[1] D.E BOOR, “On “Best” Interpolation,” Universky of Wisconsin, MRC 7% No. 1426, 1971.
[2] J. CZIPSER AND L. GEHER, Extension of function satisfying a Eipschitz condition, hia Mut,k. ACM/. SC. Hungm. 6 (1955), 213-220.
[3] C. B. DUNHAM, Chebyshev approximation with a null space, Proc. Amer. Math. Sot. 41 (1973), 557-558.
[4] J. A. JOHNSON, Banach space of Lipschitz functions and vector-valued Lipschitz functions, Tuarzs. Amer. Math. Sot. 148 (1970), 147-169.
[5] C. MUSTATA, Asupra unor subspalii cebiseviene din spatiul normat al functiilor lipschitziene, Reo. Anal Mumer. Teoria Aproximatiei 2 (1973), 81-87.
[6] R. R. PHELPS, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Sot. 95 (1960), 238-255.
[7] A. K. ROY, Extreme points and linear isometries of Banach space of Lipschitz functions, Canad. J. IWZ~A. 20 (1968), 1150-1164.
[8] I. SINGER, Cea mai buna aproximare in spalii vectoriale normate prin elemente din subspalii vectoriale, Edit. Acad. R. S. Romania, Bucuresti, (1967).
[9] D. R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Sot. 111 (1964), 240-272.
Best Approximation and Unique Extension of Lipschitz Functions
Costică MustățaInstitutul de Calcul, Cluj-Napoca, R. S. RontaniaCommunicated by Lothar Collatz
Received July 21, 1975
1. Introduction
In the sequel, XX will always denote a metric space with the metric d,x_(0)d, x_{0} a fixed point from XX, and YY a subset of XX such that x_(0)in Yx_{0} \in Y. If ff is a real-valued function defined on XX, denote
{:(1.1)||f||_(Y)=s u p{|f(x)-f(y)|//d(x","y):x","y in Y","x!=y}.:}\begin{equation*}
\|f\|_{Y}=\sup \{|f(x)-f(y)| / d(x, y): x, y \in Y, x \neq y\} . \tag{1.1}
\end{equation*}
A Lipschitz function on XX is a function f:X rarr Rf: X \rightarrow R such that ||f||_(X) < oo\|f\|_{X}<\infty. Denote by Lip _(0)X{ }_{0} X the Banach space of all Lipschitz functions on XX which vanish at x_(0)x_{0}, with the norm ||f||=||f||_(X)\|f\|=\|f\|_{X}. Put also
{:(1.2)Y^(_|_)={f:f inLip_(0)X,f|_(Y)=0}.:}\begin{equation*}
Y^{\perp}=\left\{f: f \in \operatorname{Lip}_{0} X,\left.f\right|_{Y}=0\right\} . \tag{1.2}
\end{equation*}
A Lipschitz extension of a function f inLip_(0)Yf \in \operatorname{Lip}_{0} Y is a function F inLip_(0)XF \in \operatorname{Lip}_{0} X such that F|_(Y)=f\left.F\right|_{Y}=f and ||F||_(X)=||f||_(Y)\|F\|_{X}=\|f\|_{Y}. It is known (see, e.g., [2]) that every f inLip_(0)Yf \in \operatorname{Lip}_{0} Y has a Lipschitz extension in Lip Lip_(0)X\operatorname{Lip}_{0} X.
For a subset YY of XX and x in Xx \in X we put
{:(1.3)d(x","Y)=i n f{d(x","y):y in Y}.:}\begin{equation*}
d(x, Y)=\inf \{d(x, y): y \in Y\} . \tag{1.3}
\end{equation*}
Now, let EE be a normed linear space, GG a nonempty subset of E,xE, x an element from EE, and
{:(1.4)P_(G)(x)={y in G:||x-y||=d(x","G)}.:}\begin{equation*}
P_{G}(x)=\{y \in G:\|x-y\|=d(x, G)\} . \tag{1.4}
\end{equation*}
An element from P_(G)(x)P_{G}(x) is called a best approximation to xx from GG. If MM is a subset of EE we say that GG is MM-proximinal if P_(G)(x)!=O/P_{G}(x) \neq \varnothing, for all x in Mx \in M. If P_(G)(x)P_{G}(x) contains exactly one element for every x in Mx \in M, then GG is called MM-chebyshevian. If the set GG is EE-proximinal (respectively EE-chebyshevian) then we say, simply, that GG is proximinal (respectively chebyshevian).
