Critical point localization and multiplicity results in Banach spaces via Nehari manifold technique

Abstract

In the paper, results on the existence of critical points in annular subsets of a cone are obtained with the additional goal of obtaining multiplicity results. Compared to other approaches in the literature based on the use of Krasnoselskii’s compression-extension theorem or topological index methods, our approach uses the Nehari manifold technique in a surprising combination with the cone version of Birkhoff-Kellogg’s invariant-direction theorem. This yields a simpler alternative to traditional methods involving deformation arguments or Ekeland’s variational principle. The new method is illustrated on a boundary value problem for $p$-Laplacian equations, and we believe that it will be useful for proving the existence, localization, and multiplicity of solutions for other classes of problems with variational structure.

Authors

Radu Precup
Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babes-Bolyai, University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

Andrei Stan
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Critical point, Nehari manifold, Birkhoff-Kellogg invariant-direction, cone, p-Laplace operator, positive solution, multiple solutions

Paper coordinates

Precup R, Stan A, Critical point localization and multiplicity results in Banach spaces via Nehari manifold technique, 2025.Β 

About this paper

Journal
Preprint
Publisher Name
Print ISSN
Online ISSN

google scholar link

Paper (preprint) in HTML form

Critical point localization and multiplicity results in Banach spaces via Nehari manifold technique

Radu Precup R. Precup, Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania & Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania  and  Andrei Stan A. Stan, Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania & Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania
Abstract.

In the paper, results on the existence of critical points in annular subsets of a cone are obtained with the additional goal of obtaining multiplicity results. Compared to other approaches in the literature based on the use of Krasnoselskii’s compression-extension theorem or topological index methods, our approach uses the Nehari manifold technique in a surprising combination with the cone version of Birkhoff-Kellogg’s invariant-direction theorem. This yields a simpler alternative to traditional methods involving deformation arguments or Ekeland’s variational principle. The new method is illustrated on a boundary value problem for p-Laplacian equations and we believe that it will be useful for proving the existence, localization and multiplicity of solutions for other classes of problems with variational structure.

Keywords: Critical point, Nehari manifold, Birkoff-Kellogg invariant-direction, cone, p-Laplace operator, positive solution, multiple solutions

Mathematics Subject Classification: 47J25, 47J30, 34B15

1. Introduction

Finding localized solutions of equations (often equivalent to finding critical points of a given functional) in predefined domains is of interest in mathematical models, as it provides a certain degree of control over the solutions of the modeled system βˆ’-- for example, one may seek a solution whose energy remains within specific bounds. However, this approach introduces additional challenges compared to critical point theory in the entire space, primarily due to the behavior of the functional at the boundaries. For instance, if a functional attains its minimum at a boundary point, that point is not necessarily a critical point in the usual sense, as the directional derivatives may not vanish in every direction of the space.

Some of the earliest attempts to localize critical points date back to Schechter [19, 20] (see also [21]). Using pseudogradients and deformation arguments and imposing a boundary condition on the sphere, Schechter established the existence of critical points within a ball under a compactness Palais-Smale condition on the functional. It can be said that Schechter’s theorems (for minimizers and points of mountain pass type) are critical point versions of Schaefer’s fixed point theorem in a ball [10, p. 139], a particular case of the general Leray-Schauder fixed point theorem [10, Theorem 6.5.4]. Since 2008 [13], the first author has been interested in locating critical points in annular subsets of a cone, with the adjacent goal of obtaining multiple solutions in such disjoint sets. Critical point results in annular conical sets can be seen as extensions of Krasnoselskii’s fixed point theorem for cones. Similar to Schechter’s approach, the methods in [13] relied on deformation arguments within Hilbert spaces, exploiting their rich geometric structure. Later, in papers [12] and [15], analogous results were obtained in Banach spaces with some geometric properties. The alternative method of obtaining critical points, based on Ekeland’s variational principle, has also been used for localization in bounded conical sets [14], [15].

An interesting idea is to search for critical points on specific subsets where they are likely to lie. A classical example is the Nehari manifold, which has been extensively studied in the literature. A particularly insightful and comprehensive reference on this topic is the paper by Szulkin and Weth [18]; see also [17], [25], [7], [3], [1]. For a real Banach space X𝑋Xitalic_X and a C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT functional E𝐸Eitalic_E, the corresponding Nehari manifold is defined as

𝒩:={u∈Xβˆ–{0}:⟨E′⁒(u),u⟩=0},assign𝒩conditional-set𝑒𝑋0superscript𝐸′𝑒𝑒0\mathcal{N}:=\{u\in X\setminus\left\{0\right\}\,:\ \langle E^{\prime}(u),u% \rangle\ =0\},caligraphic_N := { italic_u ∈ italic_X βˆ– { 0 } : ⟨ italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ⟩ = 0 } ,

where βŸ¨β‹…,β‹…βŸ©β‹…β‹…\langle\cdot,\cdot\rangle⟨ β‹… , β‹… ⟩ denotes the dual pairing between Xβˆ—superscriptπ‘‹βˆ—X^{\ast}italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT and X𝑋Xitalic_X. Obviously, any nonzero critical point of E,𝐸E,italic_E , i.e., solution of the equation E′⁒(u)=0,superscript𝐸′𝑒0E^{\prime}\left(u\right)=0,italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) = 0 , belongs to 𝒩.𝒩\mathcal{N}.caligraphic_N . It may happen that the converse statement is also valid for certain points of 𝒩𝒩\mathcal{N}caligraphic_N with appropriate properties. For example, we can look for points that minimize the functional E𝐸Eitalic_E on 𝒩𝒩\mathcal{N}caligraphic_N, even if E𝐸Eitalic_E is unbounded from below on the entire domain.

Given the parallelism that can be highlighted between the fixed point and critical point theory, it is natural to assume that a deeper interaction of the two theories would be possible. This is exactly the purpose of this work, which for the first time combines the Nehari manifold technique with the topological invariant-direction theorem of Birkoff-Kellogg, thus obtaining results for locating solutions in annular conical sets without using Ekeland’s principle. The idea is to use a cone version of the Birkoff-Kellogg theorem for a given operator defined on a domain whose boundary coincides with the Nehari manifold, to guarantee the existence of an eigenvalue and an eigenvector. Then, using the definition of the Nehari manifold, it is shown that the eigenvalue must be equal to one, which implies that the corresponding direction is a critical point of the functional. Since the invariant-direction theorem is fundamentally derived using the fixed point index, our approach effectively combines critical point techniques (the Nehari manifold method) with fixed point methods.

In [22], the second author exploits the method of the Nehari manifold, combining it with Ekeland’s variational principle to obtain solutions within annular domains. The present work aims not only to demonstrate a natural and somewhat unexpected application of the Birkhoff-Kellogg theorem but also to extend and strengthen the results of [22] in several key directions: first and foremost, we generalize the theory from Hilbert spaces to Banach spaces. Secondly, we relax the regularity assumption on the functional, requiring only C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT smoothness instead of C2superscript𝐢2C^{2}italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and finally, some conditions imposed in [22] are no longer necessary in our framework.

2. Preliminaries

In this section we recall some basic notions and results that are used throughout the paper.

2.1. The duality mapping

Let X𝑋Xitalic_X be a real Banach space, Xβˆ—superscriptπ‘‹βˆ—X^{\ast}italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT its dual space and let βŸ¨β‹…,β‹…βŸ©β‹…β‹…\langle\cdot,\cdot\rangle⟨ β‹… , β‹… ⟩ denote the dual pairing between Xβˆ—superscriptπ‘‹βˆ—X^{\ast}italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT and X𝑋Xitalic_X. A function Ο†:ℝ+→ℝ+:πœ‘β†’subscriptℝsubscriptℝ\varphi\colon\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}italic_Ο† : blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT β†’ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is said to be a normalization function if it is continuous, strictly increasing, φ⁒(0)=0πœ‘00\varphi\left(0\right)=0italic_Ο† ( 0 ) = 0 and φ⁒(Ο„)β†’βˆžβ†’πœ‘πœ\varphi\left(\tau\right)\rightarrow\inftyitalic_Ο† ( italic_Ο„ ) β†’ ∞ as Ο„β†’βˆž.β†’πœ\tau\rightarrow\infty.italic_Ο„ β†’ ∞ . The duality mapping corresponding to the normalization function Ο†πœ‘\varphiitalic_Ο† is the set-valued mapping J:Xβ†’2Xβˆ—:𝐽→𝑋superscript2superscriptπ‘‹βˆ—J:X\rightarrow 2^{X^{\ast}}italic_J : italic_X β†’ 2 start_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT given by

(2.1) J⁒(x):={xβˆ—βˆˆXβˆ—:⟨xβˆ—,x⟩=φ⁒(|x|)⁒|x|,|xβˆ—|Xβˆ—=φ⁒(|x|)}.assign𝐽π‘₯conditional-setsuperscriptπ‘₯βˆ—superscriptπ‘‹βˆ—formulae-sequencesuperscriptπ‘₯βˆ—π‘₯πœ‘π‘₯π‘₯subscriptsuperscriptπ‘₯βˆ—superscriptπ‘‹βˆ—πœ‘π‘₯J\left(x\right):=\{x^{\ast}\in X^{\ast}\,:\,\langle x^{\ast}\,,\,x\rangle=% \varphi(|x|)|x|\,,\ \,|x^{\ast}|_{X^{\ast}}=\varphi(|x|)\}.italic_J ( italic_x ) := { italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT : ⟨ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ⟩ = italic_Ο† ( | italic_x | ) | italic_x | , | italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = italic_Ο† ( | italic_x | ) } .

