\mathrm{k}_{1}}ifk1>k,k+k1=n+2k_{1}>k,k+k_{1}=n+2 ; so we just need to consider the numbersNi,i=1.2,,nz+1\mathrm{N}_{i},i=1,2,\ldots,\left\lceil\frac{n}{z}\right\rceil+1, by designating by[α][\alpha]the largest integer included inα\alpha. If we poseλ91\lambda_{9}-1,λ1=12(ni),λ[n2]+1=1n1\lambda_{1}=\frac{1}{2(n-i)},\lambda_{\left[\frac{n}{2}\right]+1}=\frac{1}{n-1}, formula (6) then shows us thatmax1knNk=Ni\max_{1\leq k\leq n}\mathrm{\penalty 10000\ N}_{\mathrm{k}}=\mathrm{N}_{i}in the meantime(λL1,λL),i=1.2,,|n2|+1\left(\lambda_{l-1},\lambda_{l}\right),i=1,2,\ldots,\left|\frac{n}{2}\right|+1.

It remains to be examinedNi\mathrm{N}_{i}in the meantime (λi1,λi\lambda_{i-1},\lambda_{i}). Let us designate byNf(λ)\mathrm{N}_{f}^{*}(\lambda)derivativesdNi\mathrm{d}\rightarrow\mathrm{N}_{i}compared toλ\lambda, freed from a factor which is positive in the interval (λ11,λi\lambda_{1-1},\lambda_{i}). We have

Ni(λ)=[(n2)(ni)+n1]λ(ni)N_{i}^{*}(\lambda)=[(n-2)(n-i)+n-1]\lambda-(n-i)

and we see thatNin(λi)<0N_{i}^{n}\left(\lambda_{i}\right)<0Fori|n2|i\leq\left|\frac{n}{2}\right|, therefore, fori=1.2,,|n2|i=1,2,\ldots,\left|\frac{n}{2}\right| ;
(7)min(λi1,λL)NL(λ)=Ni(λL)=(ni)(ni+1)(n2i+1)(2n2i+1)n1n\min_{\left(\lambda_{i-1},\lambda l\right)}\mathrm{N}_{l}(\lambda)=\mathrm{N}_{i}\left(\lambda_{l}\right)=\frac{(n-i)(n-i+1)}{\sqrt[n]{(n-2i+1)(2n-2i+1)^{n-1}}}.

Wheni=n2+1i=\left\lceil\frac{n}{2}\right\rfloor+1, we haveN[n2]+1(λ[n2])>0N_{\left[\frac{n}{2}\right]+1}^{*}\left(\lambda_{\left[\frac{n}{2}\right]}\right)>0ifnnis even andN[n2]+1(1n)=0\mathrm{N}_{\left[\frac{n}{2}\right]+1}^{*}\left(\frac{1}{n}\right)=0ifnnis odd, so in the interval(λ[n2],1n1)\left(\lambda_{\left[\frac{n}{2}\right]},\frac{1}{n-1}\right),

minN[n2]+1=N[n2]+1(1n)={n(n+2)nn peer 4(n+1)n1n(n+1)n+1n odd. \min N_{\left[\frac{n}{2}\right]+1}=N_{\left[\frac{n}{2}\right]+1}\left(\frac{1}{n}\right)=\begin{cases}\frac{n(n+2)}{n}&n\text{ pair }\\ 4\sqrt{(n+1)^{n-1}}&\\ \frac{n}{(n+1)^{n+1}}&n\text{ impair. }\end{cases}

We easily find that (8) is smaller than the numbers (1)
and so we have the()4\left({}^{4}\right)
Theorem II. IfF=i=1nx2λi,k=1nxixk\mathrm{F}=\sum_{i=1}^{n}x^{2}-\lambda\sum_{i,k=1}^{n}x_{i}x_{k}is positive definite we havemin1<λ<1n1max0xL1F(x1,x2,,xn)δn={n(n+2)nn peer 4(n+1)n1n(n+1)n+1n odd \min_{-1<\lambda<\frac{1}{n-1}}\max_{0\leq x_{l}\leq 1}\frac{\mathrm{\penalty 10000\ F}\left(x_{1},x_{2},\ldots,x_{n}\right)}{\sqrt[n]{\delta}}=\begin{cases}\frac{n(n+2)}{n}&n\text{ pair }\\ 4\sqrt{(n+1)^{n-1}}&\\ \frac{n}{\sqrt{(n+1)^{n+1}}}&n\text{ impair }\end{cases}and this minimum is reached forλ=1n\lambda=\frac{1}{n}.
5. - Returning to the determinantΔ\Delta, we can state the