We say that a linear subspace ZZ of EE has the property ( UU ) if every continuous linear functional on ZZ has a unique Hahn-Banach extension to EE (i.e., linear and norm preserving) [6]. Let us denote by E^(**)E^{*} the conjugate spacs of EE and by Z^("l ")Z^{\text {l }} the annihilator of the subspace ZZ in E^(**)E^{*}, i.e.,
Phelps [6] showed that the subspace ZZ of EE has property ( UU ) if and only if its annihilator Z^(1)Z^{\mathbb{1}}𝟙 is chebyshevian. This result can be extended to Lipschitz functions:
Theorem 1 ([5, Lemma 2]). Let XX be a metric space, x_(0)x_{0} in XX, and Y sube XY \subseteq X such that x_(0)in Yx_{0} \in Y. The space Y^(_|_)Y^{\perp} is chebyshevian for f inLip_(0)Xf \in \operatorname{Lip}_{0} X if and only if f|_(Y)inLip_(0)Y\left.f\right|_{Y} \in \operatorname{Lip}_{0} Y has a unique Lipschitz extension in Lip_(0)X\operatorname{Lip}_{0} X.
We also need the following lemma.
Lemma 1. Every best approximation to f inLip_(0)Xf \in \operatorname{Lip}_{0} X from Y^(-1)Y^{-1} is of the form f-Ff-F, where FF is a Lipschitz extension of f_(|_(Y))f_{\left.\right|_{Y}} to XX.
Proof. Suppose FF is a Lipschit extension of f|_(y)\left.f\right|_{y} to XX. Then, by [5[5, Theorem 2 and Lemma 1], we get
|f-(f-I)|_(X)-||F|_(X)-||f||_(X)-d(f,Y^(_|_))|f-(f-I)|_{X}-\left\|\left.F\right|_{X}-\right\| f \|_{X}-d\left(f, Y^{\perp}\right)
Conversely, if g inY^(_|_)g \in Y^{\perp} is a best approximation to ff, then ||f-g||_(X)=d(f,Y^(_|_))=|if|_(Y)\|f-g\|_{X}= d\left(f, Y^{\perp}\right)=|i f|_{Y} and (f-g)|_(Y)=f|_(Y)\left.(f-g)\right|_{Y}=\left.f\right|_{Y}. Therefore F=f-gF=f-g is a Lipschitz extension of f|_(Y)\left.f\right|_{Y},
2. Main Theorem
A metric space XX is called uniformly discrete if there exists a number delta > 0\delta>0, such that d(x,y) >= deltad(x, y) \geqslant \delta for all x,y in Xx, y \in X with x!=yx \neq y. The following theorem appears in [5], in the hypothesis that YY has an accumulation point in XX. The main result is:
Theorem 2. Let X,x_(0)X, x_{0}, and YY be as in Theorem 1. Suppose, further, that YY is nonuniformly discrete. If every f inLip_(0)Yf \in \operatorname{Lip}_{0} Y has a unique Lipschitz extension. then vec(Y)=X\vec{Y}=X (or equivalently Y^(L)={0}Y^{\mathrm{L}}=\{0\} ).
Proof. Since YY is nonuniformly discrete, for every n in Nn \in N, there exist x_(n),y_(n)in Y,x_(n)!=y_(n)x_{n}, y_{n} \in Y, x_{n} \neq y_{n} such that d(x_(n),y_(n)) < 1//nd\left(x_{n}, y_{n}\right)<1 / n. Defining f_(n):X rarr Rf_{n}: X \rightarrow R by
so that f_(n)inLip_(0)Xf_{n} \in \operatorname{Lip}_{0} X for n=1,2,3,dotsn=1,2,3, \ldots.