Several fundamental properties of the duality mapping are summarized in the following proposition. For proofs and additional information, we refer the reader to [4, 5, 6].

Proposition 2.1.

The duality mapping (2.1) has the following properties:

  1. (a)

    For each x∈X,π‘₯𝑋x\in X,italic_x ∈ italic_X , the set J⁒(x)𝐽π‘₯J\left(x\right)italic_J ( italic_x ) is nonempty, bounded, convex and closed;

  2. (b)

    J𝐽Jitalic_J is monotone, i.e., for all β’x,y∈X,xβˆ—βˆˆJ⁒(x)⁒ and β’yβˆ—βˆˆJ⁒(y),formulae-sequencefor all π‘₯𝑦𝑋superscriptπ‘₯βˆ—π½π‘₯ and superscriptπ‘¦βˆ—π½π‘¦\text{for all }x,y\in X,\,x^{\ast}\in J(x)\text{ and }y^{\ast}\in J(y),for all italic_x , italic_y ∈ italic_X , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_J ( italic_x ) and italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_J ( italic_y ) , we have

    (2.2) ⟨xβˆ—βˆ’yβˆ—,xβˆ’y⟩superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—π‘₯𝑦\displaystyle\langle x^{\ast}-y^{\ast},x-y\rangle⟨ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x - italic_y ⟩ β‰₯(φ⁒(|x|)βˆ’Ο†β’(|y|))⁒(|x|βˆ’|y|)β‰₯0.absentπœ‘π‘₯πœ‘π‘¦π‘₯𝑦0\displaystyle\geq\left(\varphi\left(\left|x\right|\right)-\varphi\left(\left|y% \right|\right)\right)\left(\left|x\right|-\left|y\right|\right)\geq 0.β‰₯ ( italic_Ο† ( | italic_x | ) - italic_Ο† ( | italic_y | ) ) ( | italic_x | - | italic_y | ) β‰₯ 0 .
  3. (c)

    If X𝑋Xitalic_X is strictly convex, then J𝐽Jitalic_J is strictly monotone, i.e., (2.2) holds with strict inequality for xβ‰ y;π‘₯𝑦x\neq y;italic_x β‰  italic_y ;

  4. (d)

    If Xβˆ—superscriptπ‘‹βˆ—X^{\ast}italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is strictly convex, then J𝐽Jitalic_J is single-valued;

  5. (e)

    If X𝑋Xitalic_X is reflexive and J𝐽Jitalic_J is single-valued, then J⁒(X)=Xβˆ—π½π‘‹superscriptπ‘‹βˆ—J\left(X\right)=X^{\ast}italic_J ( italic_X ) = italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT and J𝐽Jitalic_J is demicontinuous, i.e., if xnβ†’xβ†’subscriptπ‘₯𝑛π‘₯x_{n}\rightarrow xitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT β†’ italic_x strongly, then J⁒(xn)⇀J⁒(x)⇀𝐽subscriptπ‘₯𝑛𝐽π‘₯J\left(x_{n}\right)\rightharpoonup J\left(x\right)italic_J ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ⇀ italic_J ( italic_x ) weakly;

  6. (f)

    If X𝑋Xitalic_X is reflexive and locally uniformly convex and J𝐽Jitalic_J is single-valued, then J𝐽Jitalic_J is bijective from X𝑋Xitalic_X to Xβˆ—superscriptπ‘‹βˆ—X^{\ast}italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT and its inverse Jβˆ’1superscript𝐽1J^{-1}italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is bounded, continuous and monotone.

2.2. Energetic Harnack inequality for the p𝑝pitalic_p-Laplacian

As an example of duality mapping, we mention the case of the Sobolev space W01,p⁒(0,1)superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}\left(0,1\right)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) for 1<p<∞1𝑝1<p<\infty1 < italic_p < ∞, endowed with the energetic norm

|u|1,p=(∫01|u′⁒(s)|p⁒𝑑s)1p,subscript𝑒1𝑝superscriptsuperscriptsubscript01superscriptsuperscript𝑒′𝑠𝑝differential-d𝑠1𝑝\left|u\right|_{1,p}=\left(\int_{0}^{1}\left|u^{\prime}\left(s\right)\right|^{% p}ds\right)^{\frac{1}{p}},| italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT = ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT | italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d italic_s ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ,

corresponding to the p𝑝pitalic_p-Laplace operator J⁒(u)=βˆ’(|uβ€²|pβˆ’2⁒uβ€²)β€².𝐽𝑒superscriptsuperscriptsuperscript𝑒′𝑝2superscript𝑒′′J\left(u\right)=-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}.italic_J ( italic_u ) = - ( | italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT | start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT . This operator is the duality mapping of the space W01,p⁒(0,1)superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}\left(0,1\right)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) corresponding to the normalization function φ⁒(Ο„)=Ο„pβˆ’1.πœ‘πœsuperscriptπœπ‘1\varphi\left(\tau\right)=\tau^{p-1}.italic_Ο† ( italic_Ο„ ) = italic_Ο„ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT . In virtue of the very good geometry of the space, J𝐽\ Jitalic_J is invertible and its inverse

Jβˆ’1:Wβˆ’1,p′⁒(0,1)β†’W01,p⁒(0,1),(1p+1pβ€²=1),:superscript𝐽1β†’superscriptπ‘Š1superscript𝑝′01superscriptsubscriptπ‘Š01𝑝011𝑝1superscript𝑝′1J^{-1}:W^{-1,p^{\prime}}(0,1)\rightarrow W_{0}^{1,p}\left(0,1\right),\ \ \ % \left(\tfrac{1}{p}+\tfrac{1}{p^{\prime}}=1\right),italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : italic_W start_POSTSUPERSCRIPT - 1 , italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 0 , 1 ) β†’ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) , ( divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG = 1 ) ,

is bounded, continuous, and strictly monotone.

With respect to the p𝑝pitalic_p-Laplace operator, we have the following Harnack type inequality in terms of the energetic norm, obtained in [12]. This result proves to be extremely useful for localization in annular sets, as it allows for obtaining certain lower bounds (see also [15]).

Lemma 2.2 (Lemma 3.1 from [12]).

For every function u∈W01,p⁒(0,1)𝑒superscriptsubscriptπ‘Š01𝑝01u\in W_{0}^{1,p}(0,1)italic_u ∈ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) such that u⁒(t)β‰₯0𝑒𝑑0u(t)\geq 0italic_u ( italic_t ) β‰₯ 0 and u⁒(t)=u⁒(1βˆ’t)𝑒𝑑𝑒1𝑑u(t)=u(1-t)italic_u ( italic_t ) = italic_u ( 1 - italic_t ) for all t∈(0,12)𝑑012t\in\left(0,\frac{1}{2}\right)italic_t ∈ ( 0 , divide start_ARG 1 end_ARG start_ARG 2 end_ARG ), if J⁒u∈C⁒([0,1],ℝ+)𝐽𝑒𝐢01subscriptℝJu\in C([0,1],\,\mathbb{R}_{+})italic_J italic_u ∈ italic_C ( [ 0 , 1 ] , blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) and J⁒u𝐽𝑒Juitalic_J italic_u is nondecreasing on (0,12)012\left(0,\frac{1}{2}\right)( 0 , divide start_ARG 1 end_ARG start_ARG 2 end_ARG ), then

(2.3) u⁒(t)β‰₯t⁒(1βˆ’2⁒t)1/(pβˆ’1)⁒|u|1,p,𝑒𝑑𝑑superscript12𝑑1𝑝1subscript𝑒1𝑝u(t)\geq t(1-2t)^{1/(p-1)}|u|_{1,p},italic_u ( italic_t ) β‰₯ italic_t ( 1 - 2 italic_t ) start_POSTSUPERSCRIPT 1 / ( italic_p - 1 ) end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ,

for all t∈(0,12)𝑑012t\in\left(0,\frac{1}{2}\right)italic_t ∈ ( 0 , divide start_ARG 1 end_ARG start_ARG 2 end_ARG ).

2.3. Birkhoff-Kellogg type theorem in cones

One of our tools in this paper is the version in cones due to Krasnoselskii and Ladyzenskii [11] (see also [10, p.139], [23] and [1]), of the classical theorem of Birkhoff and Kellogg invariant-direction theorem [2] (see also [9], [10, Theorem 6.6]) regarding the existence of a β€˜nonlinear’ eigenvalue and eigenvector for compact maps in Banach spaces.