Theorem III. If all the elements of the determinantΔ=hasik\Delta=\left\|a_{ik}\right\|are non-negative and at most equal to M, we have

|Δ|={nn(n+2)n4n(n+1)n1Mnn peer (n+1)n+12nMnn odd. |\Delta|=\begin{cases}\sqrt{\frac{n^{n}(n+2)^{n}}{4^{n}(n+1)^{n-1}}}M^{n}&n\text{ pair }\\ \frac{\sqrt{(n+1)^{n+1}}}{2^{n}}M^{n}&n\text{ impair. }\end{cases}

For equality to hold in (9) it is necessary:
101^{0}. that the equality takes place in (2), which comes from Mr. Hadamard's inequality.
20. that among the elements of a row (or a column)hasi1,hasi2,,hasinnn2a_{i1},a_{i2},\ldots,a_{in}n-\left\lceil\frac{n}{2}\right\rfloorare equal to 1 (to M) and the others are equal to 0.

The condition101^{0}is written

I=1nhasLIIF(i1,hasL2,,hasLn)hasiI=0,ik\sum_{j=1}^{n}a_{ljj}\frac{\partial\mathrm{\penalty 10000\ F}\left(i1,a_{l2},\ldots,a_{ln}\right)}{\partial a_{ij}}=0,\quad i\neq k

which, taking into account the special form of the shapeF(λ=1n)teF\left(\lambda=\frac{1}{n}\right){}^{\mathrm{e}}\mathrm{t}of the condition202^{0}, becomes

(n+1)I=1nhasiIhaskI=(nn2)2,ik.(n+1)\sum_{j=1}^{n}a_{ij}a_{kj}=\left(n-\left\lceil\frac{n}{2}\right\rfloor\right)^{2},\quad i\neq k. (10)

( 4 ) If we posen2i=xn-2i=xin the second member of formula (7) we easily verify that the derivative with respect to axxof this expression is positive forx>0x>0. Fornnodd we still have to verify the inequality2(n+1)(n+2)n1<(n+3)n(n>1)-2(n+1)(n+2)^{n-1}<(n+3)^{n}(n>1), which is immediate.

The first member of (10) is a multiple ofn+1n+1, it is therefore necessary thatnneither of the formn=4p1n=4p-1. In this case the condition202^{0}and equalities (10) are necessary and sufficient for the determinant to be maximizing. For example forn=3,7,11n=3,7,11we have the maximizing determinants

|110101011|\displaystyle\left|\begin{array}[]{lll}1&1&0\\ 1&0&1\\ 0&1&1\end{array}\right|
|11111100000111000111001101001001110101001011100101011101000111010101100100111010110011010100111101000111010110101010100110111010101100110101101|\displaystyle\left|\begin{array}[]{llllllllllll}1&1&1&1&1&1&0&0&0&0&0\\ 1&1&1&0&0&0&1&1&1&0&0\\ 1&1&0&1&0&0&1&0&0&1&1\\ 1&0&1&0&1&0&0&1&0&1&1\\ 1&0&0&1&0&1&0&1&1&1&0\\ 1&0&0&0&1&1&1&0&1&0&1\\ 0&1&1&0&0&1&0&0&1&1&1\\ 0&1&0&1&1&0&0&1&1&0&1\\ 0&1&0&0&1&1&1&1&0&1&0\\ 0&0&1&1&1&0&1&0&1&1&0\\ 1&0&1&0&1&0&1\\ 0&0&1&1&0&1&1&1&0&1&0&1\\ 0&1&1&0&0&1&1\\ 0&1&0&1&1&0&1\end{array}\right|

which are equal, in absolute value, to2,Σ5,2.362,\Sigma^{5},2.3^{6}respectively.
6. - We can pose the more general problem of seeking the best limitation by assuming that the elementshas1ka_{1k}of the determinant are included between two numbersmmAndM,m<M\mathrm{M},m<\mathrm{M}. We can assume-M>0,Mm<M\mathrm{M}>0,-\mathrm{M}\leq m<\mathrm{M}, without restricting the generality. We can solve this problem by following the same path as above, but it should be noted that the results are, in general, more complicated…

It is still sufficient to consider only formsFFsymmetrical. with respect to the variables. The numbers𝐍k\mathbf{N}_{k}become