Let a_(n)=d(x_(0),y_(n))-d(x_(0),x_(n))a_{n}=d\left(x_{0}, y_{n}\right)-d\left(x_{0}, x_{n}\right), and suppose that the set I={n in NI=\{n \in N : {:a_(n) <= 0}\left.a_{n} \leqslant 0\right\} is infinite, say I={n_(j):j in N}I=\left\{n_{j}: j \in N\right\}. Then, we have f_(n_(j))(x_(0))=0,f_(n_(j))(x_(n_(j))) < 0f_{n_{j}}\left(x_{0}\right)=0, f_{n_{j}}\left(x_{n_{j}}\right)<0, f_(n_(j))(y_(n_(j))) >= 0,j=1,2,3,dotsf_{n_{j}}\left(y_{n_{j}}\right) \geqslant 0, j=1,2,3, \ldots. Now, we consider the sequence {psi_(j)}\left\{\psi_{j}\right\} of functions psi_(i):f_(n_(j))(X)rarr[0,1]\psi_{i}: f_{n_{j}}(X) \rightarrow[0,1] defined by
{:[d(x","Y) <= (s u p{psi_(j)(f_(n_(j))(y)):y in Y}-i n f{psi_(j)(f_(n_(j))(y)):y in Y})//(2||q_(j)||_(Y))],[=1//(2||q_(j)||_(Y)) <= 1//n_(j)rarr0]:}\begin{aligned}
d(x, Y) & \leqslant\left(\sup \left\{\psi_{j}\left(f_{n_{j}}(y)\right): y \in Y\right\}-\inf \left\{\psi_{j}\left(f_{n_{j}}(y)\right): y \in Y\right\}\right) /\left(2\left\|q_{j}\right\|_{Y}\right) \\
& =1 /\left(2\left\|q_{j}\right\|_{Y}\right) \leqslant 1 / n_{j} \rightarrow 0
\end{aligned}
so that x in bar(Y)x \in \bar{Y}, for all x in Xx \in X, that is bar(Y)=X\bar{Y}=X.
By Theorems 1 and 2, we have
Corollary 1. Suppose that YY is nonuniformly discrete. Then Y^(_|_)Y^{\perp} is chebyshevian in Lip_(0)X\operatorname{Lip}_{0} X if and only if Y^(_|_)={0}Y^{\perp}=\{0\}.
We can also prove the following result.
Theorem 3. Let X,x_(0)X, x_{0}, and YY be as in Theorem 1. If (Y^(_|_))^(1)\left(Y^{\perp}\right)^{1} has the property ( UU ) then every f inLip_(0)Yf \in \operatorname{Lip}_{0} Y has a unique Lipschitz extension F inLip_(0)XF \in \operatorname{Lip}_{0} X.
Proof. Follows from [8, Corollary 3.1.b)] and the above Theorem 1.
Corollary 2. Let X,x_(0)X, x_{0}, and YY be as in Theorem 1. Suppose that YY is nonuniformly discrete. If (Y^(_|_))^(1)\left(Y^{\perp}\right)^{\mathbb{1}}𝟙 has the property ( UU ), then bar(Y)=X\bar{Y}=X (or equivalently Y^(_|_)={0}Y^{\perp}=\{0\} ).
3. Examples
(a) Let X=[0,1],d(x,y)=|x-y|,x_(0)=0X=[0,1], d(x, y)=|x-y|, x_{0}=0, and Y={0,1}Y=\{0,1\}. Then every f inLip_(0){0,1}f \in \operatorname{Lip}_{0}\{0,1\} has a unique Lipschitz extension F inLip_(0)[0,1]F \in \operatorname{Lip}_{0}[0,1], namely, F(x)=f(1)xF(x)=f(1) x. This example shows that the supposition that YY is nonuniformly discrete is essential in Theorem 2.
(b) Let f inLip_(0)[0,1]f \in \operatorname{Lip}_{0}[0,1] and let YY be the set of points 0=x_(0) < x_(1) < cdots < x_(n+1)=10=x_{0}<x_{1}<\cdots <x_{n+1}=1. Then, we have:
Theorem 4. The following conditions are equivalent: (1^(@))quadY^(_|_)\left(1^{\circ}\right) \quad Y^{\perp} is f-chebyshevian,
(2) quad||f||_(Y)=||[x_(k),x_(i+1);f]||,k=0,1,2,dots,n\quad\|f\|_{Y}=\left\|\left[x_{k}, x_{i+1} ; f\right]\right\|, k=0,1,2, \ldots, n,
where [x_(k),x_(k+1);f]=(f(x_(k+1))-f(x_(k)))//(x_(k+1)-x_(k))\left[x_{k}, x_{k+1} ; f\right]=\left(f\left(x_{k+1}\right)-f\left(x_{k}\right)\right) /\left(x_{k+1}-x_{k}\right).