Theorem 2.3 (Krasnoselskii and Ladyzenskii).

Let X𝑋Xitalic_X be a real Banach space, UβŠ‚Xπ‘ˆπ‘‹U\subset Xitalic_U βŠ‚ italic_X be an open bounded set with 0∈U0π‘ˆ0\in U0 ∈ italic_U, KβŠ‚X𝐾𝑋K\subset Xitalic_K βŠ‚ italic_X a cone, and T:K∩UΒ―β†’K:π‘‡β†’πΎΒ―π‘ˆπΎT:K\cap\overline{U}\rightarrow Kitalic_T : italic_K ∩ overΒ― start_ARG italic_U end_ARG β†’ italic_K a compact operator. If

infx∈Kβˆ©βˆ‚U|T⁒(x)|>0,subscriptinfimumπ‘₯πΎπ‘ˆπ‘‡π‘₯0\inf_{x\in K\cap\partial U}\left|T\left(x\right)\right|>0,roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_K ∩ βˆ‚ italic_U end_POSTSUBSCRIPT | italic_T ( italic_x ) | > 0 ,

then, there exist Ξ»0>0subscriptπœ†00\lambda_{0}>0italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 and x0∈Kβˆ©βˆ‚Usubscriptπ‘₯0πΎπ‘ˆx_{0}\in K\cap\partial Uitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_K ∩ βˆ‚ italic_U such that

x0=Ξ»0⁒T⁒(x0).subscriptπ‘₯0subscriptπœ†0𝑇subscriptπ‘₯0x_{0}=\lambda_{0}T\left(x_{0}\right).italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_T ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

3. Main result

In what follows, X𝑋Xitalic_X is a reflexive and locally uniformly convex Banach space with a single-valued duality mapping J;𝐽J;italic_J ; K𝐾Kitalic_K is a nondegenerate cone in X,𝑋X,italic_X , i.e., KβŠ‚X𝐾𝑋K\subset Xitalic_K βŠ‚ italic_X is closed, convex, λ⁒KβŠ‚Kπœ†πΎπΎ\lambda K\subset Kitalic_Ξ» italic_K βŠ‚ italic_K for all Ξ»βˆˆβ„+πœ†subscriptℝ\lambda\in\mathbb{R}_{+}italic_Ξ» ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and Kβˆ–{0}β‰ βˆ…;𝐾0K\setminus\left\{0\right\}\neq\emptyset;italic_K βˆ– { 0 } β‰  βˆ… ; and E:X→ℝ:𝐸→𝑋ℝE:X\rightarrow\mathbb{R}italic_E : italic_X β†’ blackboard_R is a C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT FrΓ©chet differentiable functional.

Given 0<r<R<∞0π‘Ÿπ‘…0<r<R<\infty0 < italic_r < italic_R < ∞, our aim is to determine a critical point of E𝐸Eitalic_E within the conical annular set

Kr,R:={u∈K:r≀|u|≀R}.assignsubscriptπΎπ‘Ÿπ‘…conditional-setπ‘’πΎπ‘Ÿπ‘’π‘…K_{r,R}:=\left\{u\in K\,:\,r\leq\left|u\right|\leq R\right\}.italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT := { italic_u ∈ italic_K : italic_r ≀ | italic_u | ≀ italic_R } .

The Nehari manifold of the functional E𝐸Eitalic_E restricted to Kr,RsubscriptπΎπ‘Ÿπ‘…K_{r,R}italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT is the set

𝒩r,R={u∈Kr,R:⟨E′⁒(u),u⟩=0}.subscriptπ’©π‘Ÿπ‘…conditional-set𝑒subscriptπΎπ‘Ÿπ‘…superscript𝐸′𝑒𝑒0\mathcal{N}_{r,R}=\left\{u\in K_{r,R}\,:\,\langle E^{\prime}(u),u\rangle=0% \right\}.caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT = { italic_u ∈ italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT : ⟨ italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ⟩ = 0 } .

In the subsequent, we consider the operators

N:Xβ†’Xβˆ—,N⁒(u):=J⁒(u)βˆ’E′⁒(u),:𝑁formulae-sequence→𝑋superscriptπ‘‹βˆ—assign𝑁𝑒𝐽𝑒superscript𝐸′𝑒N\colon X\rightarrow X^{\ast},\quad N\left(u\right):=J\left(u\right)-E^{\prime% }(u),italic_N : italic_X β†’ italic_X start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_N ( italic_u ) := italic_J ( italic_u ) - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) ,

and

T:Xβ†’X,T=Jβˆ’1⁒N.:𝑇formulae-sequence→𝑋𝑋𝑇superscript𝐽1𝑁T:X\rightarrow X,\quad T=J^{-1}N.italic_T : italic_X β†’ italic_X , italic_T = italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N .

Our first two assumptions regard the operator T𝑇Titalic_T, and read as follows:

(H1):

The operator T𝑇Titalic_T is completely continuous from X𝑋Xitalic_X to X𝑋Xitalic_X, and moreover, it is invariant with respect to the cone K𝐾Kitalic_K, i.e.,

T⁒(K)βŠ‚K.𝑇𝐾𝐾T(K)\subset K.italic_T ( italic_K ) βŠ‚ italic_K .
(H2):

The operator T𝑇Titalic_T is bounded away from zero on the set 𝒩r,Rsubscriptπ’©π‘Ÿπ‘…\mathcal{N}_{r,R}caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT, that is,

infuβˆˆπ’©r,R|T⁒(u)|>0.subscriptinfimum𝑒subscriptπ’©π‘Ÿπ‘…π‘‡π‘’0\inf_{u\in\mathcal{N}_{r,R}}\left|T(u)\right|>0.roman_inf start_POSTSUBSCRIPT italic_u ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT end_POSTSUBSCRIPT | italic_T ( italic_u ) | > 0 .

To state the third assumption, for each point u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }, define the function

(3.1) Ξ±u:ℝ+→ℝ,Ξ±u⁒(Οƒ)=E⁒(σ⁒u).:subscript𝛼𝑒formulae-sequenceβ†’subscriptℝℝsubscriptπ›Όπ‘’πœŽπΈπœŽπ‘’\alpha_{u}\colon\mathbb{R}_{+}\rightarrow\mathbb{R},\quad\alpha_{u}(\sigma)=E(% \sigma u).italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT : blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT β†’ blackboard_R , italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Οƒ ) = italic_E ( italic_Οƒ italic_u ) .
(H3):

For every u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }, there exists a unique s⁒(u)∈(r|u|,R|u|)π‘ π‘’π‘Ÿπ‘’π‘…π‘’s(u)\in\left(\frac{r}{|u|},\frac{R}{|u|}\right)italic_s ( italic_u ) ∈ ( divide start_ARG italic_r end_ARG start_ARG | italic_u | end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | end_ARG ) such that

Ξ±u′⁒(s⁒(u)⁒u)=0.superscriptsubscript𝛼𝑒′𝑠𝑒𝑒0\alpha_{u}^{\prime}(s(u)u)=0.italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ( italic_u ) italic_u ) = 0 .

Moreover, Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is positive on [r|u|,s⁒(u))π‘Ÿπ‘’π‘ π‘’\left[\frac{r}{|u|},s(u)\right)[ divide start_ARG italic_r end_ARG start_ARG | italic_u | end_ARG , italic_s ( italic_u ) ) and negative on (s⁒(u),R|u|].𝑠𝑒𝑅𝑒\left(s(u),\frac{R}{|u|}\right].( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | end_ARG ] .

From condition (H3), we see that the Nehari manifold Nr,Rsubscriptπ‘π‘Ÿπ‘…N_{r,R}italic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT allows for the representation

𝒩r,R={s⁒(u)⁒u:u∈Kβˆ–{0}}.subscriptπ’©π‘Ÿπ‘…conditional-set𝑠𝑒𝑒𝑒𝐾0\mathcal{N}_{r,R}\mathcal{=}\left\{s\left(u\right)u:\ u\in K\setminus\{0\}% \right\}.caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT = { italic_s ( italic_u ) italic_u : italic_u ∈ italic_K βˆ– { 0 } } .

Another important consequence of assumption (H3), essential to our analysis, is the continuity of the mapping s𝑠sitalic_s, as shown in the following lemma.

Lemma 3.1.

The mapping s:Kβˆ–{0}→ℝ:𝑠→𝐾0ℝs:K\setminus\{0\}\rightarrow\mathbb{R}italic_s : italic_K βˆ– { 0 } β†’ blackboard_R is continuous.

Proof.

