Best approximation in spaces with asymmetric norm

Abstract


In this paper we shall present some results on spaces with asymmetric seminorms, with emphasis on best approximation problems in such spaces.

Authors

Stefan Cobzas
Babes-Bolyai University, Cluj-Napoca, Romania

Costică Mustăţa
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy,  Romania

Keywords

Spaces with asymmetric norm; best approximation; Hahn-Banach theorem; characterization of best approximation.

Paper coordinates

S. Cobzas, C. Mustăţa, Best approximation in spaces with asymmetric norm, Rev. Anal. Numer. Theor. Approx. 35 (2006) no. 1, 17-31.

PDF

About this paper

Journal

Revue d’Analyse Numer. Theor. Approx.

Publisher Name

Publishing House of the Romanian Academy

Print ISSN

2501-059X

Online ISSN

2457-6794

google scholar link

[1] Alegre, C.Ferrer, J. andGregori, V.,Quasi-uniformities on real vector spaces,Indian J. Pure Appl. Math., 28, no. 7, pp. 929–937, 1997.
[2]___,On the Hahn-Banach theorem in certain linear quasi-uniform structures, ActaMath. Hungar.,82, no. 4, pp. 325–330, 1999.
[3] Alimov, A. R.,The Banach-Mazur theorem for spaces with nonsymmetric distance,Uspekhi Mat. Nauk, 58, no. 2, pp. 159–160, 2003.
[4] Babenko, V. F.,Nonsymmetric approximations in spaces of summable functions,Ukrain. Mat. Zh., 34, no. 4, pp. 409–416, 538, 1982.
[5]___,Nonsymmetric extremal problems of approximation theory, Dokl. Akad. NaukSSSR,269, no. 3, pp. 521–524, 1983.
[6]___,Duality theorems for certain problems of the theory of approximation, Currentproblems in real and complex analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev,pp. 3–13, 148, 1984.
[7] Borodin, P. A.,The Banach-Mazur theorem for spaces with an asymmetric norm andits applications in convex analysis, Mat. Zametki,69, no. 3, pp. 329–337, 2001.
[8] Cobzas, S.,Phelps type duality results in best approximation, Rev. Anal. Numer.Theor. Approx.,31, no. 1, pp. 29–43, 2002.
[9]___,Separation of convex sets and best approximation in spaces with asymmetricnorm, Quaest. Math.,27, no. 3, 275–296, 2004.
[10]___,Asymmetric locally convex spaces,Int. J. Math. Math. Sci., no. 16, 2585–2608,2005.
[11] Cobzas, S. and Mustata, C.,Extension of bilinear functionals and best approximationin 2-normed spaces, Studia Univ. Babes-Bolyai, Mathematica, 43, pp. 1–13, 1998.
[12]___,Extension of bounded linear functionals and best approximation in spaces withasymmetric norm, Rev. Anal. Numer. Theor. Approx.,33, no. 1, pp. 39–50, 2004.
[13] De Blasi, F. S. and Myjak, J., On a generalized best approximation problem, J. Approx.Theory,94, no. 1, pp. 54–72, 1998.
[14] Dolzhenko, E. P. andSevastyanov, E. A.,Approximations with a sign-sensitiveweight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat.,62, no. 6,pp. 59–102,1998.
[15]___,Sign-sensitive approximations, J. Math. Sci. (New York),91, no. 5, pp. 3205–3257, 1998.
[16]___,Approximation with a sign-sensitive weight (stability, applications to snake the-ory and Hausdorff approximations), Izv. Ross. Akad. Nauk Ser. Mat.,63, no. 3, pp.77–118, 1999.
[17] Ferrer, J.,Gregori, V. andAlegre, C.,Quasi-uniform structures in linear lattices,Rocky Mountain J. Math.,23, no. 3, pp. 877–884, 1993.
[18] Garcıa-Raffi, L. M.,Romaguera, S. and Sanchez Perez, E. A.,Extensions of asymmetric norms to linear spaces, Rend. Istit. Mat. Univ. Trieste,33, nos. 1–2, 113–125, 2001.
[19]___,The bicompletion of an asymmetric normed linear space, Acta Math. Hungar.,97, no. 3, pp. 183–191, 2002.
[20]___,Sequence spaces and asymmetric norms in the theory of computational com-plexity, Math. Comput. Modelling,36, nos. 1–2, pp. 1–11, 2002.
[21]___,The dual space of an asymmetric normed linear space, Quaest. Math.,26, no. 1,pp. 83–96, 2003.
[22]___,On Hausdorff asymmetric normed linear spaces, Houston J. Math.,29, no. 3,pp. 717–728 (electronic), 2003.
[23] Krein, M. G. and Nudelman, A. A., The Markov Moment Problem and ExtremumProblems, Nauka, Moscow, 1973 (in Russian), English translation: American Mathe-matical Society, Providence, R.I., 1977.
[24] Chong Li, On wel l posed generalized best approximation problems, J. Approx. Theory,107, no. 1, pp. 96–108, 2000.
[25] Chong Liand Renxing Ni, Derivatives of generalized distance functions and existenceof generalized nearest points, J. Approx. Theory,115, no. 1, pp. 44–55, 2002.
[26] Mohebi, H.,On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory,107,no. 1, pp. 87–95, 2000.
[27]___,Pseudo-Chebyshev subspaces inL1, Korean J. Comput. Appl. Math.,7, no. 2,pp. 465–475, 2000.
[28]___,On pseudo-Chebyshev subspaces in normed linear spaces, Math. Sci. Res. Hot-Line,5, no. 9, pp. 29–45, 2001.
[29]___,Quasi-Chebyshev subspaces in dual spaces, J. Nat. Geom.,20, nos. 1-2, pp.33–44, 2001.
[30]___,On pseudo-Chebyshev subspaces in normed linear spaces, J. Nat. Geom.,24,nos. 1–2, pp. 37–56, 2003.
[31] Mohebi, H. andRezapour,Sh.,On weak compactness of the set of extensions of acontinuous linear functional, J. Nat. Geom.,22, nos. 1–2, pp. 91–102, 2002.
[32] Mustata, C.,Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev.Anal. Numer. Theor. Approx.,30, no. 1, pp. 61–67, 2001.
[33]___,On the extremal semi-Lipschitz functions, Rev. Anal. Numer. Theor. Approx.,31, no. 1, pp. 103–108, 2002.
[34]___,A Phelps type theorem for spaces with asymmetric norms, Bul. Stiint. Univ.Baia Mare, Ser. B, Matematica-Informatica,18, no. 2, pp. 275–280, 2002.
[35]___,On the uniqueness of the extension and unique best approximation in the dual ofan asymmetric linear space, Rev. Anal. Numer. Theor. Approx.,32, no. 2, pp. 187–192,2003.

[36] Renxing Ni,Existence of generalized nearest points, Taiwanese J. Math.,7, no. 1, pp.115–128, 2003.
[37] Phelps, R. R.,Uniqueness of Hahn-Banach extensions and best approximations, Trans.Amer. Marth Soc.,95, pp. 238–255, 1960.
[38] Rezapour, Sh.,∈-weakly Chebyshev subspaces of Banach spaces, Anal. Theory Appl.,19, no. 2, pp. 130–135, 2003.
[39] Romaguera, S. and Sanchis, M.,Semi-Lipschitz functions and best approximation inquasi-metric spaces, J. Approx. Theory,103, no. 2, pp. 292–301, 2000.
[40] Romaguera, S. and Schellekens, M.,Duality and quasi-normability for complexityspaces, Appl. Gen. Topol.,3, no. 1, pp. 91–112, 2002.
[41] Simonov, B. V.,On the element of best approximation in spaces with nonsymmetricquasinorm, Mat. Zametki,74, no. 6, pp. 902–912, 2003.
[42] Singer, I.,Best Approximation in Normed Linear Spaces by Elements of Linear Sub-spaces, Editura Academiei Romane and Springer-Verlag, Bucharest-New York-Berlin,1970.
[43] Zanco, C. and Zucchi, A.,Moduli of rotundity and smoothness for convex bodies,Bolletino U. M. I., (7),7-B, pp. 833–855, 1993

Paper (preprint) in HTML form

2006-Mustata-Best approximation in spaces with asymmetric norm-Jnaat

BEST APPROXIMATION IN SPACES WITH ASYMMETRIC NORM

S. COBZAŞ* and C. MUSTĂŢA ^(†){ }^{\dagger}

Abstract

In this paper we shall present some results on spaces with asymmetric seminorms, with emphasis on best approximation problems in such spaces.

MSC 2000. 41A65.
Keywords. Spaces with asymmetric norm, best approximation, Hahn-Banach theorem, characterization of best approximation.