Proof. quad(1^(@))=>(2^(@))\quad\left(1^{\circ}\right) \Rightarrow\left(2^{\circ}\right) Obviously, L(x)=[x_(k),x_(k+1);f](x-x_(k))+f(x_(k)),quad x in(x_(k),x_(k+1)),k=0,1,dots,nL(x)=\left[x_{k}, x_{k+1} ; f\right]\left(x-x_{k}\right)+f\left(x_{k}\right), \quad x \in\left(x_{k}, x_{k+1}\right), k=0,1, \ldots, n,
is a Lipschitz extension of f|_(Y)\left.f\right|_{Y} and ||f|_(Y) >= [x_(k),x_(k+1);f]|_(i)k=0,1_(5),dots,n\|\left. f\right|_{Y} \geqslant\left.\left[x_{k}, x_{k+1} ; f\right]\right|_{i} k=0,1_{5}, \ldots, n. Suppose that k_(0),0 <= k_(0) < nk_{0}, 0 \leqslant k_{0}<n is such that ||f||_(Y)>∣[x_(h_(0)),x_(I_(0)+1);f]\|f\|_{Y}>\mid\left[x_{h_{0}}, x_{I_{0}+1} ; f\right]. We have to consider the following cases:
(i) f(x_(k_(0))) < f(x_(k_(0)+1))f\left(x_{k_{0}}\right)<f\left(x_{k_{0}+1}\right),
(ii) f(x_(k_(0))) > f(x_(k_(0)+1))f\left(x_{k_{0}}\right)>f\left(x_{k_{0}+1}\right),
(iii) f(x_(k_(0)))=f(x_(k_(0)+1))f\left(x_{k_{0}}\right)=f\left(x_{k_{0}+1}\right).
If condition (i) holds, put z_(1)=x_(k_(0))+(f(x_(k_(0)+1))-f(x_(k_(0))))//||f||_(r)z_{1}=x_{k_{0}}+\left(f\left(x_{k_{0}+1}\right)-f\left(x_{k_{0}}\right)\right) /\|f\|_{r} and define the function F_(1):[0,1]rarr RF_{1}:[0,1] \rightarrow R by
{:[F_(1)(x)=L(x)","x in[0","1]-[x_(k_(0)),x_(k_(0)-1)]","],[(3.2)=f(x_(k_(0)))-∣f||_(Y)(x-x_(k_(0)))","x in(x_(k_(1)),z_(1))","],[=f(x_(k_(0)))","x in[z_(1),x_(k_(0)+1)).]:}\begin{align*}
F_{1}(x) & =L(x), & & x \in[0,1]-\left[x_{k_{0}}, x_{k_{0}-1}\right], \\
& =f\left(x_{k_{0}}\right)-\mid f \|_{Y}\left(x-x_{k_{0}}\right), & & x \in\left(x_{k_{1}}, z_{1}\right), \tag{3.2}\\
& =f\left(x_{k_{0}}\right), & & x \in\left[z_{1}, x_{k_{0}+1}\right) .
\end{align*}
It is easy to see that F_(1)F_{1} is a Lipschitz extension of f|_(Y)\left.f\right|_{Y}, distinct from L_(,)L_{,} and then, by Theorem 1,Y^(_|_)1, Y^{\perp} is not ff-chebyshevian.