Let uk∈Kβˆ–{0}subscriptπ‘’π‘˜πΎ0u_{k}\in K\setminus\{0\}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ italic_K βˆ– { 0 } with ukβ†’u∈Kβˆ–{0}.β†’subscriptπ‘’π‘˜π‘’πΎ0u_{k}\rightarrow u\in K\setminus\{0\}.italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_u ∈ italic_K βˆ– { 0 } . Since

r|uk|<s⁒(uk)<R|uk|,r|uk|β†’r|u|,R|uk|β†’R|u|,formulae-sequenceπ‘Ÿsubscriptπ‘’π‘˜π‘ subscriptπ‘’π‘˜π‘…subscriptπ‘’π‘˜formulae-sequenceβ†’π‘Ÿsubscriptπ‘’π‘˜π‘Ÿπ‘’β†’π‘…subscriptπ‘’π‘˜π‘…π‘’\frac{r}{\left|u_{k}\right|}<s\left(u_{k}\right)<\frac{R}{\left|u_{k}\right|},% \ \ \frac{r}{|u_{k}|}\rightarrow\frac{r}{\left|u\right|},\ \ \frac{R}{\left|u_% {k}\right|}\rightarrow\frac{R}{|u|},divide start_ARG italic_r end_ARG start_ARG | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | end_ARG < italic_s ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < divide start_ARG italic_R end_ARG start_ARG | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | end_ARG , divide start_ARG italic_r end_ARG start_ARG | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | end_ARG β†’ divide start_ARG italic_r end_ARG start_ARG | italic_u | end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | end_ARG β†’ divide start_ARG italic_R end_ARG start_ARG | italic_u | end_ARG ,

there exists k0βˆˆβ„•subscriptπ‘˜0β„•k_{0}\in\mathbb{N}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ blackboard_N such that

s⁒(uk)∈(r|u|,R|u|)for all β’kβ‰₯k0.formulae-sequence𝑠subscriptπ‘’π‘˜π‘Ÿπ‘’π‘…π‘’for all π‘˜subscriptπ‘˜0s(u_{k})\in\left(\frac{r}{|u|},\frac{R}{|u|}\right)\quad\text{for all }k\geq k% _{0}.italic_s ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ∈ ( divide start_ARG italic_r end_ARG start_ARG | italic_u | end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | end_ARG ) for all italic_k β‰₯ italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .

The boundedness of s⁒(uk)𝑠subscriptπ‘’π‘˜s(u_{k})italic_s ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ensures the existence of a convergent subsequence, which we still denote by s⁒(uk)𝑠subscriptπ‘’π‘˜s(u_{k})italic_s ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ). Let s~~𝑠\widetilde{s}over~ start_ARG italic_s end_ARG be its limit. Then, one clearly has

s~∈[r|u|,R|u|].~π‘ π‘Ÿπ‘’π‘…π‘’\widetilde{s}\in\left[\frac{r}{|u|},\frac{R}{|u|}\right].over~ start_ARG italic_s end_ARG ∈ [ divide start_ARG italic_r end_ARG start_ARG | italic_u | end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | end_ARG ] .

By definition, we have that ⟨E′⁒(s⁒(uk)⁒uk),uk⟩=0,superscript𝐸′𝑠subscriptπ‘’π‘˜subscriptπ‘’π‘˜subscriptπ‘’π‘˜0\left\langle E^{\prime}\left(s\left(u_{k}\right)u_{k}\right),u_{k}\right% \rangle=0,⟨ italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⟩ = 0 , and therefore ⟨E′⁒(s~⁒u),u⟩=0.superscript𝐸′~𝑠𝑒𝑒0\left\langle E^{\prime}\left(\widetilde{s}u\right),u\right\rangle=0.⟨ italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( over~ start_ARG italic_s end_ARG italic_u ) , italic_u ⟩ = 0 . From assumption (H3), it follows that s~=s⁒(u).~𝑠𝑠𝑒\widetilde{s}=s\left(u\right).over~ start_ARG italic_s end_ARG = italic_s ( italic_u ) . Consequently, the entire sequence s⁒(uk)𝑠subscriptπ‘’π‘˜s\left(u_{k}\right)italic_s ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is convergent to s⁒(u),𝑠𝑒s\left(u\right),italic_s ( italic_u ) , which completes our proof. ∎

We are now ready to state the main result of this paper whose proof relies on the Krasnoselskii-Ladyzhenskaya theorem.

Theorem 3.2.

Assume that conditions (H1)-(H3) are satisfied. Then, there exists uβˆ—βˆˆπ’©r,Rsuperscriptπ‘’βˆ—subscriptπ’©π‘Ÿπ‘…u^{\ast}\in\mathcal{N}_{r,R}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT such that E′⁒(uβˆ—)=0.superscript𝐸′superscriptπ‘’βˆ—0E^{\prime}\left(u^{\ast}\right)=0.italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0 .

Proof.

The central idea of the proof is to apply the Krasnoselskii-Ladyzenskii theorem to the operator T=Jβˆ’1⁒N𝑇superscript𝐽1𝑁T=J^{-1}Nitalic_T = italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N on an open set Uπ‘ˆUitalic_U chosen such that

(3.2) Kβˆ©βˆ‚U=𝒩r,R.πΎπ‘ˆsubscriptπ’©π‘Ÿπ‘…K\cap\partial U=\mathcal{N}_{r,R}.italic_K ∩ βˆ‚ italic_U = caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT .

To this end, we define the set

U~:={σ⁒u:uβˆˆπ’©r,R,Οƒβˆˆ[0,1)}.assign~π‘ˆconditional-setπœŽπ‘’formulae-sequence𝑒subscriptπ’©π‘Ÿπ‘…πœŽ01\tilde{U}:=\left\{\sigma u\,:\,u\in\mathcal{N}_{r,R},\,\ \sigma\in[0,1)\right\}.over~ start_ARG italic_U end_ARG := { italic_Οƒ italic_u : italic_u ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT , italic_Οƒ ∈ [ 0 , 1 ) } .

Clearly, 0∈U~.0~π‘ˆ0\in\tilde{U}.0 ∈ over~ start_ARG italic_U end_ARG . To verify that U~~π‘ˆ\tilde{U}over~ start_ARG italic_U end_ARG is open in the relative topology of K𝐾Kitalic_K, it is sufficient to show that Kβˆ–U~𝐾~π‘ˆK\setminus\tilde{U}italic_K βˆ– over~ start_ARG italic_U end_ARG is closed. Let wk∈Kβˆ–U~subscriptπ‘€π‘˜πΎ~π‘ˆw_{k}\in K\setminus\tilde{U}italic_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ italic_K βˆ– over~ start_ARG italic_U end_ARG and wkβ†’wβ†’subscriptπ‘€π‘˜π‘€w_{k}\rightarrow witalic_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_w. Then, there exist ukβˆˆπ’©r,Rsubscriptπ‘’π‘˜subscriptπ’©π‘Ÿπ‘…u_{k}\in\mathcal{N}_{r,R}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT and Οƒkβ‰₯1subscriptπœŽπ‘˜1\sigma_{k}\geq 1italic_Οƒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β‰₯ 1 such that

(3.3) wk=Οƒk⁒uk.subscriptπ‘€π‘˜subscriptπœŽπ‘˜subscriptπ‘’π‘˜w_{k}=\sigma_{k}u_{k}.italic_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_Οƒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .

Since the sequence uksubscriptπ‘’π‘˜u_{k}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is bounded (recall that |uk|∈(r,R)subscriptπ‘’π‘˜π‘Ÿπ‘…\left|u_{k}\right|\in(r,R)| italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | ∈ ( italic_r , italic_R )), it follows that the sequence ΟƒksubscriptπœŽπ‘˜\sigma_{k}italic_Οƒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is also bounded and therefore admits a convergent subsequence, which we denote again by ΟƒksubscriptπœŽπ‘˜\sigma_{k}italic_Οƒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. Let ΟƒπœŽ\sigmaitalic_Οƒ be the limit of this subsequence. Clearly, Οƒkβ‰₯1subscriptπœŽπ‘˜1\sigma_{k}\geq 1italic_Οƒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β‰₯ 1 implies that Οƒβ‰₯1𝜎1\sigma\geq 1italic_Οƒ β‰₯ 1.

From (3.3), we may write uk=1Οƒk⁒wksubscriptπ‘’π‘˜1subscriptπœŽπ‘˜subscriptπ‘€π‘˜u_{k}=\frac{1}{\sigma_{k}}w_{k}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_Οƒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, hence uksubscriptπ‘’π‘˜u_{k}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is convergent to u:=1σ⁒wassign𝑒1πœŽπ‘€u:=\frac{1}{\sigma}witalic_u := divide start_ARG 1 end_ARG start_ARG italic_Οƒ end_ARG italic_w. As the Nehari manifold 𝒩r,Rsubscriptπ’©π‘Ÿπ‘…\mathcal{N}_{r,R}caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT is closed, it follows that uβˆˆπ’©r,R𝑒subscriptπ’©π‘Ÿπ‘…u\in\mathcal{N}_{r,R}italic_u ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT. Consequently, the limit point w𝑀witalic_w satisfies

w=σ⁒uwith β’Οƒβ‰₯1⁒ and β’uβˆˆπ’©r,R,formulae-sequenceπ‘€πœŽπ‘’with πœŽ1 and π‘’subscriptπ’©π‘Ÿπ‘…w=\sigma u\quad\text{with }\sigma\geq 1\text{ and }u\in\mathcal{N}_{r,R},italic_w = italic_Οƒ italic_u with italic_Οƒ β‰₯ 1 and italic_u ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT ,

which implies that w∈Kβˆ–U~𝑀𝐾~π‘ˆw\in K\setminus\tilde{U}italic_w ∈ italic_K βˆ– over~ start_ARG italic_U end_ARG.