1. INTRODUCTION

Let X X XXX be a real vector space. An asymmetric seminorm on X X XXX is a positive sublinear functional p : X [ 0 , ) p : X [ 0 , ) p:X rarr[0,oo)p: X \rightarrow[0, \infty)p:X[0,), i.e. p p ppp satisfies the conditions:
(AN1) p ( x ) 0 p ( x ) 0 p(x) >= 0p(x) \geq 0p(x)0;
(AN2) p ( t x ) = t p ( x ) p ( t x ) = t p ( x ) p(tx)=tp(x)p(t x)=t p(x)p(tx)=tp(x);
(AN3) p ( x + y ) p ( x ) + p ( y ) p ( x + y ) p ( x ) + p ( y ) p(x+y) <= p(x)+p(y)p(x+y) \leq p(x)+p(y)p(x+y)p(x)+p(y),
for all x , y X x , y X x,y in Xx, y \in Xx,yX and t 0 t 0 t >= 0t \geq 0t0.
The function p ¯ : X [ 0 , ) p ¯ : X [ 0 , ) bar(p):X rarr[0,oo)\bar{p}: X \rightarrow[0, \infty)p¯:X[0,) defined by p ¯ ( x ) = p ( x ) , x X p ¯ ( x ) = p ( x ) , x X bar(p)(x)=p(-x),x in X\bar{p}(x)=p(-x), x \in Xp¯(x)=p(x),xX, is another positive sublinear functional on X X XXX, called the conjugate of p p ppp, and
(1.1) p s ( x ) = max { p ( x ) , p ( x ) } , x X (1.1) p s ( x ) = max { p ( x ) , p ( x ) } , x X {:(1.1)p^(s)(x)=max{p(x)","p(-x)}","x in X:}\begin{equation*} p^{s}(x)=\max \{p(x), p(-x)\}, x \in X \tag{1.1} \end{equation*}(1.1)ps(x)=max{p(x),p(x)},xX
is a seminorm on X X XXX and the inequalities
(1.2) | p ( x ) p ( y ) | p s ( x y ) and | p ¯ ( x ) p ¯ ( y ) | p s ( x y ) (1.2) | p ( x ) p ( y ) | p s ( x y )  and  | p ¯ ( x ) p ¯ ( y ) | p s ( x y ) {:(1.2)|p(x)-p(y)| <= p^(s)(x-y)quad" and "quad| bar(p)(x)- bar(p)(y)| <= p^(s)(x-y):}\begin{equation*} |p(x)-p(y)| \leq p^{s}(x-y) \quad \text { and } \quad|\bar{p}(x)-\bar{p}(y)| \leq p^{s}(x-y) \tag{1.2} \end{equation*}(1.2)|p(x)p(y)|ps(xy) and |p¯(x)p¯(y)|ps(xy)
hold for all x , y X x , y X x,y in Xx, y \in Xx,yX. If the seminorm p s p s p^(s)p^{s}ps is a norm on X X XXX then we say that p p ppp is an asymmetric norm on X X XXX. This means that, beside (AN1)-(AN3), it satisfies also the condition
(AN4) p ( x ) = 0 p ( x ) = 0 p(x)=0p(x)=0p(x)=0 and p ( x ) = 0 p ( x ) = 0 p(-x)=0p(-x)=0p(x)=0 imply x = 0 x = 0 x=0x=0x=0.
The pair ( X , p X , p X,pX, pX,p ), where X X XXX is a linear space and p p ppp is an asymmetric seminorm on X X XXX is called a space with asymmetric seminorm, respectively a space with asymmetric norm, if p p ppp is an asymmetric norm.
The function ρ : X × X [ 0 ; ) ρ : X × X [ 0 ; ) rho:X xx X rarr[0;oo)\rho: X \times X \rightarrow[0 ; \infty)ρ:X×X[0;) defined by ρ ( x , y ) = p ( y x ) , x , y X ρ ( x , y ) = p ( y x ) , x , y X rho(x,y)=p(y-x),x,y in X\rho(x, y)=p(y-x), x, y \in Xρ(x,y)=p(yx),x,yX, is an asymmetric semimetric on X X XXX. Denote by
B p ( x , r ) = { x X : p ( x x ) < r } B p ( x , r ) = x X : p x x < r B_(p)^(')(x,r)={x^(')in X:p(x^(')-x) < r}B_{p}^{\prime}(x, r)=\left\{x^{\prime} \in X: p\left(x^{\prime}-x\right)<r\right\}Bp(x,r)={xX:p(xx)<r} and B p ( x , r ) = { x X : p ( x x ) r } B p ( x , r ) = x X : p x x r B_(p)(x,r)={x^(')in X:p(x^(')-x) <= r}B_{p}(x, r)=\left\{x^{\prime} \in X: p\left(x^{\prime}-x\right) \leq r\right\}Bp(x,r)={xX:p(xx)r}, the open, respectively closed, ball in X X XXX of center x x xxx and radius r > 0 r > 0 r > 0r>0r>0. Denoting by
B p = B p ( 0 , 1 ) and B p = B p ( 0 , 1 ) , B p = B p ( 0 , 1 )  and  B p = B p ( 0 , 1 ) , B_(p)^(')=B_(p)^(')(0,1)" and "B_(p)=B_(p)(0,1),B_{p}^{\prime}=B_{p}^{\prime}(0,1) \text { and } B_{p}=B_{p}(0,1),Bp=Bp(0,1) and Bp=Bp(0,1),
the corresponding unit balls then
B p ( x , r ) = x + r B p and B p ( x , r ) = x + r B p B p ( x , r ) = x + r B p  and  B p ( x , r ) = x + r B p B_(p)^(')(x,r)=x+rB_(p)^(')" and "B_(p)(x,r)=x+rB_(p)B_{p}^{\prime}(x, r)=x+r B_{p}^{\prime} \text { and } B_{p}(x, r)=x+r B_{p}Bp(x,r)=x+rBp and Bp(x,r)=x+rBp
The unit balls B p B p B_(p)^(')B_{p}^{\prime}Bp and B p B p B_(p)B_{p}Bp are convex absorbing subsets of the space X X XXX and p p ppp agrees with the Minkowski functional associated to any of them. Recall that for an absorbing subset C C CCC of X X XXX the Minkowski functional p C : X [ 0 ; ) p C : X [ 0 ; ) p_(C):X rarr[0;oo)p_{C}: X \rightarrow[0 ; \infty)pC:X[0;) is defined by
p C ( x ) = inf { t > 0 : x t C } p C ( x ) = inf { t > 0 : x t C } p_(C)(x)=i n f{t > 0:x in tC}p_{C}(x)=\inf \{t>0: x \in t C\}pC(x)=inf{t>0:xtC}
If C C CCC is absorbing and convex, then p C p C p_(C)p_{C}pC is a positive sublinear functional, and
{ x X : p C ( x ) < 1 } C { x X : p C ( x ) 1 } x X : p C ( x ) < 1 C x X : p C ( x ) 1 {x in X:p_(C)(x) < 1}sub C sub{x in X:p_(C)(x) <= 1}\left\{x \in X: p_{C}(x)<1\right\} \subset C \subset\left\{x \in X: p_{C}(x) \leq 1\right\}{xX:pC(x)<1}C{xX:pC(x)1}
An asymmetric seminorm p p ppp generates a topology τ p τ p tau_(p)\tau_{p}τp on X X XXX, having as basis of neighborhoods of a point x X x X x in Xx \in XxX the family { B p ( x , r ) : r > 0 } B p ( x , r ) : r > 0 {B_(p)^(')(x,r):r > 0}\left\{B_{p}^{\prime}(x, r): r>0\right\}{Bp(x,r):r>0} of open p p ppp-balls. The family { B p ( x , r ) : r > 0 } B p ( x , r ) : r > 0 {B_(p)(x,r):r > 0}\left\{B_{p}(x, r): r>0\right\}{Bp(x,r):r>0} of closed p p ppp-balls is also a neighborhood basis at x x xxx for τ p τ p tau_(p)\tau_{p}τp.
The topology τ p τ p tau_(p)\tau_{p}τp is translation invariant, i.e. the addition + : X × X X + : X × X X +:X xx X rarr X+: X \times X \rightarrow X+:X×XX is continuous, but the multiplication by scalars : R × X X : R × X X *:Rxx X rarr X\cdot: \mathbb{R} \times X \rightarrow X:R×XX need not be continuous, as it is shown by some examples (see [7]).
The ball B p ( x , r ) B p ( x , r ) B_(p)^(')(x,r)B_{p}^{\prime}(x, r)Bp(x,r) is τ p τ p tau_(p)\tau_{p}τp-open but the ball B p ( x , r ) B p ( x , r ) B_(p)(x,r)B_{p}(x, r)Bp(x,r) need not to be τ p τ p tau_(p)\tau_{p}τp-closed, as can be seen from the following typical example.
Example 1.1. Consider on R R R\mathbb{R}R the asymmetric seminorm u ( α ) = max { α , 0 } u ( α ) = max { α , 0 } u(alpha)=max{alpha,0}u(\alpha)=\max \{\alpha, 0\}u(α)=max{α,0}, α R α R alpha inR\alpha \in \mathbb{R}αR, and denote by R u R u R_(u)\mathbb{R}_{u}Ru the space R R R\mathbb{R}R equipped with the topology τ u τ u tau_(u)\tau_{u}τu generated by u u uuu. The conjugate seminorm is u ¯ ( α ) = min { α , 0 } u ¯ ( α ) = min { α , 0 } bar(u)(alpha)=-min{alpha,0}\bar{u}(\alpha)=-\min \{\alpha, 0\}u¯(α)=min{α,0}, and u s ( α ) = max { u ( α ) , u ¯ ( α ) } = | α | u s ( α ) = max { u ( α ) , u ¯ ( α ) } = | α | u^(s)(alpha)=max{u(alpha), bar(u)(alpha)}=|alpha|u^{s}(\alpha)= \max \{u(\alpha), \bar{u}(\alpha)\}=|\alpha|us(α)=max{u(α),u¯(α)}=|α|. The topology τ u τ u tau_(u)\tau_{u}τu, called the upper topology of R R R\mathbb{R}R, is generated by the intervals of the form ( ; a ) , a R ( ; a ) , a R (-oo;a),a inR(-\infty ; a), a \in \mathbb{R}(;a),aR, and the family { ( ; α + ϵ ) : ϵ > 0 } { ( ; α + ϵ ) : ϵ > 0 } {(-oo;alpha+epsilon):epsilon > 0}\{(-\infty ; \alpha+\epsilon): \epsilon>0\}{(;α+ϵ):ϵ>0} is a neighborhood basis of every point α R α R alpha inR\alpha \in \mathbb{R}αR. The set ( ; 1 ) = B u ( 0 , 1 ) ( ; 1 ) = B u ( 0 , 1 ) (-oo;1)=B_(u)^(')(0,1)(-\infty ; 1)=B_{u}^{\prime}(0,1)(;1)=Bu(0,1) is τ u τ u tau_(u)\tau_{u}τu-open, and the ball B u ( 0 , 1 ) = ( ; 1 ] B u ( 0 , 1 ) = ( ; 1 ] B_(u)(0,1)=(-oo;1]B_{u}(0,1)=(-\infty ; 1]Bu(0,1)=(;1] is not τ u τ u tau_(u)\tau_{u}τu-closed because R B u ( 0 , 1 ) = ( 1 ; ) R B u ( 0 , 1 ) = ( 1 ; ) R\\B_(u)(0,1)=(1;oo)\mathbb{R} \backslash B_{u}(0,1)=(1 ; \infty)RBu(0,1)=(1;) is not τ u τ u tau_(u)\tau_{u}τu-open.
The topology τ p τ p tau_(p)\tau_{p}τp could not be Hausdorff even if p p ppp is an asymmetric norm on X X XXX. A necessary and sufficient condition in order that τ p τ p tau_(p)\tau_{p}τp be Hausdorff was given in [22]. Putting
(1.3) p ~ ( x ) = inf { p ( x ) + p ( x x ) : x X } , x X , (1.3) p ~ ( x ) = inf p x + p x x : x X , x X , {:(1.3) tilde(p)(x)=i n f{p(x^('))+p(x^(')-x):x^(')in X}","x in X",":}\begin{equation*} \tilde{p}(x)=\inf \left\{p\left(x^{\prime}\right)+p\left(x^{\prime}-x\right): x^{\prime} \in X\right\}, x \in X, \tag{1.3} \end{equation*}(1.3)p~(x)=inf{p(x)+p(xx):xX},xX,
it follows that p ~ p ~ tilde(p)\tilde{p}p~ is the greatest (symmetric) seminorm majorized by p p ppp and the topology τ p τ p tau_(p)\tau_{p}τp is Hausdorff if and only if p ~ ( x ) > 0 p ~ ( x ) > 0 tilde(p)(x) > 0\tilde{p}(x)>0p~(x)>0 for every x 0 x 0 x!=0x \neq 0x0. Changing x x xxx
to x x -x-xx and taking x = 0 x = 0 x^(')=0x^{\prime}=0x=0 it follows that, in this case, p ( x ) > 0 p ( x ) > 0 p(x) > 0p(x)>0p(x)>0 for every x 0 x 0 x!=0x \neq 0x0, but this condition is not sufficient for τ p τ p tau_(p)\tau_{p}τp to be Hausdorff, see [22].
Spaces with asymmetric seminorms were investigated in a series of papers, emphasizing similarities with seminormed spaces as well as differences, see [1, 2, 3, 7, 17, 18, 19, 21, 22, and the references quoted therein. Among the differences we mention the fact that the dual of a space with asymmetric seminorm is not a linear space but merely a convex cone in the algebraic dual X # X # X^(#)X^{\#}X# of X X XXX. This is due to the fact that the continuity of a linear functional φ φ varphi\varphiφ on ( X , p X , p X,pX, pX,p ) does not imply the continuity of φ φ -varphi-\varphiφ. For instance, φ ( u ) = u φ ( u ) = u varphi(u)=u\varphi(u)=uφ(u)=u is continuous on ( R , u R , u R,u\mathbb{R}, uR,u ) but ψ ( u ) = u ψ ( u ) = u psi(u)=-u\psi(u)=-uψ(u)=u is not continuous. For an other example see [7]. The study of spaces with asymmetric norm was motivated and stimulated also by their applications in the complexity of algorithms, see [20, 40].
Some continuity properties of linear functionals in the symmetric case have their analogs in the asymmetric one.
Proposition 1.2. [21] Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm and φ : X R φ : X R varphi:X rarrR\varphi: X \rightarrow \mathbb{R}φ:XR a linear functional. Then the following are equivalent.
(1) φ φ varphi\varphiφ is τ p τ u τ p τ u tau_(p)-tau_(u)\tau_{p}-\tau_{u}τpτu-continuous at 0 X 0 X 0in X0 \in X0X.
(2) φ φ varphi\varphiφ is τ p τ u τ p τ u tau_(p)-tau_(u)\tau_{p}-\tau_{u}τpτu-continuous on X X XXX.
(3) There exists L 0 L 0 L >= 0L \geq 0L0 such that
(1.4) x X , φ ( x ) L p ( x ) . (1.4) x X , φ ( x ) L p ( x ) . {:(1.4)AA x in X","quad varphi(x) <= Lp(x).:}\begin{equation*} \forall x \in X, \quad \varphi(x) \leq L p(x) . \tag{1.4} \end{equation*}(1.4)xX,φ(x)Lp(x).
(4) φ φ varphi\varphiφ is upper semi-continuous from ( X , τ p ) X , τ p (X,tau_(p))\left(X, \tau_{p}\right)(X,τp) to ( R , | | ) ( R , | | ) (R,||)(\mathbb{R},| |)(R,||).
A linear functional satisfying (1.4) is called semi-Lipschitz (or p-bounded) and L L LLL a semi-Lipschitz constant. Denote by X p b X p b X_(p)^(b)X_{p}^{b}Xpb the set of all bounded linear functionals on the space with asymmetric seminorm ( X , p X , p X,pX, pX,p ). As we did mention, X p b X p b X_(p)^(b)X_{p}^{b}Xpb is a convex cone in X # X # X^(#)X^{\#}X#.
One can define a norm | p p |||_(p)\|\left.\right|_{p}|p on X p b X p b X_(p)^(b)X_{p}^{b}Xpb by
(1.5) φ | p = sup { φ ( x ) : x B p } , φ X p b (1.5) φ p = sup φ ( x ) : x B p , φ X p b {:(1.5)|| varphi|_(p)=s u p{varphi(x):x inB_(p)}","varphi inX_(p)^(b):}\begin{equation*} \|\left.\varphi\right|_{p}=\sup \left\{\varphi(x): x \in B_{p}\right\}, \varphi \in X_{p}^{b} \tag{1.5} \end{equation*}(1.5)φ|p=sup{φ(x):xBp},φXpb
Some useful properties of this norm, whose proofs can be found in [9, 12], are collected in the following proposition. We agree to call a linear functional φ φ varphi\varphiφ on ( X , p X , p X,pX, pX,p ), ( p , p ¯ p , p ¯ p, bar(p)p, \bar{p}p,p¯ )-bounded if it is both p p ppp - and p ¯ p ¯ bar(p)\bar{p}p¯-bounded, where p ¯ p ¯ bar(p)\bar{p}p¯ is the seminorm conjugate to p p ppp.
Proposition 1.3. If φ φ varphi\varphiφ is a bounded linear functional on a space with asymmetric seminorm ( X , p X , p X,pX, pX,p ), p 0 p 0 p!=0p \neq 0p0, then the following assertions hold.
(1) φ | p φ p || varphi|_(p)\|\left.\varphi\right|_{p}φ|p is the smallest of the numbers L 0 L 0 L >= 0L \geq 0L0 for which the inequality (1.4) holds.
(2) We have
(1.6) φ | p = sup { φ ( x ) / p ( x ) : x X , p ( x ) > 0 } (1.7) = sup { φ ( x ) : x X , p ( x ) < 1 } (1.8) = sup { φ ( x ) : x X , p ( x ) = 1 } . (1.6) φ p = sup { φ ( x ) / p ( x ) : x X , p ( x ) > 0 } (1.7) = sup { φ ( x ) : x X , p ( x ) < 1 } (1.8) = sup { φ ( x ) : x X , p ( x ) = 1 } . {:[(1.6)|| varphi|_(p)=s u p{varphi(x)//p(x):x in X","p(x) > 0}],[(1.7)=s u p{varphi(x):x in X","p(x) < 1}],[(1.8)=s u p{varphi(x):x in X","p(x)=1}.]:}\begin{align*} \|\left.\varphi\right|_{p} & =\sup \{\varphi(x) / p(x): x \in X, p(x)>0\} \tag{1.6}\\ & =\sup \{\varphi(x): x \in X, p(x)<1\} \tag{1.7}\\ & =\sup \{\varphi(x): x \in X, p(x)=1\} . \tag{1.8} \end{align*}(1.6)φ|p=sup{φ(x)/p(x):xX,p(x)>0}(1.7)=sup{φ(x):xX,p(x)<1}(1.8)=sup{φ(x):xX,p(x)=1}.
(3) If φ 0 φ 0 varphi!=0\varphi \neq 0φ0, then φ | p > 0 φ p > 0 || varphi|_(p) > 0\|\left.\varphi\right|_{p}>0φ|p>0. Also, if φ 0 φ 0 varphi!=0\varphi \neq 0φ0 and φ ( x 0 ) = φ | p φ x 0 = φ p varphi(x_(0))=|| varphi|_(p)\varphi\left(x_{0}\right)=\|\left.\varphi\right|_{p}φ(x0)=φ|p for some x 0 B p x 0 B p x_(0)inB_(p)x_{0} \in B_{p}x0Bp, then p ( x 0 ) = 1 p x 0 = 1 p(x_(0))=1p\left(x_{0}\right)=1p(x0)=1.
(4) If φ φ varphi\varphiφ is ( p , p ¯ p , p ¯ p, bar(p)p, \bar{p}p,p¯ )-bounded, then