In case (ii) the proof proceeds similarly. If condition (iii) holds, put z_(2.2)=(2x_(k_(11))+x_(k_(0)+1))//3z_{2.2}=\left(2 x_{k_{11}}+x_{k_{0}+1}\right) / 3 and define
{:[F_(2)(x)=L(x)","x in[0","1]-[x_(k_(0)),x_(k_(0)+1)]","],[(3.3)=f(x_(k_(0)))+:∣f||_(Y)(x-x_(k_(0)))","x in(x_(k_(0)),z_(2)]","],[=f(x_(k_(0)+1))-||f_(Y)||_(Y)(x-x_(k_(0)+1))","x in(z_(2),x_(k_(0)-1))","]:}\begin{align*}
F_{2}(x) & =L(x), & & x \in[0,1]-\left[x_{k_{0}}, x_{k_{0}+1}\right], \\
& =f\left(x_{k_{0}}\right)+: \mid f \|_{Y}\left(x-x_{k_{0}}\right), & & x \in\left(x_{k_{0}}, z_{2}\right], \tag{3.3}\\
& =f\left(x_{k_{0}+1}\right)-\left\|f_{Y}\right\|_{Y}\left(x-x_{k_{0}+1}\right), & & x \in\left(z_{2}, x_{k_{0}-1}\right),
\end{align*}
Then F_(2)F_{2} is a Lipschitz extension of f|_(Y)\left.f\right|_{Y}, different from LL. By Theorem 1, Y^(_|_)Y^{\perp} is not ff-chebyshevian. (2^(@))=>(1^(@))\left(2^{\circ}\right) \Rightarrow\left(1^{\circ}\right) If |[x_(k),x_(k+1);f]|=||f||_(Y)\left|\left[x_{k}, x_{k+1} ; f\right]\right|=\|f\|_{Y} for k=0,1,2,dots,nk=0,1,2, \ldots, n, then the function LL defined by (3.1) is the only Lipschitz extension of f|_(Y)\left.f\right|_{Y}.
A consequence of Theorem 4 is:
Corollary 3. Let YY be the set of points 0=x_(0) < x_(1) < cdots < x_(n+1)=10=x_{0}<x_{1}<\cdots<x_{n+1}=1, f inLip_(0)[0,1]f \in \operatorname{Lip}_{0}[0,1] and
Then Y^(_|_)Y^{\perp} is KK-chebyshevian if and only if Y^(-)Y^{-}is ff-chebyshevian.
(c) Let C^(1)[0,1]C^{1}[0,1] be the space of all continuously differentiable functions on [ 0,1 ] and let YY be the set of points 0=x_(0) < x_(1) < cdots < x_(n+1)=10=x_{0}<x_{1}<\cdots<x_{n+1}=1. Put
{:(3.6)||f||_([0,1])=max{|f^(')(x)|:x in[0,1]}.:}\begin{equation*}
\|f\|_{[0,1]}=\max \left\{\left|f^{\prime}(x)\right|: x \in[0,1]\right\} . \tag{3.6}
\end{equation*}
Let us define the function set SS by
{:[S={h:h in Z,[x_(k),x_(k+1);h][x_(k+1),x_(k+2);h]:}],[(3.7){:!=-||h||_(Y)^(2),k=0,1,2,dots,n-1}.]:}\begin{align*}
S & =\left\{h: h \in Z,\left[x_{k}, x_{k+1} ; h\right]\left[x_{k+1}, x_{k+2} ; h\right]\right. \\
& \left.\neq-\|h\|_{Y}^{2}, k=0,1,2, \ldots, n-1\right\} . \tag{3.7}
\end{align*}
We need the following two lemmas:
Lemma 2. Let [p,q]sub R,f(x)=ax+b,a,b in R,a > 0[p, q] \subset R, f(x)=a x+b, a, b \in R, a>0, and M > aM>a. Then there exists a function g inC^(1)[p,q]g \in C^{1}[p, q] such that f(p)=g(p),f(q)=g(q)f(p)=g(p), f(q)=g(q), f^(')(p)=M(f^(')(q)=M),f^(')(q)=g^(')(q)(f^(')(p)=g^(')(p))f^{\prime}(p)=M\left(f^{\prime}(q)=M\right), f^{\prime}(q)=g^{\prime}(q)\left(f^{\prime}(p)=g^{\prime}(p)\right) and max{|g^(')(x)|::}x in[p,q]}=M\max \left\{\left|g^{\prime}(x)\right|:\right. x \in[p, q]\}=M.
Proof. The proof of the lemma is obvious from Fig. 1:
Figure 1
{:[(AC),s_(1)(x)=f(p)+M(x-p)","],[(BC),s_(2)(x)=f(q)-M(x-q)","],[(DE),s_(3)(x)=f(r)-M(x-r)","quad r in(p","q).]:}\begin{array}{ll}
(\mathrm{AC}) & s_{1}(x)=f(p)+M(x-p), \\
(\mathrm{BC}) & s_{2}(x)=f(q)-M(x-q), \\
(\mathrm{DE}) & s_{3}(x)=f(r)-M(x-r), \quad r \in(p, q) .