Let us observe that the relative boundary of U~~π‘ˆ\tilde{U}over~ start_ARG italic_U end_ARG is

βˆ‚KU~:=cl⁒(U~)βˆ–U~=sβˆ’1⁒(1)=𝒩r,R.assignsubscript𝐾~π‘ˆcl~π‘ˆ~π‘ˆsuperscript𝑠11subscriptπ’©π‘Ÿπ‘…\partial_{K}\tilde{U}:=\text{cl}(\tilde{U})\setminus\tilde{U}=s^{-1}(1)=% \mathcal{N}_{r,R}.βˆ‚ start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT over~ start_ARG italic_U end_ARG := cl ( over~ start_ARG italic_U end_ARG ) βˆ– over~ start_ARG italic_U end_ARG = italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 1 ) = caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT .

To strictly comply with the conditions of Theorem 2.3, let us indicate the open set Uπ‘ˆUitalic_U of the space X𝑋Xitalic_X to which it applies. Recall that, by a theorem due to Dugundji (see [8, Corollary 4.2]), every nonempty closed convex subset of a real Banach space X𝑋Xitalic_X is a retract of X𝑋Xitalic_X. In particular, every cone of X𝑋Xitalic_X is a retract of X𝑋Xitalic_X. Let ρ:Xβ†’K:πœŒβ†’π‘‹πΎ\rho\colon X\rightarrow Kitalic_ρ : italic_X β†’ italic_K be a retract of K𝐾Kitalic_K, i.e., a continuous mapping such that ρ⁒(u)=uπœŒπ‘’π‘’\rho(u)=uitalic_ρ ( italic_u ) = italic_u for all u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K. Then, the set U:=Οβˆ’1⁒(U~)assignπ‘ˆsuperscript𝜌1~π‘ˆU:=\rho^{-1}(\tilde{U})italic_U := italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG italic_U end_ARG ) is open in X𝑋Xitalic_X and Kβˆ©βˆ‚U=𝒩r,R.πΎπ‘ˆsubscriptπ’©π‘Ÿπ‘…K\cap\partial U=\mathcal{N}_{r,R}.italic_K ∩ βˆ‚ italic_U = caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT . Indeed, since ρ⁒(u)=uπœŒπ‘’π‘’\rho(u)=uitalic_ρ ( italic_u ) = italic_u for all u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K, one has

Kβˆ©Οβˆ’1⁒(U~)=U~.𝐾superscript𝜌1~π‘ˆ~π‘ˆK\cap\rho^{-1}(\tilde{U})=\tilde{U}.italic_K ∩ italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG italic_U end_ARG ) = over~ start_ARG italic_U end_ARG .

Moreover,

Kβˆ©βˆ‚U=Kβˆ©βˆ‚(Οβˆ’1(U~))=βˆ‚K(Kβˆ©Οβˆ’1(U~)))=βˆ‚K(U~),K\cap\partial U=K\cap\partial(\rho^{-1}(\tilde{U}))=\partial_{K}\left(K\cap% \rho^{-1}(\tilde{U}))\right)=\partial_{K}\left(\tilde{U}\right),italic_K ∩ βˆ‚ italic_U = italic_K ∩ βˆ‚ ( italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG italic_U end_ARG ) ) = βˆ‚ start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_K ∩ italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG italic_U end_ARG ) ) ) = βˆ‚ start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( over~ start_ARG italic_U end_ARG ) ,

which proves our claim.

Now, based on assumptions (H1) and (H2), Theorem 2.3 guarantees the existence of an element uβˆ—βˆˆπ’©r,Rsuperscriptπ‘’βˆ—subscriptπ’©π‘Ÿπ‘…u^{\ast}\in\mathcal{N}_{r,R}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT and a positive scalar Ξ»0>0subscriptπœ†00\lambda_{0}>0italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 such that

Jβˆ’1⁒N⁒(uβˆ—)=Ξ»0⁒uβˆ—,superscript𝐽1𝑁superscriptπ‘’βˆ—subscriptπœ†0superscriptπ‘’βˆ—J^{-1}N\left(u^{\ast}\right)=\lambda_{0}u^{\ast},italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ,

or equivalently

N⁒(uβˆ—)=J⁒(Ξ»0⁒uβˆ—).𝑁superscriptπ‘’βˆ—π½subscriptπœ†0superscriptπ‘’βˆ—N\left(u^{\ast}\right)=J(\lambda_{0}u^{\ast}).italic_N ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_J ( italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) .

Moreover, since uβˆ—βˆˆπ’©r,Rsuperscriptπ‘’βˆ—subscriptπ’©π‘Ÿπ‘…u^{\ast}\in\mathcal{N}_{r,R}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT, it follows that

(3.4) 0=⟨J⁒(uβˆ—)βˆ’N⁒(uβˆ—),uβˆ—βŸ©=⟨J⁒(uβˆ—)βˆ’J⁒(Ξ»0⁒uβˆ—),uβˆ—βŸ©.0𝐽superscriptπ‘’βˆ—π‘superscriptπ‘’βˆ—superscriptπ‘’βˆ—π½superscriptπ‘’βˆ—π½subscriptπœ†0superscriptπ‘’βˆ—superscriptπ‘’βˆ—0=\langle J\left(u^{\ast}\right)-N\left(u^{\ast}\right),u^{\ast}\rangle=% \langle J\left(u^{\ast}\right)-J(\lambda_{0}u^{\ast}),u^{\ast}\rangle.0 = ⟨ italic_J ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) - italic_N ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ⟩ = ⟨ italic_J ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) - italic_J ( italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ⟩ .

From this, we also have

(3.5) 0=⟨J⁒(uβˆ—)βˆ’N⁒(uβˆ—),uβˆ—βŸ©=⟨J⁒(uβˆ—)βˆ’J⁒(Ξ»0⁒uβˆ—),Ξ»0⁒uβˆ—βŸ©.0𝐽superscriptπ‘’βˆ—π‘superscriptπ‘’βˆ—superscriptπ‘’βˆ—π½superscriptπ‘’βˆ—π½subscriptπœ†0superscriptπ‘’βˆ—subscriptπœ†0superscriptπ‘’βˆ—0=\langle J\left(u^{\ast}\right)-N\left(u^{\ast}\right),u^{\ast}\rangle=% \langle J\left(u^{\ast}\right)-J(\lambda_{0}u^{\ast}),\lambda_{0}u^{\ast}\rangle.0 = ⟨ italic_J ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) - italic_N ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ⟩ = ⟨ italic_J ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) - italic_J ( italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ⟩ .

Combining (3.4) and (3.5), we derive

⟨J⁒(uβˆ—)βˆ’J⁒(Ξ»0⁒uβˆ—),uβˆ—βˆ’Ξ»0⁒uβˆ—βŸ©=0.𝐽superscriptπ‘’βˆ—π½subscriptπœ†0superscriptπ‘’βˆ—superscriptπ‘’βˆ—subscriptπœ†0superscriptπ‘’βˆ—0\langle J\left(u^{\ast}\right)-J(\lambda_{0}u^{\ast}),u^{\ast}-\lambda_{0}u^{% \ast}\rangle=0.⟨ italic_J ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) - italic_J ( italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT - italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ⟩ = 0 .

Using the strong monotonicity property of the duality mapping J𝐽Jitalic_J (Proposition 2.1 (c)), we infer that

Ξ»0⁒uβˆ—=uβˆ—,subscriptπœ†0superscriptπ‘’βˆ—superscriptπ‘’βˆ—\lambda_{0}u^{\ast}=u^{\ast},italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ,

which implies Ξ»0=1subscriptπœ†01\lambda_{0}=1italic_Ξ» start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1. Consequently, the identity N⁒(uβˆ—)=J⁒(uβˆ—)𝑁superscriptπ‘’βˆ—π½superscriptπ‘’βˆ—N\left(u^{\ast}\right)=J(u^{\ast})italic_N ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_J ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) holds, therefore uβˆ—superscriptπ‘’βˆ—u^{\ast}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a critical point of the functional E𝐸Eitalic_E. ∎

Let us note that hypotheses (H2) and (H3) require a certain behavior of the functional E𝐸Eitalic_E only relative to an interval [r,R]π‘Ÿπ‘…[r,R][ italic_r , italic_R ]. The situation in which this behavior occurs on several such intervals leads us to the multiplicity of critical points, with their location in disjoint annular conical sets. Thus, Theorem 3.2 directly yields the following multiplicity principle.

