Continuation theory for contractions on spaces with two vector-valued metrics

Abstract


We develop a continuation theory for contractive maps on spaces with two vector-valued metrics. Applications are presented for systems of operator equations in Banach spaces and, in particular, for systems of abstract Hammerstein integral equations. The use of vector-valued metrics makes it possible for each equation of a system to have its own Lipschitz property, while the use of two such metrics makes it possible for the Lipschitz condition to be expressed with respect to an incomplete metric

Authors

Donal O’Regan
Department of Mathematics , National University of Ireland , Galway, Ireland

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Contraction; Fixed Point Operator; EquationHammerstein; Integral Equations

Paper coordinates

D. O’Regan, R. Precup, Continuation theory for contractions on spaces with two vector-valued metrics, Appl. Anal. 82 (2003) no. 2, 131-144, https://doi.org/10.1080/0003681031000063784

PDF

About this paper

Journal

Applicable Analysis

Publisher Name
Print ISSN

0003-6811

Online ISSN

1563-504X

MR 1966853, Zbl 1034.54017

google scholar link

[1] Agarwal, R.P. and O’Regan, D. 2000Fixed point theory for generalized contractions on spaces with two metricsJ. Math. Anal. Appl., 248: 402414.  [Google Scholar]
[2]
Albu, M. 1978A fixed point theorem of Maia-Perov typeStudio Univ. Babes-Balyai Math., 23(1): 7679.  [Google Scholar]Granas, A. 1994Continuation method for contractive mapsTopol. Methods Nonlinear Anal., 3: 375379.  [Google Scholar]
[3]
O’Regan, D. and Precup, R. 2001Theorems of Leray-Schauder Type and ApplicationsAmsterdamGordon and Breach Science Publishers.  [Google Scholar]
[4]
Perov, A.I. and Kibenko, A.V. 1966On a certain general method for investigation of boundary value problems (Russian), IzvAkad. Nauk SSSR Ser. Mat., 30: 249264.  [Google Scholar]
[5]
Precup, R. 2000Discrete continuation method for boundary value problems on bounded sets in Danach spacesJ. Comput. Appl. Math., 113: 267281.  [Google Scholar]
[6]
Precup, R. 2000Discrete continuation method for nonlinear integral equations in Banach spacesPure Math. Appl, 11: 375384.  [Google Scholar]
[7]
Precup, R. 2001The continuation principle for generalized contractionsBull. Appl. Comput. Math. (Budapest), 96-C: 367373.  [Google Scholar]
[8]
Precup, R. 2002Methods in Nonlinear Integral EquationsDordrecht-Boston-LondonKluwer Academic Publishers.  [Crossref][Google Scholar]
[9]
Rus, I.A. 1979Principles and Applications of the Fixed Point Theory (Romanian)ClujDacia.  [Google Scholar]

2003

Related Posts