Conjugate point classification with application to Chebyshev systems

(original), paper

Abstract

Authors

A. B. Nemeth
Institutul de Calcul

Keywords

?

Paper coordinates

A.B. Németh, Conjugate point classification with application to Chebyshev systems, Rev. Anal. Numér. Théorie Approximation (1974), no. 1, 73–78

PDF

About this paper

Journal

Revue d’Analyse Numérique et de Théorie de l’Approximation

Publisher Name

Academy of the Republic of S.R.

Print ISSN

1222-9024

Online ISSN

2457-8126

google scholar link

[1] Abakumov, Ju. G., The distribution of the zeros of polynomials in a Čebyšev system. (Russian) A collection of articles on the constructive theory of functions and the extremal problems of functional analysis (Russian), pp. 3-11. Kalinin. Gos. Univ., Kalinin, 1972, MR0377371.

[2] Abakumov, Ju. G., Čebyšev systems of four functions. (Russian) A collection of articles on the constructive theory of functions and the extremal problems of functional analysis (Russian), pp. 14-25. Kalinin. Gos. Univ., Kalinin. 1972, MR0377372.

[3] Aramă, O., Rezultate comparative asupra unor probleme la limită polilocale pentru ecuaţii diferenţiale lineare. Studii Cerc. Mat. (Cluj) 10, 207-257, 1959.

[4] Coppel, W. A., Disconjugacy. Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971. iv+148 pp., MR0460785.

[5] Hartman, Philip, Unrestricted n-parameter families. Rend. Circ. Mat. Palermo (2) 7 1958 123-142, MR0105470, https://doi.org/10.1007/bf02854523

[6] Hadeler, K. P., Remarks on Haar systems. J. Approximation Theory 7 (1973), 59–62, MR0342923.

[7] Kiefer, J., Wolfowitz, J., On a theorem of Hoel and Levine on extrapolation designs. Ann. Math. Statist. 36 1965 1627-1655, MR0185769, https://doi.org/10.1214/aoms/1177699793

[8] Levin, A. Yu., Neoscilliacia rešenii uravneniia x⁽ⁿ⁾+p₁(t)x⁽ⁿ⁻¹⁾+⋯=p_{n}(t)x=0. Uspehi Mat. Nauk 24, 43-69, 1969.

[9] Németh, A. B., Transformations of the Chebyshev systems. Mathematica (Cluj) 8 (31) 1966 315-333, MR0213787.

[10] Németh, A. B. About the extension of the domain of definition of the Chebyshev systems defined on intervals of the real axis. Mathematica (Cluj) 11 (34) 1969 307-310, MR0265830.

[10] Németh, A. B., The extension of the domain of definition of the Chebyshev systems defined on intervals of the real line. Mathematica (Cluj) 11 (34) 1969 307-310.

[11] Pólya, G., On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1922), no. 4, 312-324, MR1501228, https://doi.org/10.1090/s0002-9947-1922-1501228-5

[12] Volkov, V. I., Some properties of Čebyšev systems. (Russian) Kalinin. Gos. Ped. Inst. Uč. Zap. 26 1958 41-48, MR0131102.

[13] Volkov, V. I., Ob odnom obobščenii teoremy S.N. Bernšteina. Ucen. Zap. Kalin. gos. ped. inst. 69, 32-38, 1969.

[14] Zielke, R., Zur Struktur von Tschebyscheff-Systemen. Dissertation, Konstanz, 1971.

[15] Zielke, Roland, A remark on periodic Tchebyshev systems. Manuscripta Math. 7 (1972), 325-329, MR0322414, https://doi.org/10.1007/bf01644071

Paper (preprint) in HTML form

1974

Related Posts