Nk=\displaystyle\mathrm{N}_{k}= (nk+1)M2+(k1)m2n\displaystyle\frac{(n-k+1)\mathrm{M}^{2}+(k-1)m^{2}}{n}-
[(nk)(nk+1)M2+2k1)(nk+1)Mm+(k1)(k2)m2δ\displaystyle\quad-\frac{\left[(n-k)(n-k+1)\mathrm{M}^{2}+2k-1\right)(n-k+1)\mathrm{M}m+(k-1)(k-2)m^{2}}{\sqrt{\delta}}

Formula (6) becomes
(6')NkNk1=(k1k)(Mm)M+m[(2nkk1+1)M+(k+k13)m]λδn\quad\mathrm{N}_{k}-\mathrm{N}_{k_{1}}=\left(k_{1}-k\right)(\mathrm{M}-m)\frac{\mathrm{M}+m-\left[\left(2n-k-k_{1}+1\right)\mathrm{M}+\left(k+k_{1}-3\right)m\right]\lambda}{\sqrt[n]{\delta}}and we still see thatNk>Nk1\mathrm{N}_{k}>\mathrm{N}_{k_{1}}ifk1>k,k+k1=n+2k_{1}>k,k+k_{1}=n+2.

In this case it is necessary to askλ0=1,λL=M+m2(ni)M+2(i1)m\lambda_{0}=-1,\lambda_{l}=\frac{\mathrm{M}+m}{2(n-i)\mathrm{M}+2(i-1)m},
λ[ni]+1=1n1\lambda_{\left[\begin{array}[]{l}n\\ i\end{array}\right]+1}=\frac{1}{n-1}and we will still have
maxknNk=Ni\max_{\leq k\leq n}\mathrm{\penalty 10000\ N}_{k}=\mathrm{N}_{i}in the meantime(λi1,λi),i=1.2,,n2+1\left(\lambda_{i-1},\lambda_{i}\right),i=1,2,\ldots,\left\lceil\frac{n}{2}\right\rceil+1.
The expressionNi(λ)\mathrm{N}_{i}^{*}(\lambda)becomes
Ni(λ)={(ni+1)[(n2)(ni)+n1]M2+2(i1)(ni+1)(n2)Mm+\mathrm{N}_{i}^{*}(\lambda)=\left\{(n-i+1)[(n-2)(n-i)+n-1]\mathrm{M}^{2}+2(i-1)(n-i+1)(n-2)\mathrm{M}m+\right.

+(i1)[(n2)(i2)+n1]m2}λ(ni)(ni+1)M22(i1)(ni+1)Mm(i1)(i2)m2\begin{array}[]{r}\left.+(i-1)[(n-2)(i-2)+n-1]m^{2}\right\}\lambda-(n-i)(n-i+1)\mathrm{M}^{2}\\ -2(i-1)(n-i+1)\mathrm{M}m-(i-1)(i-2)m^{2}\end{array}

and it all depends on the sign of this function ofλ\lambdain the meantime. (λi1,λi\lambda_{i-1},\lambda_{i}). We can write

Ni(λi)=Mm2(ni)M+2(i1)m{(ni+1,[2i2+(3n+2)in2n1](Mm)++2(ni+1)[(2n1)in2](Mm)m+n(n1)(2in1)m2}.\begin{array}[]{r}\mathrm{N}_{i}^{*}\left(\lambda_{i}\right)=\frac{\mathrm{M}-m}{2(n-i)\mathrm{M}+2(i-1)m}\left\{\left(n-i+1,\left[-2i^{2}+(3n+2)i-n^{2}-n-1\right](\mathrm{M}-m)+\right.\right.\\ \left.+2(n-i+1)\left[(2n-1)i-n^{2}\right](\mathrm{M}-m)m+n(n-1)(2i-n-1)m^{2}\right\}.\end{array}
  1. 7.
    • Suppose, in particular, thatm0m\geq 0. We then see thatNi(λi)<0\mathrm{N}_{i}^{*}\left(\lambda_{i}\right)<0Forin2i\leq\left\lfloor\frac{n}{2}\right\rfloorand it is now permissible to write the formulas (7) again, which become
      (7')min(λi1,λi)Ni(λ)=Ni(λi)=(Mm)[(ni)(ni+1)M2i(i1)m2](Mm)(n2i+1)[(2n2i+1)M+(2i1)m]n1\min_{\left(\lambda_{i-1},\lambda_{i}\right)}\mathrm{N}_{i}(\lambda)=\mathrm{N}_{i}\left(\lambda_{i}\right)=\frac{(\mathrm{M}-m)\left[(n-i)(n-i+1)\mathrm{M}^{2}-i(i-1)m^{2}\right]}{\sqrt{}(\mathrm{M}-m)(n-2i+1)[(2n-2i+1)\mathrm{M}+(2i-1)m]^{n-1}} : Fori=1.2,,|n2|i=1,2,\ldots,\left|\begin{array}[]{l}n\\ 2\end{array}\right|.