Theorem 3.3 (Multiplicity).

Let condition (H1) hold.

(10):

If there are finite sequences of numbers (rk)1≀k≀msubscriptsubscriptπ‘Ÿπ‘˜1π‘˜π‘š\left(r_{k}\right)_{1\leq k\leq m}( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_k ≀ italic_m end_POSTSUBSCRIPT and (Rk)1≀k≀msubscriptsubscriptπ‘…π‘˜1π‘˜π‘š\left(R_{k}\right)_{1\leq k\leq m}( italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_k ≀ italic_m end_POSTSUBSCRIPT with

0<r1<R1<r2<R2<β‹―<rm<Rm0subscriptπ‘Ÿ1subscript𝑅1subscriptπ‘Ÿ2subscript𝑅2β‹―subscriptπ‘Ÿπ‘šsubscriptπ‘…π‘š0<r_{1}<R_{1}<r_{2}<R_{2}<\dots<r_{m}<R_{m}0 < italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < β‹― < italic_r start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT

such that conditions (H2) and (H3) are satisfied for every pair (rk,Rk),k=1,2,…,m,formulae-sequencesubscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜π‘˜12β€¦π‘š\left(r_{k},R_{k}\right),\ k=1,2,...,m,( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_k = 1 , 2 , … , italic_m , then there exist mπ‘šmitalic_m points xkβˆ—superscriptsubscriptπ‘₯π‘˜βˆ—x_{k}^{\ast}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT with

E′⁒(xkβˆ—)=0,xkβˆ—βˆˆK,rk<|xkβˆ—|<Rk(k=1,2,…,m).formulae-sequenceformulae-sequencesuperscript𝐸′superscriptsubscriptπ‘₯π‘˜βˆ—0formulae-sequencesuperscriptsubscriptπ‘₯π‘˜βˆ—πΎsubscriptπ‘Ÿπ‘˜superscriptsubscriptπ‘₯π‘˜βˆ—subscriptπ‘…π‘˜π‘˜12β€¦π‘šE^{\prime}\left(x_{k}^{\ast}\right)=0,\ \ x_{k}^{\ast}\in K,\ \ r_{k}<\left|x_% {k}^{\ast}\right|<R_{k}\ \ \ \left(k=1,2,...,m\right).italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0 , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < | italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_k = 1 , 2 , … , italic_m ) .
(20):

If there are increasing sequences of numbers (rk)kβ‰₯1subscriptsubscriptπ‘Ÿπ‘˜π‘˜1\left(r_{k}\right)_{k\geq 1}( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT and (Rk)kβ‰₯1subscriptsubscriptπ‘…π‘˜π‘˜1\left(R_{k}\right)_{k\geq 1}( italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT with

0<rk<Rk<rk+1(kβ‰₯1),rkβ†’βˆžas β’kβ†’βˆžformulae-sequence0subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜subscriptπ‘Ÿπ‘˜1β†’π‘˜1subscriptπ‘Ÿπ‘˜β†’as π‘˜0<r_{k}<R_{k}<r_{k+1}\ \ \left(k\geq 1\right),\ \ \ r_{k}\rightarrow\infty\ \ % \text{as }k\rightarrow\infty0 < italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ( italic_k β‰₯ 1 ) , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ ∞ as italic_k β†’ ∞

such that conditions (H2) and (H3) are satisfied for every pair (rk,Rk),kβ‰₯1,subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜π‘˜1\left(r_{k},R_{k}\right),\ k\geq 1,( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_k β‰₯ 1 , then there exists a sequence of points (xkβˆ—)kβ‰₯1subscriptsuperscriptsubscriptπ‘₯π‘˜βˆ—π‘˜1\left(x_{k}^{\ast}\right)_{k\geq 1}( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT with

E′⁒(xkβˆ—)=0,xkβˆ—βˆˆK,rk<|xkβˆ—|<Rk;|xkβˆ—|β†’βˆžas β’kβ†’βˆž.formulae-sequenceformulae-sequencesuperscript𝐸′superscriptsubscriptπ‘₯π‘˜βˆ—0formulae-sequencesuperscriptsubscriptπ‘₯π‘˜βˆ—πΎsubscriptπ‘Ÿπ‘˜superscriptsubscriptπ‘₯π‘˜βˆ—subscriptπ‘…π‘˜formulae-sequenceβ†’superscriptsubscriptπ‘₯π‘˜βˆ—β†’as π‘˜E^{\prime}\left(x_{k}^{\ast}\right)=0,\ \ x_{k}^{\ast}\in K,\ \ r_{k}<\left|x_% {k}^{\ast}\right|<R_{k};\ \ \left|x_{k}^{\ast}\right|\rightarrow\infty\ \ \ % \text{as }k\rightarrow\infty.italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0 , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < | italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ; | italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | β†’ ∞ as italic_k β†’ ∞ .
(30):

If there are decreasing sequences of numbers (rk)kβ‰₯1subscriptsubscriptπ‘Ÿπ‘˜π‘˜1\left(r_{k}\right)_{k\geq 1}( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT and (Rk)kβ‰₯1subscriptsubscriptπ‘…π‘˜π‘˜1\left(R_{k}\right)_{k\geq 1}( italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT with

0<Rk+1<rk<Rk(kβ‰₯1),Rkβ†’0as β’kβ†’βˆžformulae-sequence0subscriptπ‘…π‘˜1subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜β†’π‘˜1subscriptπ‘…π‘˜0β†’as π‘˜0<R_{k+1}<r_{k}<R_{k}\ \ \left(k\geq 1\right),\ \ \ R_{k}\rightarrow 0\ \ % \text{as }k\rightarrow\infty0 < italic_R start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_k β‰₯ 1 ) , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ 0 as italic_k β†’ ∞

such that conditions (H2) and (H3) are satisfied for every pair (rk,Rk),kβ‰₯1,subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜π‘˜1\left(r_{k},R_{k}\right),\ k\geq 1,( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_k β‰₯ 1 , then there exists a sequence of points (xkβˆ—)kβ‰₯1subscriptsuperscriptsubscriptπ‘₯π‘˜βˆ—π‘˜1\left(x_{k}^{\ast}\right)_{k\geq 1}( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT with

E′⁒(xkβˆ—)=0,xkβˆ—βˆˆK,rk<|xkβˆ—|<Rk;xkβˆ—β†’0as β’kβ†’βˆž.formulae-sequenceformulae-sequencesuperscript𝐸′superscriptsubscriptπ‘₯π‘˜βˆ—0formulae-sequencesuperscriptsubscriptπ‘₯π‘˜βˆ—πΎsubscriptπ‘Ÿπ‘˜superscriptsubscriptπ‘₯π‘˜βˆ—subscriptπ‘…π‘˜formulae-sequenceβ†’superscriptsubscriptπ‘₯π‘˜βˆ—0β†’as π‘˜E^{\prime}\left(x_{k}^{\ast}\right)=0,\ \ x_{k}^{\ast}\in K,\ \ r_{k}<\left|x_% {k}^{\ast}\right|<R_{k};\ \ x_{k}^{\ast}\rightarrow 0\ \ \ \text{as }k% \rightarrow\infty.italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0 , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < | italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT β†’ 0 as italic_k β†’ ∞ .
Proof.

The result follows directly by applying Theorem 3.2 to each pair (rk,Rk).subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜(r_{k},R_{k}).( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . ∎

4. Application

To illustrate the theoretical results, we consider the Dirichlet problem for a p𝑝pitalic_p-Laplace equation

(4.1) {βˆ’(|uβ€²|pβˆ’2⁒uβ€²)′⁒(t)=f⁒(u⁒(t)),t∈(0,1)u⁒(0)=u⁒(1)=0,casesformulae-sequencesuperscriptsuperscriptsuperscript𝑒′𝑝2superscript𝑒′′𝑑𝑓𝑒𝑑𝑑01otherwise𝑒0𝑒10otherwise\begin{cases}-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}(t)% =f(u(t)),\quad t\in\left(0,1\right)\\ u(0)=u(1)=0,\end{cases}{ start_ROW start_CELL - ( | italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT | start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) = italic_f ( italic_u ( italic_t ) ) , italic_t ∈ ( 0 , 1 ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_u ( 0 ) = italic_u ( 1 ) = 0 , end_CELL start_CELL end_CELL end_ROW

where 1<p<∞1𝑝1<p<\infty1 < italic_p < ∞, and f:ℝ→ℝ:𝑓→ℝℝf:\mathbb{R}\rightarrow\mathbb{R}italic_f : blackboard_R β†’ blackboard_R is a continuous function that is nonnegative and nondecreasing on ℝ+.subscriptℝ\mathbb{R}_{+}.blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT .

Consider the Banach space X:=W01,p⁒(0,1)assign𝑋superscriptsubscriptπ‘Š01𝑝01X:=W_{0}^{1,p}\left(0,1\right)italic_X := italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) endowed with the usual norm |u|1,p:=|βˆ‡u|Lpassignsubscript𝑒1𝑝subscriptβˆ‡π‘’superscript𝐿𝑝|u|_{1,p}:=|\nabla u|_{L^{p}}| italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT := | βˆ‡ italic_u | start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. It is well known (see, e.g., [5, Chapter 1.2]) that W01,p⁒(0,1)superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}(0,1)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) is a uniformly convex and reflexive Banach space with W0βˆ’1,p′⁒(0,1)superscriptsubscriptπ‘Š01superscript𝑝′01W_{0}^{-1,p^{\prime}}(0,1)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 , italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 0 , 1 ) its dual, where pβ€²superscript𝑝′p^{\prime}italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is the conjugate of p𝑝pitalic_p, i.e., 1p+1pβ€²=11𝑝1superscript𝑝′1\frac{1}{p}+\frac{1}{p^{\prime}}=1divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG = 1. If βŸ¨β‹…,β‹…βŸ©β‹…β‹…\langle\cdot,\cdot\rangle⟨ β‹… , β‹… ⟩ denotes the duality pairing between W0βˆ’1,p′⁒(0,1)superscriptsubscriptπ‘Š01superscript𝑝′01W_{0}^{-1,p^{\prime}}(0,1)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 , italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 0 , 1 ) and W01,p⁒(0,1),superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}(0,1),italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) , and v∈Lq⁒(0,1)βŠ‚W0βˆ’1,p′⁒(0,1)𝑣superscriptπΏπ‘ž01superscriptsubscriptπ‘Š01superscript𝑝′01v\in L^{q}(0,1)\subset W_{0}^{-1,p^{\prime}}(0,1)italic_v ∈ italic_L start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT ( 0 , 1 ) βŠ‚ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 , italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 0 , 1 ), then

⟨v,u⟩=∫01v⁒(t)⁒u⁒(t)⁒𝑑t,𝑣𝑒superscriptsubscript01𝑣𝑑𝑒𝑑differential-d𝑑\langle v,u\rangle=\int_{0}^{1}v(t)u(t)dt,⟨ italic_v , italic_u ⟩ = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_v ( italic_t ) italic_u ( italic_t ) italic_d italic_t ,

for all u∈W01,p⁒(0,1)𝑒superscriptsubscriptπ‘Š01𝑝01u\in W_{0}^{1,p}(0,1)italic_u ∈ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) (see [16, Proposition 8.14]).

Let Ξ»psubscriptπœ†π‘\lambda_{p}italic_Ξ» start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT denote the first eigenvalue of the Euler-Lagrange equation

J⁒(u)=λ⁒|u|1,ppβˆ’2⁒uin β’(0,1),u⁒(0)=u⁒(1)=0.formulae-sequenceπ½π‘’πœ†superscriptsubscript𝑒1𝑝𝑝2𝑒in 01𝑒0𝑒10J\left(u\right)=\lambda|u|_{1,p}^{p-2}u\quad\text{in }(0,1),\quad u(0)=u(1)=0.italic_J ( italic_u ) = italic_Ξ» | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT italic_u in ( 0 , 1 ) , italic_u ( 0 ) = italic_u ( 1 ) = 0 .

It is known (see, e.g., [5]) that

Ξ»p=minu∈W01,p⁒(0,1)βˆ–{0}⁑|u|1,pp|u|pp,subscriptπœ†π‘subscript𝑒superscriptsubscriptπ‘Š01𝑝010superscriptsubscript𝑒1𝑝𝑝superscriptsubscript𝑒𝑝𝑝\lambda_{p}=\min_{u\in W_{0}^{1,p}\left(0,1\right)\setminus\{0\}}\frac{|u|_{1,% p}^{p}}{|u|_{p}^{p}},italic_Ξ» start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = roman_min start_POSTSUBSCRIPT italic_u ∈ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) βˆ– { 0 } end_POSTSUBSCRIPT divide start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_ARG ,

that is, cp=Ξ»pβˆ’1psubscript𝑐𝑝superscriptsubscriptπœ†π‘1𝑝c_{p}=\lambda_{p}^{-\frac{1}{p}}italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = italic_Ξ» start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT is the smallest constant such that

(4.2) |u|p≀cp⁒|u|1,p,subscript𝑒𝑝subscript𝑐𝑝subscript𝑒1𝑝\left|u\right|_{p}\leq c_{p}|u|_{1,p},| italic_u | start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≀ italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ,

for all u∈W01,p⁒(0,1)𝑒superscriptsubscriptπ‘Š01𝑝01u\in W_{0}^{1,p}(0,1)italic_u ∈ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ). Also, for Nu trebuie ”from”?? the continuous embedding W01,p⁒(0,1)βŠ‚C⁒[0,1]superscriptsubscriptπ‘Š01𝑝01𝐢01W_{0}^{1,p}(0,1)\subset C[0,1]italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) βŠ‚ italic_C [ 0 , 1 ] one has

|u⁒(t)|≀|u|1,p(t∈[0,1]),𝑒𝑑subscript𝑒1𝑝𝑑01\left|u(t)\right|\leq|u|_{1,p}\ \ \ \left(t\in\left[0,1\right]\right),| italic_u ( italic_t ) | ≀ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_t ∈ [ 0 , 1 ] ) ,

for every u∈W01,p⁒(0,1)𝑒superscriptsubscriptπ‘Š01𝑝01u\in W_{0}^{1,p}(0,1)italic_u ∈ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ).

The energy functional of the problem (4.1) is

E⁒(u)=1p⁒|u|1,ppβˆ’βˆ«01F⁒(u⁒(t))⁒𝑑t,𝐸𝑒1𝑝superscriptsubscript𝑒1𝑝𝑝superscriptsubscript01𝐹𝑒𝑑differential-d𝑑E(u)=\frac{1}{p}\left|u\right|_{1,p}^{p}-\int_{0}^{1}F(u(t))dt,italic_E ( italic_u ) = divide start_ARG 1 end_ARG start_ARG italic_p end_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_F ( italic_u ( italic_t ) ) italic_d italic_t ,

where F⁒(ΞΎ)=∫0ΞΎf⁒(s)⁒𝑑sπΉπœ‰superscriptsubscript0πœ‰π‘“π‘ differential-d𝑠F(\xi)=\int_{0}^{\xi}f(s)dsitalic_F ( italic_ΞΎ ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΎ end_POSTSUPERSCRIPT italic_f ( italic_s ) italic_d italic_s. One has

E′⁒(u)=J⁒(u)βˆ’Nf⁒(u),superscript𝐸′𝑒𝐽𝑒subscript𝑁𝑓𝑒E^{\prime}(u)=J\left(u\right)-N_{f}\left(u\right),italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) = italic_J ( italic_u ) - italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ) ,

where Nfsubscript𝑁𝑓N_{f}italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT is the Nemytski superposition operator N⁒(u):=f⁒(u).assign𝑁𝑒𝑓𝑒N\left(u\right):=f(u).italic_N ( italic_u ) := italic_f ( italic_u ) . Hence the solutions of problem (4.1) are the critical points of functional E.𝐸E.italic_E .

In W1,p⁒(0,1)superscriptπ‘Š1𝑝01W^{1,p}(0,1)italic_W start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ), we consider the cone

K={u∈H01(0,1):\displaystyle K=\Big{\{}u\in H_{0}^{1}(0,1)\,:italic_K = { italic_u ∈ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) : uβ‰₯0,u⁒ is nondecreasing on β’[0,1/2],𝑒0𝑒 is nondecreasing on 012\displaystyle u\geq 0,\,u\text{ is nondecreasing on }[0,1/2],italic_u β‰₯ 0 , italic_u is nondecreasing on [ 0 , 1 / 2 ] ,
u(t)=u(1βˆ’t) and u(t)β‰₯Ο•(t)|u|1,p for all t∈[0,1/2]},\displaystyle u(t)=u(1-t)\text{ and }u(t)\geq\phi(t)|u|_{1,p}\text{ for all }t% \in[0,1/2]\Big{\}},italic_u ( italic_t ) = italic_u ( 1 - italic_t ) and italic_u ( italic_t ) β‰₯ italic_Ο• ( italic_t ) | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT for all italic_t ∈ [ 0 , 1 / 2 ] } ,

where Ο•italic-Ο•\phiitalic_Ο• is the function involved in the energetic Harnack inequality (2.3), namely

Ο•:(0,12)→ℝ, Ο•⁒(t)=t⁒(1βˆ’2⁒t)1/(pβˆ’1).:italic-Ο•β†’012ℝ Ο•⁒(t)=t⁒(1βˆ’2⁒t)1/(pβˆ’1).\phi:\left(0,\frac{1}{2}\right)\rightarrow\mathbb{R},\text{ \quad$\phi(t)=t(1-% 2t)^{1/(p-1)}$.}italic_Ο• : ( 0 , divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) β†’ blackboard_R , italic_Ο• ( italic_t ) = italic_t ( 1 - 2 italic_t ) start_POSTSUPERSCRIPT 1 / ( italic_p - 1 ) end_POSTSUPERSCRIPT .