\end{array}
Lemma 3. If h in Sh \in S, then h|_(Y)\left.h\right|_{Y} has at least one Lipschitz extension H in ZH \in Z.
Proof. Let h in Sh \in S and k_(0)in N,0 <= k_(0) < n+1k_{0} \in N, 0 \leqslant k_{0}<n+1, such that
Applying Lemma 2 to the intervals [x_(k_(0)-1),x_(k_(6))]\left[x_{k_{0}-1}, x_{k_{6}}\right] and [x_(k_(0)+1),x_(k_(0)+2)]\left[x_{k_{0}+1}, x_{k_{0}+2}\right], twice it follows that there exists a function H_(1)H_{1} in C^(1)[x_(k_(0)-1),x_(k_(0)+2)]C^{1}\left[x_{k_{0}-1}, x_{k_{0}+2}\right] such that max{|H_(1)^(')(x)|:x in[x_(k_(0)-1),x_(k_(0)+2)]}=||h||_(Y)\max \left\{\left|H_{1}{ }^{\prime}(x)\right|: x \in\left[x_{k_{0}-1}, x_{k_{0}+2}\right]\right\}=\|h\|_{Y} and which interpolates the function hh at the points x_(k_(0)-1),x_(k_(0)),x_(k_(0)+1),x_(k_(0)+2)x_{k_{0}-1}, x_{k_{0}}, x_{k_{0}+1}, x_{k_{0}+2}.
Appiying Lemma 2 to the intervals [x_(i),x_(i+1)],i=0,1,dots,k_(0)-2\left[x_{i}, x_{i+1}\right], i=0,1, \ldots, k_{0}-2, k_(0)+2,dots,nk_{0}+2, \ldots, n, we get a function H in ZH \in Z, which is a Lipschitz extension of h^(')vh^{\prime} v to [0,1][0,1].
If [x_(k_(0)),x_(k_(0)+1);h]=-||h||_(Y)\left[x_{k_{0}}, x_{k_{0}+1} ; h\right]=-\|h\|_{Y} we can proceed analogously.
Theorem 5. The subspace WW is SS proximinal and for each h in Sh \in S the following equality holds:
Proof. Let h in Sh \in S. By Lemma 3, h|_(Y)\left.h\right|_{Y} has a Lipschitz extension H in ZH \in Z. Then, h-H in Wh-H \in W, and this is a best approximation to hh, from Y^(_|_)Y^{\perp}.
In this case, it is possible that no Lipschitz extension to ff exists in ZZ : e.g.for f(x)=-4x^(2)+4x,Y=[0,(1)/(2),1}f(x)=-4 x^{2}+4 x, Y=\left[0, \frac{1}{2}, 1\right\} we have
which, obviously, does not belong to ZZ.
By Lemmas 2 and 3, every h in Sh \in S has a best approximation in WW, namely, h-Hh-H, where HH is a Lipschitz extension of hh, such that H in ZH \in Z. We can show that every best approximation is of this form (Lemma 1). It follows that WW is chebyshevian for h in Sh \in S if and only if h|_(Y)\left.h\right|_{Y} has a unique Lipschitz extension in ZZ. A class of such functions is given by
{:(3.11)S_(1)={h:h in S,h(x_(k))=h(1)x_(k),k=0,1,2,dots,n+1}.:}\begin{equation*}
S_{1}=\left\{h: h \in S, h\left(x_{k}\right)=h(1) x_{k}, k=0,1,2, \ldots, n+1\right\} . \tag{3.11}
\end{equation*}
Theorem 6. WW is S_(1)S_{1}-chebyshevian.
Proof. If h inS_(1)h \in S_{1}, then the unique Lipschitz extension of hh in ZZ is H(x)=h(1)xH(x)=h(1) x. Therefore h(x)-h(1)xh(x)-h(1) x is the only element of best approximation for hh in WW.
Remark 2. J. Favard and recently de Boor [1] considered a problem analogous to that in Example (c).