φ ( r B p ) = ( r φ | p ¯ , r φ | p ) and φ ( r B p ¯ ) = ( r φ | p , r φ | p ¯ ) where B p = { x X : p ( x ) < 1 } , B p ¯ = { x X : p ¯ ( x ) < 1 } and r > 0 . φ r B p = r φ p ¯ , r φ p  and  φ r B p ¯ = r φ p , r φ p ¯  where  B p = { x X : p ( x ) < 1 } , B p ¯ = { x X : p ¯ ( x ) < 1 }  and  r > 0 . {:[varphi(rB_(p)^('))=(-r|| varphi|_( bar(p)),r||varphi|_(p))quad" and "quad varphi(rB_( bar(p))^('))=(-r|| varphi|_(p),r||varphi|_( bar(p)))],[" where "B_(p)^(')={x in X:p(x) < 1}","B_( bar(p))^(')={x in X: bar(p)(x) < 1}" and "r > 0.]:}\begin{gathered} \varphi\left(r B_{p}^{\prime}\right)=\left(-\left.r\left\|\left.\varphi\right|_{\bar{p}}, r\right\| \varphi\right|_{p}\right) \quad \text { and } \quad \varphi\left(r B_{\bar{p}}^{\prime}\right)=\left(-\left.r\left\|\left.\varphi\right|_{p}, r\right\| \varphi\right|_{\bar{p}}\right) \\ \text { where } B_{p}^{\prime}=\{x \in X: p(x)<1\}, B_{\bar{p}}^{\prime}=\{x \in X: \bar{p}(x)<1\} \text { and } r>0 . \end{gathered}φ(rBp)=(rφ|p¯,rφ|p) and φ(rBp¯)=(rφ|p,rφ|p¯) where Bp={xX:p(x)<1},Bp¯={xX:p¯(x)<1} and r>0.
(5) If φ φ varphi\varphiφ is p p ppp-bounded but not p ¯ p ¯ bar(p)\bar{p}p¯-bounded, then
φ ( r B p ) = ( , r φ | p ) φ r B p = , r φ p varphi(rB_(p)^('))=(-oo,r|| varphi|_(p))\varphi\left(r B_{p}^{\prime}\right)=\left(-\infty, r \|\left.\varphi\right|_{p}\right)φ(rBp)=(,rφ|p)
Remark 1.4. A linear functional φ : X R φ : X R varphi:X rarrR\varphi: X \rightarrow \mathbb{R}φ:XR is ( p , p ¯ ) ( p , p ¯ ) (p, bar(p))(p, \bar{p})(p,p¯)-bounded if and only if
(1.9) x X , | φ ( x ) | L p ( x ) (1.9) x X , | φ ( x ) | L p ( x ) {:(1.9)AA x in X","quad|varphi(x)| <= Lp(x):}\begin{equation*} \forall x \in X, \quad|\varphi(x)| \leq L p(x) \tag{1.9} \end{equation*}(1.9)xX,|φ(x)|Lp(x)
for some L 0 L 0 L >= 0L \geq 0L0.
Indeed, if L 1 , L 2 0 L 1 , L 2 0 L_(1),L_(2) >= 0L_{1}, L_{2} \geq 0L1,L20 are such that
φ ( x ) L 1 p ( x ) and φ ( x ) L 2 p ( x ) , φ ( x ) L 1 p ( x )  and  φ ( x ) L 2 p ( x ) , varphi(x) <= L_(1)p(x)quad" and "quad varphi(x) <= L_(2)p(-x),\varphi(x) \leq L_{1} p(x) \quad \text { and } \quad \varphi(x) \leq L_{2} p(-x),φ(x)L1p(x) and φ(x)L2p(x),
for all x X x X x in Xx \in XxX, then φ ( x ) = φ ( x ) L 2 p ( x ) , x X φ ( x ) = φ ( x ) L 2 p ( x ) , x X -varphi(x)=varphi(-x) <= L_(2)p(x),x in X-\varphi(x)=\varphi(-x) \leq L_{2} p(x), x \in Xφ(x)=φ(x)L2p(x),xX, so (1.9) holds with L = max { L 1 , L 2 } L = max L 1 , L 2 L=max{L_(1),L_(2)}L=\max \left\{L_{1}, L_{2}\right\}L=max{L1,L2}.
Denote by X p ¯ b X p ¯ b X_( bar(p))^(b)X_{\bar{p}}^{b}Xp¯b the dual cone to ( X , p ¯ X , p ¯ X, bar(p)X, \bar{p}X,p¯ ) and let X X X^(**)X^{*}X be the conjugate of the seminormed space ( X , p s ) X , p s (X,p^(s))\left(X, p^{s}\right)(X,ps), where p s p s p^(s)p^{s}ps is the symmetric seminorm associated to p p ppp and p ¯ p ¯ bar(p)\bar{p}p¯ (see (1.1)).
Since
φ ( x ) L p ( x ) L p s ( x ) , x X , φ ( x ) L p ( x ) L p s ( x ) , x X , varphi(x) <= Lp(x) <= Lp^(s)(x),x in X,\varphi(x) \leq L p(x) \leq L p^{s}(x), x \in X,φ(x)Lp(x)Lps(x),xX,
implies | φ ( x ) | L p ( x ) , x X | φ ( x ) | L p ( x ) , x X |varphi(x)| <= Lp(x),x in X|\varphi(x)| \leq L p(x), x \in X|φ(x)|Lp(x),xX, it follows that X p b X p b X_(p)^(b)X_{p}^{b}Xpb is contained in the dual X X X^(**)X^{*}X of ( X , p s X , p s X,p^(s)X, p^{s}X,ps ). Similarly, X p ¯ b X p ¯ b X_( bar(p))^(b)X_{\bar{p}}^{b}Xp¯b is contained in X X X^(**)X^{*}X too.
For x X x X x^(**)inX^(**)x^{*} \in X^{*}xX put
x = sup { x ( x ) : x X , p s ( x ) 1 } . x = sup x ( x ) : x X , p s ( x ) 1 . ||x^(**)||=s u p{x^(**)(x):x in X,p^(s)(x) <= 1}.\left\|x^{*}\right\|=\sup \left\{x^{*}(x): x \in X, p^{s}(x) \leq 1\right\} .x=sup{x(x):xX,ps(x)1}.
Then ||||:}\left\|\|\right. is a norm on X X X^(**)X^{*}X and X X X^(**)X^{*}X is complete with respect to this norm, i.e. is a Banach space (even if p s p s p^(s)p^{s}ps is not a norm, see [11]).
Proposition 1.5. Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm.
(1) The cones X p b X p b X_(p)^(b)X_{p}^{b}Xpb and X p ¯ b X p ¯ b X_( bar(p))^(b)X_{\bar{p}}^{b}Xp¯b are contained in X X X^(**)X^{*}X and
φ | p = φ , φ X p b and ψ | p ¯ = ψ , ψ X p ¯ b φ p = φ , φ X p b  and  ψ p ¯ = ψ , ψ X p ¯ b || varphi|_(p)=||varphi||,varphi inX_(p)^(b)quad" and "quad|| psi|_( bar(p))=||psi||,psi inX_( bar(p))^(b)\left\|\left.\varphi\right|_{p}=\right\| \varphi \|, \varphi \in X_{p}^{b} \quad \text { and } \quad\left\|\left.\psi\right|_{\bar{p}}=\right\| \psi \|, \psi \in X_{\bar{p}}^{b}φ|p=φ,φXpb and ψ|p¯=ψ,ψXp¯b
(2) We have φ | p = φ | p ¯ φ p = φ p ¯ || varphi|_(p)=||- varphi|_( bar(p))\left\|\left.\varphi\right|_{p}=\right\|-\left.\varphi\right|_{\bar{p}}φ|p=φ|p¯, so that
φ X p b and φ | p r φ X p ¯ b and φ | p ¯ r . φ X p b  and  φ p r φ X p ¯ b  and  φ p ¯ r varphi inX_(p)^(b)" and "|| varphi|_(p) <= r Longleftrightarrow-varphi inX_( bar(p))^(b)" and "||- varphi|_( bar(p)) <= r". "\varphi \in X_{p}^{b} \text { and } \|\left.\varphi\right|_{p} \leq r \Longleftrightarrow-\varphi \in X_{\bar{p}}^{b} \text { and } \|-\left.\varphi\right|_{\bar{p}} \leq r \text {. }φXpb and φ|prφXp¯b and φ|p¯r
The properties of the dual space X p b X p b X_(p)^(b)X_{p}^{b}Xpb were investigated in [21] where, among other things, the analog of the weak* topology of X X XXX was defined. This is denoted by w b w b w^(b)w^{b}wb and has a neighborhood basis at a point φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb, the family
V x 1 , , x n ; ϵ ( φ ) = { ψ X p b : ψ ( x k ) φ ( x k ) < ϵ , k = 1 , , n } V x 1 , , x n ; ϵ ( φ ) = ψ X p b : ψ x k φ x k < ϵ , k = 1 , , n V_(x_(1),dots,x_(n);epsilon)(varphi)={psi inX_(p)^(b):psi(x_(k))-varphi(x_(k)) < epsilon,k=1,dots,n}V_{x_{1}, \ldots, x_{n} ; \epsilon}(\varphi)=\left\{\psi \in X_{p}^{b}: \psi\left(x_{k}\right)-\varphi\left(x_{k}\right)<\epsilon, k=1, \ldots, n\right\}Vx1,,xn;ϵ(φ)={ψXpb:ψ(xk)φ(xk)<ϵ,k=1,,n}
for n N , x 1 , , x n X n N , x 1 , , x n X n inN,x_(1),dots,x_(n)in Xn \in \mathbb{N}, x_{1}, \ldots, x_{n} \in XnN,x1,,xnX and ϵ > 0 ϵ > 0 epsilon > 0\epsilon>0ϵ>0. The w b w b w^(b)w^{b}wb-convergence of a net ( φ i : i I φ i : i I varphi_(i):i in I\varphi_{i}: i \in Iφi:iI ) in X p b X p b X_(p)^(b)X_{p}^{b}Xpb to φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb can be characterized in the following way
φ i w b φ x X , φ i ( x ) φ ( x ) in ( R , u ) . φ i w b φ x X , φ i ( x ) φ ( x )  in  ( R , u ) varphi_(i)rarr"w^(b)"varphi Longleftrightarrow AA x in X,varphi_(i)(x)rarr varphi(x)" in "(R,u)". "\varphi_{i} \xrightarrow{w^{b}} \varphi \Longleftrightarrow \forall x \in X, \varphi_{i}(x) \rightarrow \varphi(x) \text { in }(\mathbb{R}, u) \text {. }φiwbφxX,φi(x)φ(x) in (R,u)
It was shown that w b w b w^(b)w^{b}wb is the restriction of the topology w = σ ( X , X ) w = σ X , X w^(**)=sigma(X^(**),X)w^{*}=\sigma\left(X^{*}, X\right)w=σ(X,X) on X X X^(**)X^{*}X to X p b X p b X_(p)^(b)X_{p}^{b}Xpb (see [21]). This study was continued in [9] where separation theorems for convex sets and a Krein-Milman type theorem were proved. In 10 asymmetric locally convex spaces were introduced and their basic properties were studied.
Another direction of investigation is that of best approximation in spaces with asymmetric seminorm. Due to the asymmetry of the seminorm we have two distances. For a nonempty subset Y Y YYY of a space with asymmetric seminorm ( X , p X , p X,pX, pX,p ) and x X x X x in Xx \in XxX put
(1.10) d p ( x , Y ) = inf { p ( y x ) : y Y } (1.10) d p ( x , Y ) = inf { p ( y x ) : y Y } {:(1.10)d_(p)(x","Y)=i n f{p(y-x):y in Y}:}\begin{equation*} d_{p}(x, Y)=\inf \{p(y-x): y \in Y\} \tag{1.10} \end{equation*}(1.10)dp(x,Y)=inf{p(yx):yY}
and
(1.11) d p ( Y , x ) = inf { p ( x y ) : y Y } . (1.11) d p ( Y , x ) = inf { p ( x y ) : y Y } . {:(1.11)d_(p)(Y","x)=i n f{p(x-y):y in Y}.:}\begin{equation*} d_{p}(Y, x)=\inf \{p(x-y): y \in Y\} . \tag{1.11} \end{equation*}(1.11)dp(Y,x)=inf{p(xy):yY}.
Note that d p ( Y , x ) = d p ¯ ( x , Y ) d p ( Y , x ) = d p ¯ ( x , Y ) d_(p)(Y,x)=d_( bar(p))(x,Y)d_{p}(Y, x)=d_{\bar{p}}(x, Y)dp(Y,x)=dp¯(x,Y).
Duality formulae and characterization results for best approximation in spaces with asymmetric norm were obtained in [5, 6, 9, 12, 34, 35, The papers [32, 33, 39] are concerned with best approximation in spaces of semiLipschitz functions defined on asymmetric metric spaces (called quasi-metric spaces) in connection with the extension properties of these functions. In the papers [13, 24, 25, 36, supposing that p p ppp is the Minkowski functional p C p C p_(C)p_{C}pC of a bounded convex body C C CCC in a normed space ( X , X , X,||||X,\| \|X, ), some generic existence results for best approximation with respect to the asymmetric norm p C p C p_(C)p_{C}pC were proved, extending similar results from the normed case. As in the symmetric case, the geometric properties of the body C C CCC (or, equivalently, of the functional p C p C p_(C)p_{C}pC ) are essential. A study of the moduli of convexity and smoothness corresponding to p C p C p_(C)p_{C}pC is done in [43].
Best approximation with respect to some asymmetric norms in concrete function spaces of continuous or of integrable functions, called sign-sensitive approximation, was also studied in a series of papers, see [14, 15, 16, 41, the references quoted therein, and the monograph by Krein and Nudelman [23, Ch. 9, §5]).
The present paper, which can be viewed as a sequel to 12 and [9], is concerned mainly with characterizations of the elements of best approximation in a subspace Y Y YYY of a space with asymmetric norm ( X , p X , p X,pX, pX,p ) and duality results for best approximation. As in the case of (symmetric) normed spaces the characterizations will be done in terms of some linear bounded functionals vanishing on Y Y YYY. The duality results will involve the annihilator in X p b X p b X_(p)^(b)X_{p}^{b}Xpb of the subspace Y Y YYY. For this reason we start by recalling some extension results for bounded linear functionals on spaces with asymmetric seminorm. For proofs, all resorting to the classical Hahn-Banach extension theorem, see [9, 12].
Theorem 1.6. Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm and Y Y YYY a linear subspace of X X XXX. If φ 0 : Y R φ 0 : Y R varphi_(0):Y rarrR\varphi_{0}: Y \rightarrow \mathbb{R}φ0:YR is a linear p p ppp-bounded functional on Y Y YYY then there exists a p p ppp-bounded linear functional φ φ varphi\varphiφ defined on the whole X X XXX such that
φ | Y = φ 0 and φ | p = φ 0 | p . φ Y = φ 0  and  φ p = φ 0 p . varphi|_(Y)=varphi_(0)quad" and " quad|| varphi|_(p)=||varphi_(0)|_(p).\left.\varphi\right|_{Y}=\varphi_{0} \quad \text { and }\left.\quad\left\|\left.\varphi\right|_{p}=\right\| \varphi_{0}\right|_{p} .φ|Y=φ0 and φ|p=φ0|p.
We agree to call a functional φ φ varphi\varphiφ satisfying the conclusions of the above theorem a norm preserving extension of φ 0 φ 0 varphi_(0)\varphi_{0}φ0.
Based on this extension result one can prove the following existence result.
Proposition 1.7. Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm and x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X such that p ( x 0 ) > 0 p x 0 > 0 p(x_(0)) > 0p\left(x_{0}\right)>0p(x0)>0. Then there exists a p p ppp-bounded linear functional φ : X R φ : X R varphi:X rarrR\varphi: X \rightarrow \mathbb{R}φ:XR such that
φ | p = 1 and φ ( x 0 ) = p ( x 0 ) . φ p = 1  and  φ x 0 = p x 0 . || varphi|_(p)=1quad" and "quad varphi(x_(0))=p(x_(0)).\|\left.\varphi\right|_{p}=1 \quad \text { and } \quad \varphi\left(x_{0}\right)=p\left(x_{0}\right) .φ|p=1 and φ(x0)=p(x0).
In its turn, this proposition has the following corollary.
Corollary 1.8. If p ( x 0 ) > 0 p x 0 > 0 p(x_(0)) > 0p\left(x_{0}\right)>0p(x0)>0 then
p ( x 0 ) = sup { φ ( x 0 ) : φ X p b , φ | p 1 } . p x 0 = sup φ x 0 : φ X p b , φ p 1 . p(x_(0))=s u p{varphi(x_(0)):varphi inX_(p)^(b),|| varphi|_(p) <= 1}.p\left(x_{0}\right)=\sup \left\{\varphi\left(x_{0}\right): \varphi \in X_{p}^{b}, \|\left.\varphi\right|_{p} \leq 1\right\} .p(x0)=sup{φ(x0):φXpb,φ|p1}.
Moreover, there exists φ 0 X p b , φ 0 | p = 1 φ 0 X p b , φ 0 p = 1 varphi_(0)inX_(p)^(b),||varphi_(0)|_(p)=1\varphi_{0} \in X_{p}^{b}, \|\left.\varphi_{0}\right|_{p}=1φ0Xpb,φ0|p=1, such that φ 0 ( x 0 ) = p ( x 0 ) φ 0 x 0 = p x 0 varphi_(0)(x_(0))=p(x_(0))\varphi_{0}\left(x_{0}\right)=p\left(x_{0}\right)φ0(x0)=p(x0).
The following proposition is the asymmetric analog of a well known result of Hahn.
Proposition 1.9. ([12]) Let Y Y YYY be a subspace of a space with asymmetric seminorm ( X , p X , p X,pX, pX,p ) and x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X.
(1) If d := d p ( x 0 , Y ) > 0 d := d p x 0 , Y > 0 d:=d_(p)(x_(0),Y) > 0d:=d_{p}\left(x_{0}, Y\right)>0d:=dp(x0,Y)>0, then there exists φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb such that
(i) φ | Y = 0 φ Y = 0 varphi|_(Y)=0\left.\varphi\right|_{Y}=0φ|Y=0,
(ii) φ | p = 1 , φ p = 1 , || varphi|_(p)=1,quad\|\left.\varphi\right|_{p}=1, \quadφ|p=1, and
(iii) φ ( x 0 ) = d φ x 0 = d varphi(-x_(0))=d\varphi\left(-x_{0}\right)=dφ(x0)=d.
(2) If d ¯ := d p ( Y , x 0 ) > 0 d ¯ := d p Y , x 0 > 0 bar(d):=d_(p)(Y,x_(0)) > 0\bar{d}:=d_{p}\left(Y, x_{0}\right)>0d¯:=dp(Y,x0)>0, then there exists ψ X p b ψ X p b psi inX_(p)^(b)\psi \in X_{p}^{b}ψXpb such that
(j) ψ | Y = 0 ψ Y = 0 psi|_(Y)=0\left.\psi\right|_{Y}=0ψ|Y=0,
( jj ) ψ | p = 1 , ( jj ) ψ p = 1 , (jj)|| psi|_(p)=1,quad(\mathrm{jj}) \|\left.\psi\right|_{p}=1, \quad(jj)ψ|p=1, and
( jjj ) ψ ( x 0 ) = d ¯ ( jjj ) ψ x 0 = d ¯ (jjj)psi(x_(0))= bar(d)(\mathrm{jjj}) \psi\left(x_{0}\right)=\bar{d}(jjj)ψ(x0)=d¯.

