Abstract
Background: There is an ongoing research for breast cancer diagnostic tools that are cheaper, more accurate and more convenient than mammography.
Methods: In this study, we employed surface-enhanced Raman scattering (SERS) for analysing urine from n=53 breast cancer patients and n=22 controls, with the aim of discriminating between the two groups using multivariate data analysis techniques such as principal component analysis—linear discriminant analysis (PCA-LDA). The SERS spectra were acquired using silver nanoparticles synthesized by reduction with hydroxylamine hydrochloride, which were additionally activated with Ca²⁺10⁻⁴M.
Results: The addition of Ca(NO₃)₂10⁻⁴M promoted the specific adsorption to the metal surface of the anionic purine metabolites such as uric acid, xanthine and hypoxanthine. Moreover, the SERS spectra of urine were acquired without any filtering or processing step for removing protein traces and other contaminants. Using PCA-LDA, the SERS spectra of urine from breast cancer patients were classified with a sensitivity of 81%, a specificity of 95% and an overall accuracy of 88%.
Conclusion: The results of this preliminary study contribute to the translation of SERS in the clinical setting and highlight the potential of SERS as a novel screening strategy for breast cancer.
Authors
Vlad Moisoiu
Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Andreea Socaciu
Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
MEDISYN Clinic, 400474 Cluj-Napoca, Romania
Andrei Stefancu
Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Stefania D. Iancu
Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca, Romania
Imre Boros
Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania
Cristian D. Alecsa
Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania
Claudiu Rachieriu
Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Angelica R. Chiorean
Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Daniela Eniu
Department of Biophysics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
Nicolae Leopold
Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Carmen Socaciu
Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
BIODIATECH Research Centre for Applied Biotechnology, SC Proplanta, Cluj-Napoca, Romania
Dan T. Eniu
Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Department of Surgical and Gynecological Oncology, Ion Chiricuta Oncologic Institute, Cluj-Napoca, Romania
Keywords
breast cancer; cation SERS activation; multivariate data analysis; surface-enhanced Raman scattering; urine
Paper coordinates
V. Moisoiu, A. Socaciu, A. Stefancu, St.D. Iancu, I. Boros, C.-D. Alecsa, C. Rachieriu, A.R. Chiorean, D. Eniu, N. Leopold, C. Socaciu, D.T. Eniu, Breast cancer diagnosis by Surface-Enhanced Raman Scattering (SERS) of urine, Appl. Sci. 9 (2019) no. 4, 806
doi: 10.3390/app9040806
?
About this paper
Print ISSN
Online ISSN
2076-3417
[1] Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent Advances in the Treatment of Breast Cancer. Front. Oncol. 2018, 8, 227.
[2] McCart Reed, A.E.; Kalita-de Croft, P.; Kutasovic, J.; Saunus, J.M.; Lakhani, S.R. Recent advances in breast cancer research impacting clinical diagnostic practice. J. Pathol. 2018.
[3] Cardoso, F.; Senkus, E.; Costa, A.; Papadopoulos, E.; Aapro, M.; André, F.; Harbeck, N.; Aguilar Lopez, B.; Barrios, C.H.; Bergh, J.; et al. ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4) †. Ann. Oncol. 2018, 29, 1634–1657.
[4] Seely, J.M.; Alhassan, T. Screening for breast cancer in 2018-what should we be doing today? Curr. Oncol. 2018, 25, S115–S124.
[5] Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †. Ann. Oncol. 2015, 26, v8–v30.
[6] Kumamoto, Y.; Harada, Y.; Takamatsu, T.; Tanaka, H. Label-free Molecular Imaging and Analysis by Raman Spectroscopy. Acta Histochem. Cytochem. 2018, 51, 101–110.
[7] Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25.
[8] Mosier-Boss, P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142.
[9] Bonifacio, A.; Cervo, S.; Sergo, V. Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 2015, 407, 8265–8277.
[10] Bhattacharjee, T.; Khan, A.; Maru, G.; Ingle, A.; Krishna, C.M. A preliminary Raman spectroscopic study of urine: Diagnosis of breast cancer in animal models. Analyst 2015, 140, 456–466.
[11] Del Mistro, G.; Cervo, S.; Mansutti, E.; Spizzo, R.; Colombatti, A.; Belmonte, P.; Zucconelli, R.; Steffan, A.; Sergo, V.; Bonifacio, A. Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: A preliminary study. Anal. Bioanal. Chem. 2015, 407, 3271–3275.
[12] Lin, D.; Feng, S.; Pan, J.; Chen, Y.; Lin, J.; Chen, G.; Xie, S.; Zeng, H.; Chen, R. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt. Express 2011, 19, 13565–13577.
[13] Zhang, K.; Liu, X.; Man, B.; Yang, C.; Zhang, C.; Liu, M.; Zhang, Y.; Liu, L.; Chen, C. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection. Biomed. Opt. Express 2018, 9, 4345–4358.
[14] Cervo, S.; Mansutti, E.; Del Mistro, G.; Spizzo, R.; Colombatti, A.; Steffan, A.; Sergo, V.; Bonifacio, A. SERS analysis of serum for detection of early and locally advanced breast cancer. Anal. Bioanal. Chem. 2015, 407, 7503–7509.
[15] Tan, Y.; Yan, B.; Xue, L.; Li, Y.; Luo, X.; Ji, P. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma. Lipids Health Dis. 2017, 16, 73.
[16] Chen, N.; Rong, M.; Shao, X.; Zhang, H.; Liu, S.; Dong, B.; Xue, W.; Wang, T.; Li, T.; Pan, J. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int. J. Nanomed. 2017, 12, 5399–5407.
[17] Stefancu, A.; Moisoiu, V.; Couti, R.; Andras, I.; Rahota, R.; Crisan, D.; Pavel, I.E.; Socaciu, C.; Leopold, N.; Crisan, N. Combining SERS analysis of serum with PSA levels for improving the detection of prostate cancer. Nanomedicine 2018, 13, 2455–2467.
[18] Xu, L.J.; Zong, C.; Zheng, X.S.; Hu, P.; Feng, J.M.; Ren, B. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 2014, 86, 2238–2245.
[19] Leopold, N.; Stefancu, A.; Herman, K.; Todor, I.S.; Iancu, S.D.; Moisoiu, V.; Leopold, L.F. The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement. Beilstein J. Nanotechnol. 2018, 9, 2236–2247.
[20] Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727.
[21] Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8.
[22] Stefancu, A.; Moisoiu, V.; Bocsa, C.; Bálint, Z.; Cosma, D.-T.; Veresiu, I.A.; Chis, V.; Leopold, N.; Elec, F. SERS-based quantification of albuminuria in the normal-to-mildly increased range. Analyst 2018, 143, 5372–5379.
[23] Westley, C.; Xu, Y.; Thilaganathan, B.; Carnell, A.J.; Turner, N.J.; Goodacre, R. Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method. Anal. Chem. 2017, 89, 2472–2477.
[24] Westley, C.; Xu, Y.; Carnell, A.J.; Turner, N.J.; Goodacre, R. Label-Free Surface Enhanced Raman Scattering Approach for High Throughput Screening of Biocatalysts. Anal. Chem. 2016, 88, 5898–5903.
[25] Pedley, A.M.; Benkovic, S.J. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends Biochem. Sci. 2017, 42, 141–154.
[26] Fini, M.A.; Elias, A.; Johnson, R.J.; Wright, R.M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl. Med. 2012, 1, 16.