(d) Finally, let XX be a metric space of finite diameter (i.e., s u p{d(x,y)\sup \{d(x, y) : x,y in X} < oox, y \in X\}<\infty ), x_(0)x_{0} a fixed element in XX, and YY a subset of XX such that x_(0)in Yx_{0} \in Y. Let f inLip_(0)Xf \in \operatorname{Lip}_{0} X and let G(f)G(f) be the set of best approximation to ff from Y^(_|_)Y^{\perp}. We can define on Lip_(0)X\operatorname{Lip}_{0} X the uniform norm ||*||_(u):Lip_(0)X rarr R\|\cdot\|_{u}: \operatorname{Lip}_{0} X \rightarrow R by
{:(3.12)||f||_(u)=s u p{|f(x)|:x in X}","quad f inLip_(0)X.:}\begin{equation*}
\|f\|_{u}=\sup \{|f(x)|: x \in X\}, \quad f \in \operatorname{Lip}_{0} X . \tag{3.12}
\end{equation*}
Obviously, the set G(f)subY^(_|_)G(f) \subset Y^{\perp} is closed, convex, and bounded, for every f inLip_(0)Xf \in \operatorname{Lip}_{0} X. We consider the following problems: Find g_(**),g^(**)in G(f)g_{*}, g^{*} \in G(f) such that
{:(3.13)||f-g_(**)||_(u)=i n f{||f-g||_(u):g in G(f)}:}\begin{equation*}
\left\|f-g_{*}\right\|_{u}=\inf \left\{\|f-g\|_{u}: g \in G(f)\right\} \tag{3.13}
\end{equation*}
and
{:(3.14)||f-g^(**)||_(u)=s u p{||f-g||_(u):g in G(f)};:}\begin{equation*}
\left\|f-g^{*}\right\|_{u}=\sup \left\{\|f-g\|_{u}: g \in G(f)\right\} ; \tag{3.14}
\end{equation*}
i.e., find the nearest and the farthest point to ff in G(f)G(f), in the uniform norm.
Since every element in G(f)G(f) is of the form f-Ff-F, where FF is a Lipschitz extension of f|_(X)\left.f\right|_{X} it follows that the problems (3.13) and (3.14) are equivalent to the following problems: Find two Lipschitz extensions F_(**)F_{*} and F^(**)F^{*} of f|_(Y)\left.f\right|_{Y} such that
{:('")"||F_(**)||_(u)=i n f{||F||_(u):F" is a Lipschitz extension of "f|_(Y)}:}\begin{equation*}
\left\|F_{*}\right\|_{u}=\inf \left\{\|F\|_{u}: F \text { is a Lipschitz extension of }\left.f\right|_{Y}\right\} \tag{$\prime$}
\end{equation*}
and
{:(3.14')||F^(**)||_(u)=s u p{||F|_(u):F" is a Lipschitz extension of "f|_(Y)}.:}\begin{equation*}
\left\|F^{*}\right\|_{u}=\sup \left\{\|\left. F\right|_{u}: F \text { is a Lipschitz extension of }\left.f\right|_{Y}\right\} . \tag{3.14'}
\end{equation*}
THEOREM 6. The infimum (3.13) is attained for every g_(**)=f-F_(**)g_{*}=f-F_{*} such that F_(**)F_{*} is a Lipschitz extension of f|_(Y)\left.f\right|_{Y} and ||F_(**)||_(||)=_(||)f|_(Y)||_(||)\left\|F_{*}\right\|_{\|}=\left.{ }_{\|} f\right|_{Y} \|_{\|}. The set of these extensions is nonempty.