2. BEST APPROXIMATION IN SPACES WITH ASYMMETRIC SEMINORM

Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm, p ¯ p ¯ bar(p)\bar{p}p¯ the seminorm conjugate to p p ppp and Y Y YYY a nonempty subset of X X XXX. The distances d p ( x , Y ) d p ( x , Y ) d_(p)(x,Y)d_{p}(x, Y)dp(x,Y) and d p ( Y , x ) d p ( Y , x ) d_(p)(Y,x)d_{p}(Y, x)dp(Y,x) from an element x X x X x in Xx \in XxX to Y Y YYY are defined by the formulae (1.10) and (1.11). An element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y such that p ( y 0 x ) = d p ( x , Y ) p y 0 x = d p ( x , Y ) p(y_(0)-x)=d_(p)(x,Y)p\left(y_{0}-x\right)=d_{p}(x, Y)p(y0x)=dp(x,Y) will be called a p p ppp-nearest point to x x xxx in Y Y YYY, and an element y 1 Y y 1 Y y_(1)in Yy_{1} \in Yy1Y such that p ( x y 1 ) = p ¯ ( y 1 x ) = d p ¯ ( x , Y ) p x y 1 = p ¯ y 1 x = d p ¯ ( x , Y ) p(x-y_(1))= bar(p)(y_(1)-x)=d_( bar(p))(x,Y)p\left(x-y_{1}\right)=\bar{p}\left(y_{1}-x\right)=d_{\bar{p}}(x, Y)p(xy1)=p¯(y1x)=dp¯(x,Y) is called a p ¯ p ¯ bar(p)\bar{p}p¯-nearest point to x x xxx in Y Y YYY.
Denote by
P Y ( x ) = { y Y : p ( y x ) = d p ( x , Y ) } , and (2.1) P ¯ Y ( x ) = { y Y : p ( x y ) = d p ( Y , x ) } , P Y ( x ) = y Y : p ( y x ) = d p ( x , Y ) ,  and  (2.1) P ¯ Y ( x ) = y Y : p ( x y ) = d p ( Y , x ) , {:[P_(Y)(x)={y in Y:p(y-x)=d_(p)(x,Y)}","" and "],[(2.1) bar(P)_(Y)(x)={y in Y:p(x-y)=d_(p)(Y,x)}","]:}\begin{align*} & P_{Y}(x)=\left\{y \in Y: p(y-x)=d_{p}(x, Y)\right\}, \text { and } \\ & \bar{P}_{Y}(x)=\left\{y \in Y: p(x-y)=d_{p}(Y, x)\right\}, \tag{2.1} \end{align*}PY(x)={yY:p(yx)=dp(x,Y)}, and (2.1)P¯Y(x)={yY:p(xy)=dp(Y,x)},
the possibly empty sets of p p ppp-nearest points, respectively p ¯ p ¯ bar(p)\bar{p}p¯-nearest points, to x x xxx in Y Y YYY. The set Y Y YYY is called p p ppp-proximinal, p p ppp-semi-Chebyshev, p p ppp-Chebyshev if
for every x X x X x in Xx \in XxX the set P Y ( x ) P Y ( x ) P_(Y)(x)P_{Y}(x)PY(x) is nonempty, contains at most one element, contains exactly one element, respectively. Similar definitions are given in the case of p ¯ p ¯ bar(p)\bar{p}p¯-nearest points. A semi-Chebyshev set is called also a uniqueness set.
For a nonempty subset Y Y YYY of a space with asymmetric seminorm ( X , p X , p X,pX, pX,p ), denote by Y p Y p Y_(p)^(_|_)Y_{p}^{\perp}Yp the annihilator of Y Y YYY in X p b X p b X_(p)^(b)X_{p}^{b}Xpb, i.e.
Y p = { φ X p b : φ | Y = 0 } . Y p = φ X p b : φ Y = 0 . Y_(p)^(_|_)={varphi inX_(p)^(b): varphi|_(Y)=0}.Y_{p}^{\perp}=\left\{\varphi \in X_{p}^{b}:\left.\varphi\right|_{Y}=0\right\} .Yp={φXpb:φ|Y=0}.
We start by a characterization of nearest points given in [12] we shall need in the sequel.
Proposition 2.1 ( [ 12 ] [ 12 ] [12][12][12] ) Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm, Y Y YYY a subspace of X X XXX and x 0 x 0 x_(0)x_{0}x0 a point in X X XXX.
(1) Suppose that d := d p ( x 0 , Y ) > 0 d := d p x 0 , Y > 0 d:=d_(p)(x_(0),Y) > 0d:=d_{p}\left(x_{0}, Y\right)>0d:=dp(x0,Y)>0. An element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is a p p ppp-nearest point to x 0 x 0 x_(0)x_{0}x0 in Y Y YYY if and only if there exists a bounded linear functional φ : X R φ : X R varphi:X rarrR\varphi: X \rightarrow \mathbb{R}φ:XR such that
(i) φ | Y = 0 φ Y = 0 varphi|_(Y)=0\left.\varphi\right|_{Y}=0φ|Y=0,
(ii) φ | p = 1 φ p = 1 || varphi|_(p)=1\|\left.\varphi\right|_{p}=1φ|p=1,
(iii) φ ( x 0 ) = p ( y 0 x 0 ) φ x 0 = p y 0 x 0 varphi(-x_(0))=p(y_(0)-x_(0))\varphi\left(-x_{0}\right)=p\left(y_{0}-x_{0}\right)φ(x0)=p(y0x0).
(2) Suppose that d ¯ := d p ( Y , x 0 ) > 0 d ¯ := d p Y , x 0 > 0 bar(d):=d_(p)(Y,x_(0)) > 0\bar{d}:=d_{p}\left(Y, x_{0}\right)>0d¯:=dp(Y,x0)>0. An element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is a p ¯ p ¯ bar(p)\bar{p}p¯-nearest point to x 0 x 0 x_(0)x_{0}x0 in Y Y YYY if and only if there exists a bounded linear functional ψ : X R ψ : X R psi:X rarrR\psi: X \rightarrow \mathbb{R}ψ:XR such that
(j) ψ | Y = 0 ψ Y = 0 psi|_(Y)=0\left.\psi\right|_{Y}=0ψ|Y=0,
( jj ) ψ | p = 1 ( jj ) ψ p = 1 (jj)|| psi|_(p)=1(\mathrm{jj}) \|\left.\psi\right|_{p}=1(jj)ψ|p=1,
(jjj) ψ ( x 0 ) = p ( x 0 y 0 ) ψ x 0 = p x 0 y 0 psi(x_(0))=p(x_(0)-y_(0))\psi\left(x_{0}\right)=p\left(x_{0}-y_{0}\right)ψ(x0)=p(x0y0).
From this theorem one can obtain characterizations of sets of nearest points.
Corollary 2.2. Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm, Y Y YYY a subspace of X , x X X , x X X,x in XX, x \in XX,xX, and Z Z ZZZ a nonempty subset of Y Y YYY.
(1) If d = d p ( x 0 , Y ) > 0 d = d p x 0 , Y > 0 d=d_(p)(x_(0),Y) > 0d=d_{p}\left(x_{0}, Y\right)>0d=dp(x0,Y)>0 then Z P Y ( x ) Z P Y ( x ) Z subP_(Y)(x)Z \subset P_{Y}(x)ZPY(x) if and only if there exists a functional φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb such that
(i) φ | Y = 0 φ Y = 0 varphi|_(Y)=0\left.\varphi\right|_{Y}=0φ|Y=0,
(ii) φ | p = 1 φ p = 1 || varphi|_(p)=1\|\left.\varphi\right|_{p}=1φ|p=1,
(iii) y Z , φ ( x 0 ) = p ( y x 0 ) y Z , φ x 0 = p y x 0 AA y in Z,varphi(-x_(0))=p(y-x_(0))\forall y \in Z, \varphi\left(-x_{0}\right)=p\left(y-x_{0}\right)yZ,φ(x0)=p(yx0).
(2) If d ¯ = d p ( Y , x 0 ) > 0 d ¯ = d p Y , x 0 > 0 bar(d)=d_(p)(Y,x_(0)) > 0\bar{d}=d_{p}\left(Y, x_{0}\right)>0d¯=dp(Y,x0)>0 then Z P ¯ Y ( x ) Z P ¯ Y ( x ) Z sub bar(P)_(Y)(x)Z \subset \bar{P}_{Y}(x)ZP¯Y(x) if and only if there exists a functional ψ X p b ψ X p b psi inX_(p)^(b)\psi \in X_{p}^{b}ψXpb such that
(j) ψ | Y = 0 ψ Y = 0 psi|_(Y)=0\left.\psi\right|_{Y}=0ψ|Y=0,
( jj ) ψ | p = 1 ( jj ) ψ p = 1 (jj)|| psi|_(p)=1(\mathrm{jj}) \|\left.\psi\right|_{p}=1(jj)ψ|p=1,
( jjj ) y Z , ψ ( x 0 ) = p ( x 0 y ) ( jjj ) y Z , ψ x 0 = p x 0 y (jjj)AA y in Z,psi(x_(0))=p(x_(0)-y)(\mathrm{jjj}) \forall y \in Z, \psi\left(x_{0}\right)=p\left(x_{0}-y\right)(jjj)yZ,ψ(x0)=p(x0y).
In the next proposition we extend to the asymmetric case some characterization results for semi-Chebyshev subspaces (see 42, Chapter I, Theorem 3.2]).
Theorem 2.3. Let Y Y YYY be a subspace of a space with asymmetric norm ( X , p X , p X,pX, pX,p ) such that p ( x ) > 0 p ( x ) > 0 p(x) > 0p(x)>0p(x)>0 for every x 0 x 0 x!=0x \neq 0x0. Then the following assertions are equivalent.
(1) Y Y YYY is a p p ppp-semi-Chebyshev subspace of X X XXX.
(2) There are no φ Y p φ Y p varphi inY_(p)^(_|_)\varphi \in Y_{p}^{\perp}φYp and x 1 , x 2 X x 1 , x 2 X x_(1),x_(2)in Xx_{1}, x_{2} \in Xx1,x2X with x 1 x 2 Y { 0 } x 1 x 2 Y { 0 } x_(1)-x_(2)in Y\\{0}x_{1}-x_{2} \in Y \backslash\{0\}x1x2Y{0}, such that
(i) φ | p = 1 φ p = 1 || varphi|_(p)=1quad\|\left.\varphi\right|_{p}=1 \quadφ|p=1 and (ii) φ ( x i ) = p ( x i ) , i = 1 , 2 φ x i = p x i , i = 1 , 2 varphi(-x_(i))=p(-x_(i)),i=1,2\varphi\left(-x_{i}\right)=p\left(-x_{i}\right), i=1,2φ(xi)=p(xi),i=1,2.
(3) There are no ψ Y p , x X ψ Y p , x X psi inY_(p)^(_|_),x in X\psi \in Y_{p}^{\perp}, x \in XψYp,xX, and y 0 Y { 0 } y 0 Y { 0 } y_(0)in Y\\{0}y_{0} \in Y \backslash\{0\}y0Y{0} such that
(j) ψ | p = 1 and (jj) ψ ( x ) = p ( x ) = p ( y 0 x ) .  (j)  ψ p = 1  and   (jj)  ψ ( x ) = p ( x ) = p y 0 x " (j) "|| psi|_(p)=1quad" and "quad" (jj) "psi(-x)=p(-x)=p(y_(0)-x)". "\text { (j) } \|\left.\psi\right|_{p}=1 \quad \text { and } \quad \text { (jj) } \psi(-x)=p(-x)=p\left(y_{0}-x\right) \text {. } (j) ψ|p=1 and  (jj) ψ(x)=p(x)=p(y0x)
Proof. (1) =>\Rightarrow (2) Suppose that (2) does not hold. Let φ Y p φ Y p varphi inY_(p)^(_|_)\varphi \in Y_{p}^{\perp}φYp and x 1 , x 2 X x 1 , x 2 X x_(1),x_(2)in Xx_{1}, x_{2} \in Xx1,x2X with x 1 x 2 Y { 0 } x 1 x 2 Y { 0 } x_(1)-x_(2)in Y\\{0}x_{1}-x_{2} \in Y \backslash\{0\}x1x2Y{0}, such that the conditions (i) and (ii) of the assertion (2) are satisfied, and put y 0 = x 1 x 2 y 0 = x 1 x 2 y_(0)=x_(1)-x_(2)y_{0}=x_{1}-x_{2}y0=x1x2. Then
φ ( x 2 ) = p ( x 2 ) φ ( y 0 x 1 ) = p ( y 0 x 1 ) , φ x 2 = p x 2 φ y 0 x 1 = p y 0 x 1 , varphi(-x_(2))=p(-x_(2))Longleftrightarrow varphi(y_(0)-x_(1))=p(y_(0)-x_(1)),\varphi\left(-x_{2}\right)=p\left(-x_{2}\right) \Longleftrightarrow \varphi\left(y_{0}-x_{1}\right)=p\left(y_{0}-x_{1}\right),φ(x2)=p(x2)φ(y0x1)=p(y0x1),
and
φ ( x 1 ) = p ( x 1 ) φ ( 0 x 1 ) = p ( 0 x 1 ) . φ x 1 = p x 1 φ 0 x 1 = p 0 x 1 . varphi(-x_(1))=p(-x_(1))Longleftrightarrow varphi(0-x_(1))=p(0-x_(1)).\varphi\left(-x_{1}\right)=p\left(-x_{1}\right) \Longleftrightarrow \varphi\left(0-x_{1}\right)=p\left(0-x_{1}\right) .φ(x1)=p(x1)φ(0x1)=p(0x1).
By Proposition 2.1, it follows that 0 and y 0 y 0 y_(0)y_{0}y0 are p p ppp-nearest points to x 1 x 1 x_(1)x_{1}x1 in Y Y YYY.
( 2 ) ( 3 ) ( 2 ) ( 3 ) (2)=>(3)(2) \Rightarrow(3)(2)(3) Suppose that (3) does not hold. Then there exist ψ Y p , x X ψ Y p , x X psi inY_(p)^(_|_),x in X\psi \in Y_{p}^{\perp}, x \in XψYp,xX, and y 0 Y { 0 } y 0 Y { 0 } y_(0)in Y\\{0}y_{0} \in Y \backslash\{0\}y0Y{0} such that the conditions ( j ) and ( jj ) of the assertion (3) are fulfilled. It follows that the conditions (i) and (ii) of the assertion (2) are satisfied by φ = ψ , x 1 = x φ = ψ , x 1 = x varphi=psi,x_(1)=x\varphi=\psi, x_{1}=xφ=ψ,x1=x and x 2 = y 0 x x 2 = y 0 x x_(2)=y_(0)-xx_{2}=y_{0}-xx2=y0x, i.e. (2) does not hold.
( 3 ) ( 1 ) ( 3 ) ( 1 ) (3)=>(1)(3) \Rightarrow(1)(3)(1) Supposing that (1) does not hold, there exist z X Y z X Y z in X\\Yz \in X \backslash YzXY and y 1 , y 2 Y , y 1 y 2 y 1 , y 2 Y , y 1 y 2 y_(1),y_(2)in Y,y_(1)!=y_(2)y_{1}, y_{2} \in Y, y_{1} \neq y_{2}y1,y2Y,y1y2, such that
p ( y 1 z ) = p ( y 2 z ) = d p ( z , Y ) p y 1 z = p y 2 z = d p ( z , Y ) p(y_(1)-z)=p(y_(2)-z)=d_(p)(z,Y)p\left(y_{1}-z\right)=p\left(y_{2}-z\right)=d_{p}(z, Y)p(y1z)=p(y2z)=dp(z,Y)