If we posen2i=xn-2i=x, we easily verify that the derivative of the second member of(7)\left(7^{\prime}\right)is positive forx>0x>0. The smallest among. the numbers (77^{\prime}) is therefore

n(Mm)[(n+2)M2(n2)m2]4(Mm)[(n+1)M+(n1)m]n1 For n peer \frac{n(\mathrm{M}-m)\left[(n+2)\mathrm{M}^{2}-(n-2)m^{2}\right]}{4\sqrt{(\mathrm{M}-m)[(n+1)\mathrm{M}+(n-1)m]^{n-1}}}\text{ pour }n\text{ pair } (11)
(Mm)[(n+1)(n+3)M2(n1)(n3)m2]42(Mm)[(n+2)M+(n2)m]n1n For n odd. \frac{(\mathrm{M}-m)\left[(n+1)(n+3)\mathrm{M}^{2}-(n-1)(n-3)m^{2}\right]}{4\sqrt[n]{2(\mathrm{M}-m)[(n+2)\mathrm{M}+(n-2)m]^{n-1}}}\text{ pour }n\text{ impair. }
  1. 8.
    • Let us first assume thatnnis even. We then find thatN[n2]+1(λ[n2]>0\mathrm{N}_{\left[\frac{n}{2}\right]+1}^{*}\left(\lambda_{\left[\frac{n}{2}\right]}>0\right.and the minimum sought is equal to
      N[n2]+1(M+mnM+(n2)m)\mathrm{N}_{\left[\frac{n}{2}\right]+1}\left(\frac{\mathrm{M}+m}{n\mathrm{M}+(n-2)m}\right)whose numerical value is (11), so
      Theorem IV. If all the elements of the determinantΔ=hasik\Delta=\left\|a_{ik}\right\|, of even ordernn, are between two positive numbersmmAndM>mM>m, with a

|Δ|nn(Mm)n1[(n+2)M(n2)m]n4n[(n+1)M+(n1)m]n1|\Delta|\leq\sqrt{\frac{n^{n}(\mathrm{M}-m)^{n-1}[(n+2)\mathrm{M}-(n-2)m]^{n}}{4^{n}[(n+1)\mathrm{M}+(n-1)m]^{n-1}}}

For equality to occur, it is necessary
that

I=1nhasiIhaskI=n2(M+m)34[(n+1)M+(n1)m]ik\sum_{j=1}^{n}a_{ij}a_{kj}=\frac{n^{2}(\mathrm{M}+m)^{3}}{4[(n+1)\mathrm{M}+(n-1)m]}\quad i\neq k

2 than among the elements of a row (or column)n2\frac{n}{2}are equal toMMAndn2\frac{n}{2}equal tomm.

  • The sumI=1nhasiIhaskI\sum_{j=1}^{n}a_{ij}a_{kj}is of the formμM2+(n2μ)Mm+μm2==μ(Mm)2+nMm\mu\mathrm{M}^{2}+(n-2\mu)\mathrm{M}m+\mu m^{2}==\mu(\mathrm{M}-m)^{2}+n\mathrm{M}m, Orμ\muis a positive integer (the caseμ=0\mu=0is obviously to be excluded ifn>2n>2). We easily find

μ=n4[1(M+m)2(Mm)[(n+1)M+(n1)m]]\mu=\frac{n}{4}\left[1-\frac{(\mathrm{M}+m)^{2}}{(\mathrm{M}-m)[(n+1)\mathrm{M}+(n-1)m]}\right]

So we must haveμ<n4\mu<\frac{n}{4}. On the other hand, we can always write the first two lines of a maximizing determinant in
wet form so that we can place a third line verifying the
conditions101^{0}And202^{0}it is necessary thatμ>n6\mu>\frac{n}{6}. We can therefore affirm that for.n=4,6,8n=4,6,8there are surely no maximizing determinates.

