Abstract
A certain characterization of convex functions of order n on an interval I which are (n+1) times differentiable on I, by the use of a P_{n}-simple functional L, is proved to be in connection with a certain behaviour of the functional L with respect to the strictly quasiconvex functions of order n-1. In context it is also proved that the necessary and sufficient condition for an n times continuously differentiable real function f be strictly quasiconvex of order n\ (n\geq 0) on I is that f be convex or concav e or order n on I, or there exist c\in I such that f be concave of order n on I\cap (-\infty,c) and convex of order n on I\cap [c,+\infty].
Authors
Radu Precup
University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Romania
Keywords
?
Cite this paper as:
R. Precup, Convex functions of order n and P_n-simple functionals, Anal. Numér. Théor. Approx., 18 (1989) no. 2, pp. 161-170.
About this paper
Journal
Publisher Name
Academia Republicii S.R.
paper on journal website
Print ISSN
Not available yet.
Online ISSN
Not available yet.
MR: 92d:41048.
Google Scholar Profile
References
[1] A. Lupaş, Mean value theorems for the Fourier-Jacobi coefficients. (Romanian) Rev. Anal. Numer. Teoria Aproximaţiei 3 (1974), no. 1, 79-84 (1975), MR0387937.
[2] E. Popoviciu, Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării, Ed. Dacia, Cluj, 1972.
[3] E. Popoviciu, Sur une allure de quasi-convexite d’ordre supeŕrieur, Math. Rev. Anal. Numér Théor. Approximation, anal. Numér. Théor, Approximation 11 (1982), pp. 129-137.
[4] T. Popoviciu, Deux remarques sur les fonctions convexes. (French) Bull. Sect. Sci. Acad. Roum. 20 (1938), 187-191 (or 45-49) (1939), MR0000418.
[5] T. Popoviciu, Les fonctions convexes, Hermann & Cie, Paris, 1945.
[6] T. Popoviciu, Asupra restului în unele formule liniare de aproximare ale analizei, Stud. Cerc. Mat. (Cluj) 10 (1959), pp. 337-389.
[7] R. Precup, Fonctions convexes et fonctionnelles de forme simple. (French) [Convex functions, and functionals of simple form] Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1988), 269-274, Preprint, 88-6, Univ. “Babeş-Bolyai”, Cluj-Napoca, 1988, MR0993581.
[8] H. T. Wang, Convex functions and Fourier coefficients, Proc. Amer. Math. Soc. 94 (1985), pp. 641-646.