If d p ( z , Y ) = 0 d p ( z , Y ) = 0 d_(p)(z,Y)=0d_{p}(z, Y)=0dp(z,Y)=0, then y 1 = y 2 = z y 1 = y 2 = z y_(1)=y_(2)=zy_{1}=y_{2}=zy1=y2=z, a contradiction which shows that d p ( z , Y ) > 0 d p ( z , Y ) > 0 d_(p)(z,Y) > 0d_{p}(z, Y)>0dp(z,Y)>0.
If x := z y 1 x := z y 1 x:=z-y_(1)x:=z-y_{1}x:=zy1, then
d p ( z y 1 , Y ) = inf { p ( y + y 1 z ) : y Y } = inf { p ( y z ) : y Y } = d p ( z , Y ) = p ( y 1 z ) = p ( y 2 z ) d p z y 1 , Y = inf p y + y 1 z : y Y = inf p y z : y Y = d p ( z , Y ) = p y 1 z = p y 2 z {:[d_(p)(z-y_(1),Y)=i n f{p(y+y_(1)-z):y in Y}],[=i n f{p(y^(')-z):y^(')in Y}],[=d_(p)(z","Y)],[=p(y_(1)-z)],[=p(y_(2)-z)]:}\begin{aligned} d_{p}\left(z-y_{1}, Y\right) & =\inf \left\{p\left(y+y_{1}-z\right): y \in Y\right\} \\ & =\inf \left\{p\left(y^{\prime}-z\right): y^{\prime} \in Y\right\} \\ & =d_{p}(z, Y) \\ & =p\left(y_{1}-z\right) \\ & =p\left(y_{2}-z\right) \end{aligned}dp(zy1,Y)=inf{p(y+y1z):yY}=inf{p(yz):yY}=dp(z,Y)=p(y1z)=p(y2z)
By Proposition 2.1, there exists ψ Y p , ψ | p = 1 ψ Y p , ψ p = 1 psi inY_(p)^(_|_),|| psi|_(p)=1\psi \in Y_{p}^{\perp}, \|\left.\psi\right|_{p}=1ψYp,ψ|p=1, such that
ψ ( y 1 z ) = p ( y 1 z ) = p ( y 2 z ) ψ y 1 z = p y 1 z = p y 2 z psi(y_(1)-z)=p(y_(1)-z)=p(y_(2)-z)\psi\left(y_{1}-z\right)=p\left(y_{1}-z\right)=p\left(y_{2}-z\right)ψ(y1z)=p(y1z)=p(y2z)
or, denoting y 0 := y 2 y 1 y 0 := y 2 y 1 y_(0):=y_(2)-y_(1)y_{0}:=y_{2}-y_{1}y0:=y2y1, this is equivalent to
ψ ( x ) = p ( x ) = p ( y 0 x ) ψ ( x ) = p ( x ) = p y 0 x psi(-x)=p(-x)=p(y_(0)-x)\psi(-x)=p(-x)=p\left(y_{0}-x\right)ψ(x)=p(x)=p(y0x)
showing that (3) does not hold.
Remark 2.4. Obviously that a similar characterization result holds for p ¯ p ¯ bar(p)\bar{p}p¯ -semi-Chebyshev subspaces.
Using Corollary 2.2, one can extend Theorem 2.3 to obtain characterizations of pseudo-Chebyshev subspaces, a notion introduced by Mohebi [28] in the case of normed spaces. Concerning other weaker notions of Chebyshev spaces - quasi-Chebyshev subspaces, weak-Chebyshev subspaces, as well as for their behaviour in concrete function spaces, see the papers [26, 27, 29, 31. For a subset Z Z ZZZ of a vector space X X XXX denote by aff( Z Z ZZZ ) the affine hull of the set Z Z ZZZ, i.e.
aff ( Z ) = { x X : n N , z 1 , , z n Z , a 1 , , a n R , a 1 + + a n = aff ( Z ) = x X : n N , z 1 , , z n Z , a 1 , , a n R , a 1 + + a n = aff(Z)={x in X:EE n inN,EEz_(1),dots,z_(n)in Z,EEa_(1),dots,a_(n)inR,a_(1)+dots+a_(n)=:}\operatorname{aff}(Z)=\left\{x \in X: \exists n \in \mathbb{N}, \exists z_{1}, \ldots, z_{n} \in Z, \exists a_{1}, \ldots, a_{n} \in \mathbb{R}, a_{1}+\ldots+a_{n}=\right.aff(Z)={xX:nN,z1,,znZ,a1,,anR,a1++an= 1 such that x = a 1 z 1 + + a n z n x = a 1 z 1 + + a n z n x=a_(1)z_(1)+dots+a_(n)z_(n)x=a_{1} z_{1}+\ldots+a_{n} z_{n}x=a1z1++anzn }. There exists a unique subspace Y Y YYY of X X XXX such that aff ( Z ) = z + Y aff ( Z ) = z + Y aff(Z)=z+Y\operatorname{aff}(Z)=z+Yaff(Z)=z+Y, for an arbitrary z Z z Z z in Zz \in ZzZ. By definition, the affine dimension of the set Z Z ZZZ is the dimension of this subspace Y Y YYY of X X XXX.
A subspace Y Y YYY of a space with asymmetric norm ( X , p X , p X,pX, pX,p ) is called p p ppp-pseudoChebyshev if it is p p ppp-proximinal and the set P Y ( x ) P Y ( x ) P_(Y)(x)P_{Y}(x)PY(x) has finite affine dimension for every x X x X x in Xx \in XxX.
The following theorem extends a result proved by Mohebi [28] in normed spaces.
Theorem 2.5. Let Y Y YYY be a subspace of an asymmetric normed space ( X , p X , p X,pX, pX,p ) such that p ( x ) > 0 p ( x ) > 0 p(x) > 0p(x)>0p(x)>0 for every x 0 x 0 x!=0x \neq 0x0. The following assertions are equivalent.
(1) The subspace Y Y YYY is p-pseudo-Chebyshev.
(2) There do not exist φ Y p , x 0 X φ Y p , x 0 X varphi inY_(p)^(_|_),x_(0)in X\varphi \in Y_{p}^{\perp}, x_{0} \in XφYp,x0X, and infinitely many linearly independent elements x n X , n N x n X , n N x_(n)in X,n inNx_{n} \in X, n \in \mathbb{N}xnX,nN, with x 0 x n Y , n N x 0 x n Y , n N x_(0)-x_(n)in Y,n inNx_{0}-x_{n} \in Y, n \in \mathbb{N}x0xnY,nN, such that
(i) φ | p = 1 φ p = 1 || varphi|_(p)=1\|\left.\varphi\right|_{p}=1φ|p=1 and
(ii) φ ( x n ) = p ( x n ) , n = 0 , 1 , φ x n = p x n , n = 0 , 1 , varphi(-x_(n))=p(-x_(n)),n=0,1,dots\varphi\left(-x_{n}\right)=p\left(-x_{n}\right), n=0,1, \ldotsφ(xn)=p(xn),n=0,1,.
(3) There do not exist ψ Y p , x 0 X ψ Y p , x 0 X psi inY_(p)^(_|_),x_(0)in X\psi \in Y_{p}^{\perp}, x_{0} \in XψYp,x0X, and infinitely many linearly independent elements y n Y , n N y n Y , n N y_(n)in Y,n inNy_{n} \in Y, n \in \mathbb{N}ynY,nN, such that
(j) ψ | p = 1 ψ p = 1 || psi|_(p)=1\|\left.\psi\right|_{p}=1ψ|p=1 and
(jj) ψ ( x 0 ) = p ( x 0 ) = p ( y n x 0 ) , n = 1 , 2 , ψ x 0 = p x 0 = p y n x 0 , n = 1 , 2 , psi(-x_(0))=p(-x_(0))=p(y_(n)-x_(0)),n=1,2,dots\psi\left(-x_{0}\right)=p\left(-x_{0}\right)=p\left(y_{n}-x_{0}\right), n=1,2, \ldotsψ(x0)=p(x0)=p(ynx0),n=1,2,.
Proof. (1) =>\Rightarrow (2) Suppose that (2) does not hold. Then there exist φ Y p , x 0 X φ Y p , x 0 X varphi inY_(p)^(_|_),x_(0)in X\varphi \in Y_{p}^{\perp}, x_{0} \in XφYp,x0X, and infinitely many linearly independent elements x n X x n X x_(n)in Xx_{n} \in XxnX, with x 0 x n Y , n N x 0 x n Y , n N x_(0)-x_(n)in Y,n inNx_{0}-x_{n} \in Y, n \in \mathbb{N}x0xnY,nN, satisfying the conditions (i) and (ii). The elements y n := x 0 x n , n N y n := x 0 x n , n N y_(n):=x_(0)-x_(n),n inNy_{n}:=x_{0}-x_{n}, n \in \mathbb{N}yn:=x0xn,nN, all belong to Y Y YYY, are linearly independent, and
φ ( y n x 0 ) = φ ( x n ) = p ( x n ) = p ( y n x 0 ) , φ y n x 0 = φ x n = p x n = p y n x 0 , varphi(y_(n)-x_(0))=varphi(-x_(n))=p(-x_(n))=p(y_(n)-x_(0)),\varphi\left(y_{n}-x_{0}\right)=\varphi\left(-x_{n}\right)=p\left(-x_{n}\right)=p\left(y_{n}-x_{0}\right),φ(ynx0)=φ(xn)=p(xn)=p(ynx0),
so that, by Corollary 2.2, they are all contained in P Y ( x 0 ) P Y x 0 P_(Y)(x_(0))P_{Y}\left(x_{0}\right)PY(x0), showing that Y Y YYY is not p p ppp-pseudo-Chebyshev.
(2) =>\Rightarrow (3) Suppose again that (3) does not hold, and let ψ Y p , x 0 X ψ Y p , x 0 X psi inY_(p)^(_|_),x_(0)in X\psi \in Y_{p}^{\perp}, x_{0} \in XψYp,x0X, and the linearly independent elements { y n : n = 1 , 2 , } Y y n : n = 1 , 2 , Y {y_(n):n=1,2,dots}sub Y\left\{y_{n}: n=1,2, \ldots\right\} \subset Y{yn:n=1,2,}Y fulfilling the conditions ( j ) and ( jj ).
Then x n := x 0 y n , n = 1 , 2 , x n := x 0 y n , n = 1 , 2 , x_(n):=x_(0)-y_(n),n=1,2,dotsx_{n}:=x_{0}-y_{n}, n=1,2, \ldotsxn:=x0yn,n=1,2,, are linearly independent elements in X X XXX and
ψ ( x n ) = ψ ( y n x 0 ) = p ( x n ) , n = 0 , 1 , 2 , , ψ x n = ψ y n x 0 = p x n , n = 0 , 1 , 2 , , psi(-x_(n))=psi(y_(n)-x_(0))=p(-x_(n)),n=0,1,2,dots,\psi\left(-x_{n}\right)=\psi\left(y_{n}-x_{0}\right)=p\left(-x_{n}\right), n=0,1,2, \ldots,ψ(xn)=ψ(ynx0)=p(xn),n=0,1,2,,
showing that (2) does not hold.
(3) =>\Rightarrow (1) Supposing that (1) does not hold, there exist an element z X z X z in Xz \in XzX and an infinite set { y n : n = 1 , 2 , } y n : n = 1 , 2 , {y_(n):n=1,2,dots}\left\{y_{n}: n=1,2, \ldots\right\}{yn:n=1,2,} of linearly independent elements contained in P Y ( z ) P Y ( z ) P_(Y)(z)P_{Y}(z)PY(z).
By Corollary 2.2, there exists φ Y p , φ | p = 1 φ Y p , φ p = 1 varphi inY_(p)^(_|_),|| varphi|_(p)=1\varphi \in Y_{p}^{\perp}, \|\left.\varphi\right|_{p}=1φYp,φ|p=1, such that
φ ( y n z ) = d p ( z , Y ) = p ( y n z ) , n = 1 , 2 , φ y n z = d p ( z , Y ) = p y n z , n = 1 , 2 , varphi(y_(n)-z)=d_(p)(z,Y)=p(y_(n)-z),n=1,2,dots\varphi\left(y_{n}-z\right)=d_{p}(z, Y)=p\left(y_{n}-z\right), n=1,2, \ldotsφ(ynz)=dp(z,Y)=p(ynz),n=1,2,
Putting x := z y 1 x := z y 1 x:=z-y_(1)x:=z-y_{1}x:=zy1 we have
d p ( x , Y ) = inf { p ( y + y 1 z ) : y Y } = inf { p ( y z ) : y Y } = = d p ( z , Y ) = p ( y n z ) = p ( y n y 1 x ) , n = 2 , 3 , , d p ( x , Y ) = inf p y + y 1 z : y Y = inf p y z : y Y = = d p ( z , Y ) = p y n z = p y n y 1 x , n = 2 , 3 , , {:[d_(p)(x","Y)=i n f{p(y+y_(1)-z):y in Y}=i n f{p(y^(')-z):y^(')in Y}=],[=d_(p)(z","Y)=p(y_(n)-z)=p(y_(n)-y_(1)-x)","n=2","3","dots","]:}\begin{aligned} d_{p}(x, Y) & =\inf \left\{p\left(y+y_{1}-z\right): y \in Y\right\}=\inf \left\{p\left(y^{\prime}-z\right): y^{\prime} \in Y\right\}= \\ & =d_{p}(z, Y)=p\left(y_{n}-z\right)=p\left(y_{n}-y_{1}-x\right), n=2,3, \ldots, \end{aligned}dp(x,Y)=inf{p(y+y1z):yY}=inf{p(yz):yY}==dp(z,Y)=p(ynz)=p(yny1x),n=2,3,,
showing that { y n y 1 : n = 2 , 3 , } P Y ( x ) y n y 1 : n = 2 , 3 , P Y ( x ) {y_(n)-y_(1):n=2,3,dots}subP_(Y)(x)\left\{y_{n}-y_{1}: n=2,3, \ldots\right\} \subset P_{Y}(x){yny1:n=2,3,}PY(x). By Corollary 2.2, there exists ψ Y p ψ Y p psi inY_(p)^(_|_)\psi \in Y_{p}^{\perp}ψYp with ψ | p = 1 ψ p = 1 || psi|_(p)=1\|\left.\psi\right|_{p}=1ψ|p=1 such that
ψ ( y n y y x 0 ) = p ( y n y 1 x 0 ) , n = 2 , 3 , , ψ y n y y x 0 = p y n y 1 x 0 , n = 2 , 3 , , psi(y_(n)-y_(y)-x_(0))=p(y_(n)-y_(1)-x_(0)),n=2,3,dots,\psi\left(y_{n}-y_{y}-x_{0}\right)=p\left(y_{n}-y_{1}-x_{0}\right), n=2,3, \ldots,ψ(ynyyx0)=p(yny1x0),n=2,3,,
showing that (3) does not hold.
Phelps [37] emphasized for the first time some close connections existing between the approximation properties of the annihilator Y Y Y^(_|_)Y^{\perp}Y of a subspace Y Y YYY of a normed space X X XXX and the extension properties of the subspace Y Y YYY. A presentation of various situations in which such a connection occurs is done in [8]. The case of spaces with asymmetric norms was considered in 34, 35.
Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm and Y Y YYY a subspace of X X XXX. For a p p ppp-bounded linear functional φ : Y R φ : Y R varphi:Y rarrR\varphi: Y \rightarrow \mathbb{R}φ:YR denote by
E p ( φ ) = { ψ X p b : ψ | Y = φ , ψ | p = φ | p } E p ( φ ) = ψ X p b : ψ Y = φ , ψ p = φ p E_(p)(varphi)={psi inX_(p)^(b): psi|_(Y)=varphi,|| psi|_(p)=||varphi|_(p)}E_{p}(\varphi)=\left\{\psi \in X_{p}^{b}:\left.\psi\right|_{Y}=\varphi,\left.\left\|\left.\psi\right|_{p}=\right\| \varphi\right|_{p}\right\}Ep(φ)={ψXpb:ψ|Y=φ,ψ|p=φ|p}
the set of all norm-preserving extensions of the functional φ φ varphi\varphiφ. By the HahnBanach theorem (Theorem 1.6) the set E p ( φ ) E p ( φ ) E_(p)(varphi)E_{p}(\varphi)Ep(φ) is always nonempty.
For φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb consider the following minimization problem
(2.2) γ ( φ , Y p ) := inf { φ + ψ | p : ψ Y p } . (2.2) γ φ , Y p := inf φ + ψ p : ψ Y p . {:(2.2)gamma(varphi,Y_(p)^(_|_)):=i n f{||varphi+ psi|_(p):psi inY_(p)^(_|_)}.:}\begin{equation*} \gamma\left(\varphi, Y_{p}^{\perp}\right):=\inf \left\{\| \varphi+\left.\psi\right|_{p}: \psi \in Y_{p}^{\perp}\right\} . \tag{2.2} \end{equation*}(2.2)γ(φ,Yp):=inf{φ+ψ|p:ψYp}.
A solution to this problem is an element ψ 0 Y p ψ 0 Y p psi_(0)inY_(p)^(_|_)\psi_{0} \in Y_{p}^{\perp}ψ0Yp such that φ + ψ 0 | p = γ ( φ , Y p ) φ + ψ 0 p = γ φ , Y p ||varphi+psi_(0)|_(p)=gamma(varphi,Y_(p)^(_|_))\| \varphi+\left.\psi_{0}\right|_{p}= \gamma\left(\varphi, Y_{p}^{\perp}\right)φ+ψ0|p=γ(φ,Yp). Denote by Π Y p ( φ ) Π Y p ( φ ) Pi_(Y_(p)^(_|_))(varphi)\Pi_{Y_{p}^{\perp}}(\varphi)ΠYp(φ) the set of all these solutions.
Theorem 2.6. If the linear functional φ : X R φ : X R varphi:X rarrR\varphi: X \rightarrow \mathbb{R}φ:XR is ( p , p ¯ ) ( p , p ¯ ) (p, bar(p))(p, \bar{p})(p,p¯)-bounded then the minimization problem (2.2) has a solution and the following formulae hold
(2.3) γ ( φ , Y p ) = φ | Y | p and Π Y p ( φ ) = E p ( φ | Y ) φ (2.3) γ φ , Y p = φ Y p  and  Π Y p ( φ ) = E p φ Y φ {:(2.3)gamma(varphi,Y_(p)^(_|_))=|| varphi|_(Y)|_(p)quad" and "quadPi_(Y_(p)^(_|_))(varphi)=E_(p)( varphi|_(Y))-varphi:}\begin{equation*} \gamma\left(\varphi, Y_{p}^{\perp}\right)=\|\left.\left.\varphi\right|_{Y}\right|_{p} \quad \text { and } \quad \Pi_{Y_{p}^{\perp}}(\varphi)=E_{p}\left(\left.\varphi\right|_{Y}\right)-\varphi \tag{2.3} \end{equation*}(2.3)γ(φ,Yp)=φ|Y|p and ΠYp(φ)=Ep(φ|Y)φ
Proof. Let φ X p b X p ¯ b φ X p b X p ¯ b varphi inX_(p)^(b)nnX_( bar(p))^(b)\varphi \in X_{p}^{b} \cap X_{\bar{p}}^{b}φXpbXp¯b and ψ Y p ψ Y p psi inY_(p)^(_|_)\psi \in Y_{p}^{\perp}ψYp. Then
φ + ψ | p ( φ + ψ ) | Y | p = φ | Y | p φ + ψ p ( φ + ψ ) Y p = φ Y p ||varphi+ psi|_(p) >= ||(varphi+psi)|_(Y)|_(p)=|| varphi|_(Y)|_(p)\left.\left.\left\|\varphi+\left.\psi\right|_{p} \geq\right\|(\varphi+\psi)\right|_{Y}\right|_{p}=\|\left.\left.\varphi\right|_{Y}\right|_{p}φ+ψ|p(φ+ψ)|Y|p=φ|Y|p
implying γ ( φ , Y p ) φ | Y | p γ φ , Y p φ Y p gamma(varphi,Y_(p)^(_|_)) >= || varphi|_(Y)|_(p)\gamma\left(\varphi, Y_{p}^{\perp}\right) \geq \|\left.\left.\varphi\right|_{Y}\right|_{p}γ(φ,Yp)φ|Y|p.
If Φ E p ( φ | Y ) Φ E p φ Y Phi inE_(p)( varphi|_(Y))\Phi \in E_{p}\left(\left.\varphi\right|_{Y}\right)ΦEp(φ|Y) then, because φ φ varphi\varphiφ is ( p , p ¯ ) ( p , p ¯ ) (p, bar(p))(p, \bar{p})(p,p¯)-bounded, φ X p b φ X p b -varphi inX_(p)^(b)-\varphi \in X_{p}^{b}φXpb (see Proposition 1.5. ψ := Φ φ Y p ψ := Φ φ Y p psi:=Phi-varphi inY_(p)^(_|_)\psi:=\Phi-\varphi \in Y_{p}^{\perp}ψ:=ΦφYp, and γ ( φ , Y p ) φ + ψ | p = Φ | p γ φ , Y p φ + ψ p = Φ p gamma(varphi,Y_(p)^(_|_)) <= ||varphi+ psi|_(p)=||Phi|_(p)\gamma\left(\varphi, Y_{p}^{\perp}\right) \leq\left.\left\|\varphi+\left.\psi\right|_{p}=\right\| \Phi\right|_{p}γ(φ,Yp)φ+ψ|p=Φ|p. Therefore γ ( φ , Y p ) = φ | Y | p γ φ , Y p = φ Y p gamma(varphi,Y_(p)^(_|_))=|| varphi|_(Y)|_(p)\gamma\left(\varphi, Y_{p}^{\perp}\right)=\|\left.\left.\varphi\right|_{Y}\right|_{p}γ(φ,Yp)=φ|Y|p and
E p ( φ | Y ) φ Π Y p ( φ ) . E p φ Y φ Π Y p ( φ ) . E_(p)( varphi|_(Y))-varphi subPi_(Y_(p)^(_|_))(varphi).E_{p}\left(\left.\varphi\right|_{Y}\right)-\varphi \subset \Pi_{Y_{p}^{\perp}}(\varphi) .Ep(φ|Y)φΠYp(φ).
Conversely, if ψ Π Y p ( φ ) ψ Π Y p ( φ ) psi inPi_(Y_(p)^(_|_))(varphi)\psi \in \Pi_{Y_{p}^{\perp}}(\varphi)ψΠYp(φ), then Φ := φ + ψ Φ := φ + ψ Phi:=varphi+psi\Phi:=\varphi+\psiΦ:=φ+ψ satisfies Φ | Y = φ | Y Φ Y = φ Y Phi|_(Y)= varphi|_(Y)\left.\Phi\right|_{Y}=\left.\varphi\right|_{Y}Φ|Y=φ|Y and Φ | p = φ + ψ | p = γ ( φ , Y p ) = φ | Y | p Φ p = φ + ψ p = γ φ , Y p = φ Y p || Phi|_(p)=||varphi+ psi|_(p)=gamma(varphi,Y_(p)^(_|_))=|| varphi|_(Y)|_(p)\left\|\left.\Phi\right|_{p}=\right\| \varphi+\left.\psi\right|_{p}=\gamma\left(\varphi, Y_{p}^{\perp}\right)=\|\left.\left.\varphi\right|_{Y}\right|_{p}Φ|p=φ+ψ|p=γ(φ,Yp)=φ|Y|p, i.e. Φ E p ( φ | Y ) Φ E p φ Y Phi inE_(p)( varphi|_(Y))\Phi \in E_{p}\left(\left.\varphi\right|_{Y}\right)ΦEp(φ|Y) and
φ + Π Y p ( φ ) E p ( φ | Y ) Π Y p ( φ ) E p ( φ | Y ) φ . φ + Π Y p ( φ ) E p φ Y Π Y p ( φ ) E p φ Y φ . varphi+Pi_(Y_(p)^(_|_))(varphi)subE_(p)( varphi|_(Y))LongleftrightarrowPi_(Y_(p)^(_|_))(varphi)subE_(p)( varphi|_(Y))-varphi.\varphi+\Pi_{Y_{p}^{\perp}}(\varphi) \subset E_{p}\left(\left.\varphi\right|_{Y}\right) \Longleftrightarrow \Pi_{Y_{p}^{\perp}}(\varphi) \subset E_{p}\left(\left.\varphi\right|_{Y}\right)-\varphi .φ+ΠYp(φ)Ep(φ|Y)ΠYp(φ)Ep(φ|Y)φ.
Denoting by
(2.4) Y = { ψ X : ψ | Y = 0 } (2.4) Y = ψ X : ψ Y = 0 {:(2.4)Y^(_|_)={psi inX^(**): psi|_(Y)=0}:}\begin{equation*} Y^{\perp}=\left\{\psi \in X^{*}:\left.\psi\right|_{Y}=0\right\} \tag{2.4} \end{equation*}(2.4)Y={ψX:ψ|Y=0}
the annihilator Y Y Y^(_|_)Y^{\perp}Y of a subspace Y Y YYY of X X XXX in the symmetric dual X X X^(**)X^{*}X of the seminormed space ( X , p s ) X , p s (X,p^(s))^(**)\left(X, p^{s}\right)^{*}(X,ps), it follows that Y Y Y^(_|_)Y^{\perp}Y is a subspace of X X X^(**)X^{*}X. Consider on X X X^(**)X^{*}X the asymmetric extended norm | p : X [ 0 ; ] p : X [ 0 ; ] |||_(p)^(**):X^(**)rarr[0;oo]\|\left.\right|_{p} ^{*}: X^{*} \rightarrow[0 ; \infty]|p:X[0;] defined by
φ | p = sup φ ( B p ) . φ p = sup φ B p . || varphi|_(p)^(**)=s u p varphi(B_(p)).\|\left.\varphi\right|_{p} ^{*}=\sup \varphi\left(B_{p}\right) .φ|p=supφ(Bp).
We have for any φ X φ X varphi inX^(**)\varphi \in X^{*}φX
φ X p b φ | p < , φ X p b φ p < , varphi inX_(p)^(b)Longleftrightarrow|| varphi|_(p)^(**) < oo,\varphi \in X_{p}^{b} \Longleftrightarrow \|\left.\varphi\right|_{p} ^{*}<\infty,φXpbφ|p<,
and φ | p = φ | p φ p = φ p || varphi|_(p)^(**)=||varphi|_(p)\left.\left\|\left.\varphi\right|_{p} ^{*}=\right\| \varphi\right|_{p}φ|p=φ|p for φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb (see Proposition 1.5).
For φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb consider the distance from φ φ varphi\varphiφ to Y Y Y^(_|_)Y^{\perp}Y defined by
d p ( Y , φ ) = inf { φ ψ | p : ψ Y } . d p Y , φ = inf φ ψ p : ψ Y . d_(p)(Y^(_|_),varphi)=i n f{||varphi- psi|_(p)^(**):psi inY^(_|_)}.d_{p}\left(Y^{\perp}, \varphi\right)=\inf \left\{\| \varphi-\left.\psi\right|_{p} ^{*}: \psi \in Y^{\perp}\right\} .dp(Y,φ)=inf{φψ|p:ψY}.
Because φ 0 | p = φ | p < φ 0 p = φ p < ||varphi-0|_(p)^(**)=||varphi|_(p) < oo\left.\left\|\varphi-\left.0\right|_{p} ^{*}=\right\| \varphi\right|_{p}<\inftyφ0|p=φ|p< this distance is always finite. Put
P Y ( φ ) = { ψ Y : φ ψ | p = d p ( Y , φ ) } . P Y ( φ ) = ψ Y : φ ψ p = d p Y , φ . P_(Y^(_|_))(varphi)={psi inY^(_|_):||varphi- psi|_(p)=d_(p)(Y^(_|_),varphi)}.P_{Y^{\perp}}(\varphi)=\left\{\psi \in Y^{\perp}: \| \varphi-\left.\psi\right|_{p}=d_{p}\left(Y^{\perp}, \varphi\right)\right\} .PY(φ)={ψY:φψ|p=dp(Y,φ)}.
Theorem 2.7. Every φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb has a p ¯ p ¯ bar(p)\bar{p}p¯-nearest point in Y Y Y^(_|_)Y^{\perp}Y and the following formulae hold
d p ( Y , φ ) = φ | Y | p and P Y ( φ ) = φ E p ( φ | Y ) . d p Y , φ = φ Y p  and  P Y ( φ ) = φ E p φ Y . d_(p)(Y^(_|_),varphi)=|| varphi|_(Y)|_(p)quad" and "quadP_(Y^(_|_))(varphi)=varphi-E_(p)( varphi|_(Y)).d_{p}\left(Y^{\perp}, \varphi\right)=\|\left.\left.\varphi\right|_{Y}\right|_{p} \quad \text { and } \quad P_{Y^{\perp}}(\varphi)=\varphi-E_{p}\left(\left.\varphi\right|_{Y}\right) .dp(Y,φ)=φ|Y|p and PY(φ)=φEp(φ|Y).
Proof. For ψ Y ψ Y psi inY^(_|_)\psi \in Y^{\perp}ψY we have
φ ψ | p ( φ ψ ) | Y | p = φ | Y | p φ ψ p ( φ ψ ) Y p = φ Y p ||varphi- psi|_(p)^(**) >= ||(varphi-psi)|_(Y)|_(p)^(**)=|| varphi|_(Y)|_(p)\left.\left.\left\|\varphi-\left.\psi\right|_{p} ^{*} \geq\right\|(\varphi-\psi)\right|_{Y}\right|_{p} ^{*}=\|\left.\left.\varphi\right|_{Y}\right|_{p}φψ|p(φψ)|Y|p=φ|Y|p
implying d p ( Y , φ ) φ | Y | p d p Y , φ φ Y p d_(p)(Y^(_|_),varphi) >= || varphi|_(Y)|_(p)d_{p}\left(Y^{\perp}, \varphi\right) \geq \|\left.\left.\varphi\right|_{Y}\right|_{p}dp(Y,φ)φ|Y|p. If Φ E p ( φ | Y ) Φ E p φ Y Phi inE_(p)( varphi|_(Y))\Phi \in E_{p}\left(\left.\varphi\right|_{Y}\right)ΦEp(φ|Y), then ψ := φ Φ Y ψ := φ Φ Y psi:=varphi-Phi inY^(_|_)\psi:=\varphi-\Phi \in Y^{\perp}ψ:=φΦY and
d p ( Y , φ ) φ ψ | p = Φ | p = φ | Y | p . d p Y , φ φ ψ p = Φ p = φ Y p . d_(p)(Y^(_|_),varphi) <= ||varphi- psi|_(p)^(**)=||Phi|_(p)=|| varphi|_(Y)|_(p).d_{p}\left(Y^{\perp}, \varphi\right) \leq\left.\left\|\varphi-\left.\psi\right|_{p} ^{*}=\right\| \Phi\right|_{p}=\|\left.\left.\varphi\right|_{Y}\right|_{p} .dp(Y,φ)φψ|p=Φ|p=φ|Y|p.