Note. The casen=2n=2is an exception. In this case the determinant|MmmM|\left|\begin{array}[]{cc}\mathrm{M}&m\\ m&\mathrm{M}\end{array}\right|can be maximizing. It is necessary and sufficient for this thatM=(1+2)m\mathrm{M}=(1+\sqrt{2})m.
9. - The case wherennis odd is more interesting. In this caseN[n2]+1b(λ[n2])<0N_{\left[\frac{n}{2}\right]+1}^{b}\left(\lambda_{\left[\frac{n}{2}\right]}\right)<0and the minimum is given by the root of the equation,N[n22]+i(λ)=0\mathrm{N}_{\left[\begin{array}[]{l}n\\ 2\\ 2\end{array}\right]+\mathrm{i}}^{*}(\lambda)=0which is equal to

λ=(u+1)M2+2(n+1)Mm+(n3)m2n(n+1)M2+2(n+1)(n2)Mm+(n23n+4)m2\lambda^{\prime}=\frac{(u+1)\mathrm{M}^{2}+2(n+1)\mathrm{M}m+(n-3)m^{2}}{n(n+1)\mathrm{M}^{2}+2(n+1)(n-2)\mathrm{M}m+\left(n^{2}-3n+4\right)m^{2}}

This minimum is equal to

N[n22]+1(λ)=(n+1)(Mm)2[(n+1)M+(n1)m]24(n+1)(Mm)2[(n+1)M+(n1)m]2n2n\mathrm{N}_{\left[\begin{array}[]{l}n\\ 2\\ 2\end{array}\right]+1}\left(\lambda^{\prime}\right)=\frac{(n+1)(\mathrm{M}-m)^{2}[(n+1)\mathrm{M}+(n-1)m]^{2}}{4\sqrt[n]{(n+1)(\mathrm{M}-m)^{2}[(n+1)\mathrm{M}+(n-1)m]^{2n-2}}}

which is indeed smaller than (12) ( 5 ), so we have
Theorem V. If all elements of the determinantΔ=hasik\Delta=\left\|a_{ik}\right\|odd ordernn, are between two positive numbersmmAndM>mM>m, wehasa.

|Δ|(n+1)n12n(Mm)n1[(n+1)M+(n1)m]|\Delta|\leq\frac{\sqrt{(n+1)^{n-1}}}{2^{n}}(M-m)^{n-1}[(n+1)M+(n-1)m]

For equality to take place it is necessary
101^{0}that

I=1nhasiIhasLI=(n+1)M2+2(n+1)Mm+(n3)m24\sum_{j=1}^{n}a_{ij}a_{lj}=\frac{(n+1)\mathrm{M}^{2}+2(n+1)\mathrm{M}m+(n-3)m^{2}}{4}

202^{0}than among the elements of a row (or column)n+12\frac{n+1}{2}are equal to M and the othersn12\frac{n-1}{2}equal tomm.

In this case the sumI=1nhasiIhaskI\sum_{j=1}^{n}a_{ij}a_{kj}is of the formμM2++(n2μ+1)Mm+(μ1)m2=μ(Mm)2+(n+1)Mmm2,μ\mu\mathrm{M}^{2}++(n-2\mu+1)\mathrm{M}m+(\mu-1)m^{2}=\mu(\mathrm{M}-m)^{2}+(n+1)\mathrm{M}m-m^{2},\mubeing an integer
(5\left({}^{5}\right.) In the form

|(n+1)(n+3)M2(n1)(n3)n2(n+1)(Mm)[(n+2)M+(n2)m]|n>2[(n+1)M+(n1)m]2(n+1)(Mm)[(n+2)M+(n\left|\frac{(n+1)(n+3)\mathrm{M}^{2}-(n-1)(n-3)n^{2}}{(n+1)(\mathrm{M}-m)[(n+2)\mathrm{M}+(n-2)m]}\right|^{n}>\frac{2[(n+1)\mathrm{M}+(n-1)m]^{2}}{(n+1)(\mathrm{M}-m)[(n+2)\mathrm{M}+(n-}

returns to the elementary inequality of Bernoulli.
positive. We easily findμ=n+14\mu=\frac{n+1}{4}and it is therefore necessary thatnneither of: the formn=4p1n=4p-1. The result is the same as in the casem=0m=0. Moreover, the fact that a determinant is maximizing does not depend on M andmm.

Final remark. We wanted to simply show some elementary consequences of formula (2). It would remain to demonstrate the existence of maximizing determinants of any order of the formn=4p1n=4p-1. Whennnis not of this form the maximum ine problem can be solved by formula (2) (at least forn=4p3n=4p-3and forn=4,6,8n=4,6,8).

Related Posts

Two remarks on convex functions

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Deux remarques sur les fonctions convexes, Bull. de la Sect. sci. de l’Acad.…

Notes on Higher-Order Convex Functions (IV)

Abstract AuthorsT.  Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (IV), Disquisitiones mathematicae et physicae, 1…

Notes on Higher-Order Convex Functions (VI)

Abstract AuthorsT. Popoviciu Keywords? Paper coordinatesT. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (VI), Revue Mathématique de l’Union Interbalkanique,…