## Abstract

In this paper we deal with nontrivial solvability in balls of Hammerstein integral equations in Hilbert spaces for nonlinearities of potential type. We use a variational approach based on variants of the mountain pass theorem which are due to Guo-Sun-Qi and Schechter. Our main contribution is a new technique to verify compactness conditions of Palais-Smale type. This technique combines the compactness criterium for countable sets in \(L^p\) with basic properties of the measures of noncompactness and integral inequalities.

## Authors

**Radu Precup
**Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania

## Keywords

Compactness; Hammerstein integral equation; Mountain pass theory.

## Paper cordinates

R. Precup, *On the Palais-Smale condition for Hammerstein integral equations in Hilbert spaces*, Nonlinear Anal. 47 (2001), 1233-1244. http://dx.doi.org/10.1016/S0362-546X(01)00261-9

## About this paper

##### Cite this paper as:

##### Journal

Nonlinear Analysis

##### Publisher Name

Elsevier

##### Print ISSN

Not available yet.

##### Online ISSN

0362-546X

Google Scholar Profile

Zbl 1042.47530

## References

[1] A. Ambrosetti, P.H. Rabinowitz, * Dual variational methods in critical point theory and applicaitons, * J. Funct. Anal. 14, 349-381, 1973.

[2] H. Brezis, *Analyse fonctionnelle,* Mason, Paris, 1983.

[3] D. Guo, V. Lakshmikantham, X. Liu, * Nonlinear integral equations in abstract spaces, * Kluwer Academic Publisher, Dordrecht, 1996.

[4] D. Guo, J. Sun, G. Qi, * Some extensions of the mountain pass lemma, * Differential Integral Equations 1, 351-358, 1988.

[5] O. Kavian,* Introduction a le theorie des points critiques, * Springer, Berlin, 1995.

[6] M.A. Krasnoselskii, * Topological methods in the theory of nonlinear integral equations, * Pergamon Press, Oxford, 1964.

[7] J. Mawhin, M. Willem, * Critical point theorem and Hamiltonian system,* Springer-Verlag, Berlin, 1989.

[8] V. Moroz, A. Vignoli, P. Zabvreiko, * On the three critical points theorem, * Topol. Methods Nonlinear Anal. 11, 103-113, 1998.

[9] V.B.Moroz, P.P. Zabreiko, * A variant of the mountain pass theorem and its application to Hammerstein integral equations, * Zeit. Anal. Anwendungen 15, 985-997, 1996.

[10] D. O’Regan, R. Precup, * Existence criteria for integral equations in Banasch spaces, *J. Inequal. Appl., to appear.

[11] R. Precup, *Nonlinear integral equations (*In Romanian), University Babes-Bolyai, Cluj, 1993.

[12] R. Precup, *Nontrivial solvability of Hammerstein integral equations in Hilbert spaces, * Seminaire de la theorie de la meilleure approximation, convexite et optimisation, Srima, Cluj-Napoca, 255-265, 2000.

[13] M. Schechter, * A bounded mountain pass lemma without the (PS) condition and applciations, * Trans. Amer. Math. Soc., 331, 681-703, 1992.