Therefore d p ( Y , φ ) = φ | Y | p d p Y , φ = φ Y p d_(p)(Y^(_|_),varphi)=|| varphi|_(Y)|_(p)d_{p}\left(Y^{\perp}, \varphi\right)=\|\left.\left.\varphi\right|_{Y}\right|_{p}dp(Y,φ)=φ|Y|p and φ E p ( φ | Y ) P Y ( φ ) φ E p φ Y P Y ( φ ) varphi-E_(p)( varphi|_(Y))subP_(Y^(_|_))(varphi)\varphi-E_{p}\left(\left.\varphi\right|_{Y}\right) \subset P_{Y^{\perp}}(\varphi)φEp(φ|Y)PY(φ).
If ψ P Y ( φ ) ψ P Y ( φ ) psi inP_(Y^(_|_))(varphi)\psi \in P_{Y^{\perp}}(\varphi)ψPY(φ) and Φ := φ ψ Φ := φ ψ Phi:=varphi-psi\Phi:=\varphi-\psiΦ:=φψ, then Φ | Y = φ | Y Φ Y = φ Y Phi|_(Y)= varphi|_(Y)\left.\Phi\right|_{Y}=\left.\varphi\right|_{Y}Φ|Y=φ|Y and Φ | p = φ ψ | p = d p ( Y , φ ) = φ | Y | p Φ p = φ ψ p = d p Y , φ = φ Y p || Phi|_(p)=||varphi- psi|_(p)=d_(p)(Y^(_|_),varphi)=|| varphi|_(Y)|_(p)\left\|\left.\Phi\right|_{p}=\right\| \varphi-\left.\psi\right|_{p}= d_{p}\left(Y^{\perp}, \varphi\right)=\|\left.\left.\varphi\right|_{Y}\right|_{p}Φ|p=φψ|p=dp(Y,φ)=φ|Y|p, i.e. Φ E p ( φ | Y ) Φ E p φ Y Phi inE_(p)( varphi|_(Y))\Phi \in E_{p}\left(\left.\varphi\right|_{Y}\right)ΦEp(φ|Y), showing that φ P Y ( φ ) E p ( φ | Y ) φ P Y ( φ ) E p φ Y varphi-P_(Y^(_|_))(varphi)subE_(p)( varphi|_(Y))\varphi-P_{Y^{\perp}}(\varphi) \subset E_{p}\left(\left.\varphi\right|_{Y}\right)φPY(φ)Ep(φ|Y), or equivalently, P Y ( φ ) φ E p ( φ | Y ) P Y ( φ ) φ E p φ Y P_(Y^(_|_))(varphi)sub varphi-E_(p)( varphi|_(Y))P_{Y^{\perp}}(\varphi) \subset \varphi-E_{p}\left(\left.\varphi\right|_{Y}\right)PY(φ)φEp(φ|Y).
From these theorems we obtain some uniqueness conditions for the minimization problems we have considered, in terms of the uniqueness of normpreserving extensions.
Corollary 2.8. Let ( X , p ) ( X , p ) (X,p)(X, p)(X,p) be a space with asymmetric seminorm and Y Y YYY a subspace of X X XXX.
(1) If every f Y p b f Y p b f inY_(p)^(b)f \in Y_{p}^{b}fYpb has a unique norm preserving extension F X p b F X p b F inX_(p)^(b)F \in X_{p}^{b}FXpb, then the minimization problem (2.2) has a unique solution for every φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb.
(2) Every point φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb has a unique p ¯ p ¯ bar(p)\bar{p}p¯-nearest point in Y Y Y^(_|_)Y^{\perp}Y if and only if every f Y p b f Y p b f inY_(p)^(b)f \in Y_{p}^{b}fYpb has a unique norm-preserving extension F X p b F X p b F inX_(p)^(b)F \in X_{p}^{b}FXpb.
Proof. (1) If every f Y p b f Y p b f inY_(p)^(b)f \in Y_{p}^{b}fYpb has a unique norm-preserving extension F X p b F X p b F inX_(p)^(b)F \in X_{p}^{b}FXpb, then for every φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb the set Π Y p ( φ ) = φ + E p ( φ | Y ) Π Y p ( φ ) = φ + E p φ Y Pi_(Y_(p)^(_|_))(varphi)=varphi+E_(p)( varphi|_(Y))\Pi_{Y_{p}^{\perp}}(\varphi)=\varphi+E_{p}\left(\left.\varphi\right|_{Y}\right)ΠYp(φ)=φ+Ep(φ|Y) contains exactly one element.
(2) Similarly, P Y ( φ ) = φ E p ( φ | Y ) P Y ( φ ) = φ E p φ Y P_(Y^(_|_))(varphi)=varphi-E_(p)( varphi|_(Y))P_{Y^{\perp}}(\varphi)=\varphi-E_{p}\left(\left.\varphi\right|_{Y}\right)PY(φ)=φEp(φ|Y) contains exactly one element, provided every f Y p b f Y p b f inY_(p)^(b)f \in Y_{p}^{b}fYpb has exactly one norm-preserving extension F X p b F X p b F inX_(p)^(b)F \in X_{p}^{b}FXpb.
Conversely, suppose that there exists f Y p b f Y p b f inY_(p)^(b)f \in Y_{p}^{b}fYpb having two distinct normpreserving extensions F 1 , F 2 X p b F 1 , F 2 X p b F_(1),F_(2)inX_(p)^(b)F_{1}, F_{2} \in X_{p}^{b}F1,F2Xpb. Then
P Y ( F 1 ) = F 1 E p ( F 1 | Y ) = F 1 E p ( f ) { 0 , F 1 F 2 } . P Y F 1 = F 1 E p F 1 Y = F 1 E p ( f ) 0 , F 1 F 2 . P_(Y^(_|_))(F_(1))=F_(1)-E_(p)(F_(1)|_(Y))=F_(1)-E_(p)(f)sup{0,F_(1)-F_(2)}.P_{Y^{\perp}}\left(F_{1}\right)=F_{1}-E_{p}\left(\left.F_{1}\right|_{Y}\right)=F_{1}-E_{p}(f) \supset\left\{0, F_{1}-F_{2}\right\} .PY(F1)=F1Ep(F1|Y)=F1Ep(f){0,F1F2}.
REMARK 2.9. We can not prove the reverse implication in the assertion (1) of the above corollary. To do this we would need an extension theorem for ( p , p ¯ p , p ¯ p, bar(p)p, \bar{p}p,p¯ )-bounded linear functionals, preserving both p p ppp - and p ¯ p ¯ bar(p)\bar{p}p¯-norm, and we are not aware of such a result.
Some results connecting the ϵ ϵ epsilon\epsilonϵ-approximations and ϵ ϵ epsilon\epsilonϵ-extensions were obtained by Rezapour [38]. In the next proposition we transpose these results to the asymmetric case.
Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm and Y Y YYY a subspace of X X XXX. For x X x X x in Xx \in XxX and ϵ > 0 ϵ > 0 epsilon > 0\epsilon>0ϵ>0 let
P Y ϵ ( x ) = { y Y : p ( y x ) d p ( x , Y ) + ϵ } P Y ϵ ( x ) = y Y : p ( y x ) d p ( x , Y ) + ϵ P_(Y)^(epsilon)(x)={y in Y:p(y-x) <= d_(p)(x,Y)+epsilon}P_{Y}^{\epsilon}(x)=\left\{y \in Y: p(y-x) \leq d_{p}(x, Y)+\epsilon\right\}PYϵ(x)={yY:p(yx)dp(x,Y)+ϵ}
and
P ¯ Y ϵ ( x ) = { y Y : p ( x y ) d p ( Y , x ) + ϵ } P ¯ Y ϵ ( x ) = y Y : p ( x y ) d p ( Y , x ) + ϵ bar(P)_(Y)^(epsilon)(x)={y in Y:p(x-y) <= d_(p)(Y,x)+epsilon}\bar{P}_{Y}^{\epsilon}(x)=\left\{y \in Y: p(x-y) \leq d_{p}(Y, x)+\epsilon\right\}P¯Yϵ(x)={yY:p(xy)dp(Y,x)+ϵ}
denote the nonempty sets of ϵ p ϵ p epsilon-p\epsilon-pϵp-, respectively ϵ p ¯ ϵ p ¯ epsilon- bar(p)\epsilon-\bar{p}ϵp¯-nearest points to x x xxx in Y Y YYY. For φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb consider the set of ϵ ϵ epsilon\epsilonϵ-solutions of the minimization problem (2.2)
Π Y p ϵ ( φ ) = { ψ Y p : φ + ψ | p γ ( φ , Y p ) + ϵ } Π Y p ϵ ( φ ) = ψ Y p : φ + ψ p γ φ , Y p + ϵ Pi_(Y_(p)^(_|_))^(epsilon)(varphi)={psi inY_(p)^(_|_):||varphi+ psi|_(p) <= gamma(varphi,Y_(p)^(_|_))+epsilon}\Pi_{Y_{p}^{\perp}}^{\epsilon}(\varphi)=\left\{\psi \in Y_{p}^{\perp}: \| \varphi+\left.\psi\right|_{p} \leq \gamma\left(\varphi, Y_{p}^{\perp}\right)+\epsilon\right\}ΠYpϵ(φ)={ψYp:φ+ψ|pγ(φ,Yp)+ϵ}
and, finally, denote by
E p ϵ ( f ) = { F X p b : F | Y = f and F | p f | p + ϵ } , E p ϵ ( f ) = F X p b : F Y = f  and  F p f p + ϵ , E_(p)^(epsilon)(f)={F inX_(p)^(b):F|_(Y)=f" and "||F|_(p) <= ||f|_(p)+epsilon},E_{p}^{\epsilon}(f)=\left\{F \in X_{p}^{b}:\left.F\right|_{Y}=f \text { and }\left.\left\|\left.F\right|_{p} \leq\right\| f\right|_{p}+\epsilon\right\},Epϵ(f)={FXpb:F|Y=f and F|pf|p+ϵ},
the set of ϵ ϵ epsilon\epsilonϵ-extensions of a functional f Y p b f Y p b f inY_(p)^(b)f \in Y_{p}^{b}fYpb.
These two sets are related in the following way.
Proposition 2.10. Let ( X , p X , p X,pX, pX,p ) be a space with asymmetric seminorm, Y Y YYY a subspace of X X XXX and φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb. Then
Π Y p ϵ ( φ ) = E p ϵ ( φ | Y ) φ . Π Y p ϵ ( φ ) = E p ϵ φ Y φ . Pi_(Y_(p)^(_|_))^(epsilon)(varphi)=E_(p)^(epsilon)( varphi|_(Y))-varphi.\Pi_{Y_{p}^{\perp}}^{\epsilon}(\varphi)=E_{p}^{\epsilon}\left(\left.\varphi\right|_{Y}\right)-\varphi .ΠYpϵ(φ)=Epϵ(φ|Y)φ.
Proof. Indeed, by Theorem 2.6,
ψ Π Y p ϵ ( φ ) ψ Y p and φ + ψ | p γ ( φ , Y p ) + ϵ = φ | Y | p + ϵ φ + ψ E p ϵ ( φ | Y ) ψ Π Y p ϵ ( φ ) ψ Y p  and  φ + ψ p γ φ , Y p + ϵ = φ Y p + ϵ φ + ψ E p ϵ φ Y {:[psi inPi_(Y_(p)^(_|_))^(epsilon)(varphi) Longleftrightarrow psi inY_(p)^(_|_)" and "||varphi+ psi|_(p) <= gamma(varphi,Y_(p)^(_|_))+epsilon=||varphi|_(Y)|_(p)+epsilon],[ Longleftrightarrow varphi+psi inE_(p)^(epsilon)( varphi|_(Y))]:}\begin{aligned} \psi \in \Pi_{Y_{p}^{\perp}}^{\epsilon}(\varphi) & \Longleftrightarrow \psi \in Y_{p}^{\perp} \text { and }\left.\left.\left\|\varphi+\left.\psi\right|_{p} \leq \gamma\left(\varphi, Y_{p}^{\perp}\right)+\epsilon=\right\| \varphi\right|_{Y}\right|_{p}+\epsilon \\ & \Longleftrightarrow \varphi+\psi \in E_{p}^{\epsilon}\left(\left.\varphi\right|_{Y}\right) \end{aligned}ψΠYpϵ(φ)ψYp and φ+ψ|pγ(φ,Yp)+ϵ=φ|Y|p+ϵφ+ψEpϵ(φ|Y)
Working with the annihilator Y Y Y^(_|_)Y^{\perp}Y of the subspace Y Y YYY in the symmetric dual X = ( X , p s ) X = X , p s X^(**)=(X,p^(s))^(**)X^{*}=\left(X, p^{s}\right)^{*}X=(X,ps) given by (2.4) and putting
P ¯ Y ϵ ( φ ) = { ψ Y : φ ψ | p d p ( φ , Y ) + ϵ } P ¯ Y ϵ ( φ ) = ψ Y : φ ψ p d p φ , Y + ϵ bar(P)_(Y^(_|_))^(epsilon)(varphi)={psi inY^(_|_):||varphi- psi|_(p) <= d_(p)(varphi,Y^(_|_))+epsilon}\bar{P}_{Y^{\perp}}^{\epsilon}(\varphi)=\left\{\psi \in Y^{\perp}: \| \varphi-\left.\psi\right|_{p} \leq d_{p}\left(\varphi, Y^{\perp}\right)+\epsilon\right\}P¯Yϵ(φ)={ψY:φψ|pdp(φ,Y)+ϵ}
we have
Proposition 2.11. Let Y Y YYY be a subspace of a space with asymmetric seminorm ( X , p ) , ϵ > 0 ( X , p ) , ϵ > 0 (X,p),epsilon > 0(X, p), \epsilon>0(X,p),ϵ>0, and φ X p b φ X p b varphi inX_(p)^(b)\varphi \in X_{p}^{b}φXpb. Then
P ¯ Y ϵ ( φ ) = φ E p ϵ ( φ | Y ) . P ¯ Y ϵ ( φ ) = φ E p ϵ φ Y . bar(P)_(Y)^(epsilon)(varphi)=varphi-E_(p)^(epsilon)( varphi|_(Y)).\bar{P}_{Y}^{\epsilon}(\varphi)=\varphi-E_{p}^{\epsilon}\left(\left.\varphi\right|_{Y}\right) .P¯Yϵ(φ)=φEpϵ(φ|Y).
Proof. Indeed, by Theorem 2.7,
ψ P ¯ Y ϵ ( φ ) ψ Y and φ ψ | p d p ( Y , φ ) + ϵ = φ | Y | p + ϵ φ ψ E p ϵ ( φ | Y ) . ψ P ¯ Y ϵ ( φ ) ψ Y  and  φ ψ p d p Y , φ + ϵ = φ Y p + ϵ φ ψ E p ϵ φ Y . {:[psi in bar(P)_(Y^(_|_))^(epsilon)(varphi) Longleftrightarrow psi inY^(_|_)" and "||varphi- psi|_(p) <= d_(p)(Y^(_|_),varphi)+epsilon=||varphi|_(Y)|_(p)+epsilon],[ Longleftrightarrow varphi-psi inE_(p)^(epsilon)( varphi|_(Y)).]:}\begin{aligned} \psi \in \bar{P}_{Y^{\perp}}^{\epsilon}(\varphi) & \Longleftrightarrow \psi \in Y^{\perp} \text { and }\left.\left.\left\|\varphi-\left.\psi\right|_{p} \leq d_{p}\left(Y^{\perp}, \varphi\right)+\epsilon=\right\| \varphi\right|_{Y}\right|_{p}+\epsilon \\ & \Longleftrightarrow \varphi-\psi \in E_{p}^{\epsilon}\left(\left.\varphi\right|_{Y}\right) . \end{aligned}ψP¯Yϵ(φ)ψY and φψ|pdp(Y,φ)+ϵ=φ|Y|p+ϵφψEpϵ(φ|Y).