Proof. If FF is a Lipschitz extension of f|_(Y)\left.f\right|_{Y} then
|F^(')|_(u) >= s u p{|F(y)|:y in Y}=s u p{|f(y)|_(:)y in Y}=|f|_(Y)|_(a)\left|F^{\prime}\right|_{u} \geqslant \sup \{|F(y)|: y \in Y\}=\sup \left\{|f(y)|_{:} y \in Y\right\}=\left.|f|_{Y}\right|_{a}
Therefore, if ||F_(**)||_(u)=||f^(')_(Y)||_(u)\left\|F_{*}\right\|_{u}=\left\|f^{\prime}{ }_{Y}\right\|_{u} then i n f{||F||_(u):F:}\inf \left\{\|F\|_{u}: F\right. is a Lipschitz extension of {:f|_(Y)}={F_(**)|_(u,)=||f|_(Y)|_(u):}\left.\left.f\right|_{Y}\right\}=\left\{\left.F_{*}\right|_{u,}=\|\left.\left. f\right|_{Y}\right|_{u}\right.. Now, if FF is a Lipschitz extension of f|_(Y)\left.f\right|_{Y}. we define a new Lipschitz function F_(**)F_{*} by
{:(({3.15})")"{:[F_(Y)(x),=||f|_(X)||_(ub),," if ",F(x), > {f|_(Y)||_(u),:}],[,=F(x),," if ",-||f|_(Y)|_(u) <= F(x) <= ||f|_(Y)!_(u)","],[,=-||f|_(Y)||_(ub),," if ",F(x) < -|_(f)|Y|_(u).]:}:}\begin{array}{rlrlrl}
F_{Y}(x) & =\left\|\left.f\right|_{X}\right\|_{u b} & & \text { if } & F(x) & >\left\{\left.f\right|_{Y} \|_{u},\right. \\
& =F(x) & & \text { if } & -\left.\left\|\left.\left.f\right|_{Y}\right|_{u} \leqslant F(x) \leqslant\right\| f\right|_{Y}!_{u}, \tag{$\{3.15\}$}\\
& =-\left\|\left.f\right|_{Y}\right\|_{u b} & & \text { if } & F(x)<-\left.\right|_{f}|Y|_{u} .
\end{array}
It is easy to see that F_(**)F_{*} is a Lipschitz extension of f_(∣Y)f_{\mid Y} such that |F_(x)|_(∣u)=|^(')f_(∣u)|_(u)\left|F_{x}\right|_{\mid u}= \left.\left.\right|^{\prime} f_{\mid u}\right|_{u}.
Theorem 7. The supremum (3.14) is attained for f-F_(1)^(**)f-F_{1}^{*} or f-F_(2)^(**)f-F_{2}^{*} or for both of these functions, where
{:(({3.16})")"F_(1)^(**)(x)=i n f{[f(y)+|f|_(1)^(')d(x,y)]:y in Y}.:}\begin{equation*}
F_{1}^{*}(x)=\inf \left\{\left[f(y)+|f|_{1}^{\prime} d(x, y)\right]: y \in Y\right\} . \tag{$\{3.16\}$}
\end{equation*}
and
{:(3.17)F_(2)^(**)(x)=s u p{[f(y)-∣f_(||)||_(Y)d(x,y)]:y in Y}.:}\begin{equation*}
F_{2}^{*}(x)=\sup \left\{\left[f(y)-\mid f_{\|} \|_{Y} d(x, y)\right]: y \in Y\right\} . \tag{3.17}
\end{equation*}
Proof. By [2], F_(1)^(**)F_{1}{ }^{*} and F_(2)^(**)F_{2}{ }^{*} are Lipschitz extensions of f|_(r)\left.f\right|_{r} and obviously. for every Lipschitz extension FF of f|_(Y)\left.f\right|_{Y} we have
F_(2)^(**)(x) <= F(x) <= F_(1)^(**)(x),quad x inX^(')F_{2}^{*}(x) \leqslant F(x) \leqslant F_{1}^{*}(x), \quad x \in X^{\prime}
Remark 3. Dunham [3] has considered a problem similar to the problem in (d) in the case when G(f)G(f) has the betweenness property (see [3] for definition). In (d) the set G(f)G(f), being convex, has the betweenness property. We found explicitly the nearest and the farthest points of ff in G(f)G(f).
References
I. C. DE BOOR, "On "Best" Interpolation," University of Wisconsin, MRC TSR No. 1426, 1974.
2. I. Czipsfr and L. Gehér, Extension of function satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.
3. C. B. Dunham, Chebyshev approximation with a null space, Proc. Amer. Math. Soc. 41 (1973), 557-558.
4. J. A. Johnson, Banach space of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
5. C. Mustăța, Asupra unor subspații cebîșeviene din spațiul normat al funcțiilor lipschitziene, Rev. Anal Numer. Teoria Aproximației 2 (1973), 81-87.
6. R. R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
7. A. K. Rox, Extreme points and linear isometries of Banach space of Lipschitz functions, Canad. J. Math. 20 (1968), 1150-1164.
8. I. Singer, Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale, Edit. Acad. R. S. Romania, București, (1967).
9. D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.