REFERENCES

[1] Alegre, C. Ferrer, J. and Gregori, V., Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math., 28, no. 7, pp. 929-937, 1997.
[2] _, On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math. Hungar., 82, no. 4, pp. 325-330, 1999.
[3] Alimov, A. R., The Banach-Mazur theorem for spaces with nonsymmetric distance, Uspekhi Mat. Nauk, 58, no. 2, pp. 159-160, 2003.
[4] Babenko, V. F., Nonsymmetric approximations in spaces of summable functions, Ukrain. Mat. Zh., 34, no. 4, pp. 409-416, 538, 1982.
[5] , Nonsymmetric extremal problems of approximation theory, Dokl. Akad. Nauk SSSR, 269, no. 3, pp. 521-524, 1983.
[6] ___, Duality theorems for certain problems of the theory of approximation, Current problems in real and complex analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, pp. 3-13, 148, 1984.
[7] Borodin, P. A., The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 329-337, 2001.
[8] Cobzaş, S., Phelps type duality results in best approximation, Rev. Anal. Numer. Th'eor. Approx., 31, no. 1, pp. 29-43, 2002. 띠
[9] , Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27, no. 3, 275-296, 2004.
[10] _, Asymmetric locally convex spaces, Int. J. Math. Math. Sci., no. 16, 2585-2608, 2005.
[11] Cobzaş, S. and Mustăţa, C., Extension of bilinear functionals and best approximation in 2-normed spaces, Studia Univ. Babeş-Bolyai, Mathematica, 43, pp. 1-13, 1998.
[12] , Extension of bounded linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 39-50, 2004. []
[13] De Blasi, F. S. and Myjak, J., On a generalized best approximation problem, J. Approx. Theory, 94, no. 1, pp. 54-72, 1998.
[14] Dolzhenko, E. P. and Sevastyanov, E. A., Approximations with a sign-sensitive weight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat., 62, no. 6, pp. 59-102, 1998.
[15] __, Sign-sensitive approximations, J. Math. Sci. (New York), 91, no. 5, pp. 32053257, 1998.
[ 16 ] [ 16 ] [16][16][16], Approximation with a sign-sensitive weight (stability, applications to snake theory and Hausdorff approximations), Izv. Ross. Akad. Nauk Ser. Mat., 63, no. 3, pp. 77-118, 1999.
[17] Ferrer, J., Gregori, V. and Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, no. 3, pp. 877-884, 1993.
[18] García-Raffi, L. M., Romaguera, S. and Sánchez Pérez, E. A., Extensions of asymmetric norms to linear spaces, Rend. Istit. Mat. Univ. Trieste, 33, nos. 1-2, 113125, 2001.
[19] _, The bicompletion of an asymmetric normed linear space, Acta Math. Hungar., 97, no. 3, pp. 183-191, 2002.
[20] , Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput. Modelling, 36, nos. 1-2, pp. 1-11, 2002.
[ 21 ] [ 21 ] [21]quad[21] \quad[21], The dual space of an asymmetric normed linear space, Quaest. Math., 26, no. 1, pp. 83-96, 2003.
[22] ___, On Hausdorff asymmetric normed linear spaces, Houston J. Math., 29, no. 3, pp. 717-728 (electronic), 2003.
[23] Krein, M. G. and Nudelman, A. A., The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977.
[24] Chong Li, On well posed generalized best approximation problems, J. Approx. Theory, 107, no. 1, pp. 96-108, 2000.
[25] Chong Li and Renxing Ni, Derivatives of generalized distance functions and existence of generalized nearest points, J. Approx. Theory, 115, no. 1, pp. 44-55, 2002.
[26] Mohebi, H., On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory, 107, no. 1, pp. 87-95, 2000.
[ 27 ] [ 27 ] [27][27][27], Pseudo-Chebyshev subspaces in L 1 L 1 L^(1)L^{1}L1, Korean J. Comput. Appl. Math., 7, no. 2, pp. 465-475, 2000.
[28] _, On pseudo-Chebyshev subspaces in normed linear spaces, Math. Sci. Res. HotLine, 5, no. 9, pp. 29-45, 2001.
[29] , Quasi-Chebyshev subspaces in dual spaces, J. Nat. Geom., 20, nos. 1-2, pp. 33-44, 2001.
[30] __, On pseudo-Chebyshev subspaces in normed linear spaces, J. Nat. Geom., 24, nos. 1-2, pp. 37-56, 2003.
[31] Mohebi, H. and Rezapour, Sh., On weak compactness of the set of extensions of a continuous linear functional, J. Nat. Geom., 22, nos. 1-2, pp. 91-102, 2002.
[32] Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61-67, 2001. ©
[33] __, On the extremal semi-Lipschitz functions, Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 103-108, 2002. ©
[34] , A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18, no. 2, pp. 275-280, 2002.
[35] _, On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space, Rev. Anal. Numer. Theor. Approx., 32, no. 2, pp. 187-192, 2003. 뚜
[36] Renxing Ni, Existence of generalized nearest points, Taiwanese J. Math., 7, no. 1, pp. 115-128, 2003.
[37] Phelps, R. R., Uniqueness of Hahn-Banach extensions and best approximations, Trans. Amer. Marth Soc., 95, pp. 238-255, 1960.
[38] Rezapour, Sh., ϵ ϵ epsilon\epsilonϵ-weakly Chebyshev subspaces of Banach spaces, Anal. Theory Appl., 19, no. 2, pp. 130-135, 2003.
[39] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, no. 2, pp. 292-301, 2000.
[40] Romaguera, S. and Schellekens, M., Duality and quasi-normability for complexity spaces, Appl. Gen. Topol., 3, no. 1, pp. 91-112, 2002.
[41] Simonov, B. V., On the element of best approximation in spaces with nonsymmetric quasinorm, Mat. Zametki, 74, no. 6, pp. 902-912, 2003.
[42] Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Editura Academiei Române and Springer-Verlag, Bucharest-New York-Berlin, 1970.
[43] Zanco, C. and Zucchi, A., Moduli of rotundity and smoothness for convex bodies, Bolletino U. M. I., (7), 7-B, pp. 833-855, 1993.
Received by the editors: March 9, 2006.

  1. *"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, 400084 Cluj-Napoca, Romania, e-mail: scobzas@math.ubbcluj.ro.
    ^(†){ }^{\dagger} "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro.
2006

Related Posts