Let β∈(0,1/4)𝛽014\beta\in(0,1/4)italic_Ξ² ∈ ( 0 , 1 / 4 ), and denote

Ξ¦:=∫β1/2ϕ⁒(t)⁒𝑑t.assignΞ¦superscriptsubscript𝛽12italic-ϕ𝑑differential-d𝑑\Phi:=\int_{\beta}^{1/2}\phi(t)dt.roman_Ξ¦ := ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_Ο• ( italic_t ) italic_d italic_t .

For 0<r<R<∞0π‘Ÿπ‘…0<r<R<\infty0 < italic_r < italic_R < ∞, we assume that the following conditions hold:

(h1):

The function f𝑓fitalic_f satisfies the inequalities

(4.3) f⁒(r)rpβˆ’1<1cp and f⁒(R⁒ϕ⁒(Ξ²))Rpβˆ’1>12⁒Φ.formulae-sequenceπ‘“π‘Ÿsuperscriptπ‘Ÿπ‘11subscript𝑐𝑝 and π‘“𝑅italic-ϕ𝛽superscript𝑅𝑝112Ξ¦\frac{f(r)}{r^{p-1}}<\frac{1}{c_{p}}\quad\text{ and }\quad\frac{f(R\phi(\beta)% )}{R^{p-1}}>\frac{1}{2\Phi}.divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG < divide start_ARG 1 end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG and divide start_ARG italic_f ( italic_R italic_Ο• ( italic_Ξ² ) ) end_ARG start_ARG italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG > divide start_ARG 1 end_ARG start_ARG 2 roman_Ξ¦ end_ARG .
(h2):

The function

g⁒(t):=f⁒(t)tpβˆ’1⁒ assign𝑔𝑑𝑓𝑑superscript𝑑𝑝1 g\left(t\right):=\frac{f(t)}{t^{p-1}}\,\text{ }italic_g ( italic_t ) := divide start_ARG italic_f ( italic_t ) end_ARG start_ARG italic_t start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG

is strictly increasing on (0,R].0𝑅(0,R].( 0 , italic_R ] .

Given the above two conditions, the following existence result holds.

Theorem 4.1.

Under conditions (h1) and (h2), problem (4.1) admits a solution u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K such that

r<|u|1,p<R.π‘Ÿsubscript𝑒1𝑝𝑅r<|u|_{1,p}<R.italic_r < | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT < italic_R .
Proof.

We apply Theorem 3.2.

Check of (H1).

(a). Complete continuity of the operator Jβˆ’1⁒Nfsuperscript𝐽1subscript𝑁𝑓J^{-1}N_{f}italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT.The operator Jβˆ’1⁒Nfsuperscript𝐽1subscript𝑁𝑓J^{-1}N_{f}italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT is completely continuous from W01,p⁒(0,1)superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}(0,1)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) to itself. Indeed, since W01,p⁒(0,1)superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}(0,1)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) compactly embeds into C⁒[0,1]𝐢01C\left[0,1\right]italic_C [ 0 , 1 ] (see, e.g., [16, Theorem 8.8]), and C⁒[0,1]𝐢01C\left[0,1\right]italic_C [ 0 , 1 ] continuously embeds into Wβˆ’1,p′⁒(0,1)superscriptπ‘Š1superscript𝑝′01W^{-1,p^{\prime}}(0,1)italic_W start_POSTSUPERSCRIPT - 1 , italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 0 , 1 ), the continuity of f𝑓fitalic_f ensures that the Nemytskii operator Nfsubscript𝑁𝑓N_{f}italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT is completely continuous from W01,p⁒(0,1)superscriptsubscriptπ‘Š01𝑝01W_{0}^{1,p}(0,1)italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( 0 , 1 ) to Wβˆ’1,p′⁒(0,1)superscriptπ‘Š1superscript𝑝′01W^{-1,p^{\prime}}(0,1)italic_W start_POSTSUPERSCRIPT - 1 , italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 0 , 1 ). Finally, since Jβˆ’1superscript𝐽1J^{-1}italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is a continuous bounded operator, it follows that Jβˆ’1⁒Nfsuperscript𝐽1subscript𝑁𝑓J^{-1}N_{f}italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT is completely continuous, as claimed.

We now show that the cone K𝐾Kitalic_K is invariant under the operator Jβˆ’1⁒Nfsuperscript𝐽1subscript𝑁𝑓J^{-1}N_{f}italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT. Let u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K, and denote v=Jβˆ’1⁒Nf⁒(u)𝑣superscript𝐽1subscript𝑁𝑓𝑒v=J^{-1}N_{f}(u)italic_v = italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ). We show that v∈K𝑣𝐾v\in Kitalic_v ∈ italic_K.

By the comparison principle for the p𝑝pitalic_p-Laplace operator (see, e.g., [24, Lemma 1.3]), since Nf⁒(u)β‰₯0subscript𝑁𝑓𝑒0N_{f}\left(u\right)\geq 0italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ) β‰₯ 0, it follows that Jβˆ’1⁒Nf⁒(u)β‰₯0superscript𝐽1subscript𝑁𝑓𝑒0J^{-1}N_{f}\left(u\right)\geq 0italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ) β‰₯ 0. To prove that v𝑣vitalic_v is symmetric, denote w⁒(t):=v⁒(1βˆ’t).assign𝑀𝑑𝑣1𝑑w\left(t\right):=v\left(1-t\right).italic_w ( italic_t ) := italic_v ( 1 - italic_t ) . Since u𝑒uitalic_u is symmetric, so is f⁒(u)𝑓𝑒f(u)italic_f ( italic_u ), and hence

Nf⁒(u⁒(1βˆ’t))=Nf⁒(u⁒(t)).subscript𝑁𝑓𝑒1𝑑subscript𝑁𝑓𝑒𝑑N_{f}(u(1-t))=N_{f}(u(t)).italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ( 1 - italic_t ) ) = italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ( italic_t ) ) .

Moreover, we have

J⁒(v)⁒(1βˆ’t)=Nf⁒(u⁒(1βˆ’t)),𝐽𝑣1𝑑subscript𝑁𝑓𝑒1𝑑J(v)(1-t)=N_{f}(u(1-t)),italic_J ( italic_v ) ( 1 - italic_t ) = italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ( 1 - italic_t ) ) ,

and

J⁒(v)⁒(1βˆ’t)=J⁒(w)⁒(t).𝐽𝑣1𝑑𝐽𝑀𝑑J(v)(1-t)=J(w)(t).italic_J ( italic_v ) ( 1 - italic_t ) = italic_J ( italic_w ) ( italic_t ) .

Therefore,

J⁒(w)=Nf⁒(u),𝐽𝑀subscript𝑁𝑓𝑒J\left(w\right)=N_{f}\left(u\right),italic_J ( italic_w ) = italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ) ,

which shows that both v𝑣vitalic_v and w𝑀witalic_w solve the same Dirichlet problem for the p𝑝pitalic_p-Laplace equation. By uniqueness of the solution to this problem, it follows that v=w𝑣𝑀v=witalic_v = italic_w, that is, v𝑣vitalic_v is symmetric. Finally, we observe that J⁒(v)=J⁒(Jβˆ’1⁒Nf⁒(u))=Nf⁒(u)𝐽𝑣𝐽superscript𝐽1subscript𝑁𝑓𝑒subscript𝑁𝑓𝑒J\left(v\right)=J(J^{-1}N_{f}\left(u\right))=N_{f}\left(u\right)italic_J ( italic_v ) = italic_J ( italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ) ) = italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u ), which is nonnegative and nondecreasing on [0,1/2]012[0,1/2][ 0 , 1 / 2 ]. Therefore, Lemma 2.2 applies and guarantees that the inequality (2.3) holds for v𝑣vitalic_v. Consequently, v∈K𝑣𝐾v\in Kitalic_v ∈ italic_K as claimed, hence condition (H1) holds.

Check of (H2). Suppose, by contradiction, that (H2) does not hold. Then, one can find a sequence {uk}βŠ‚π’©r,Rsubscriptπ‘’π‘˜subscriptπ’©π‘Ÿπ‘…\{u_{k}\}\subset\mathcal{N}_{r,R}{ italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } βŠ‚ caligraphic_N start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT such that

(4.4) Jβˆ’1⁒Nf⁒(uk)β†’0.β†’superscript𝐽1subscript𝑁𝑓subscriptπ‘’π‘˜0J^{-1}N_{f}\left(u_{k}\right)\rightarrow 0.italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β†’ 0 .

Since J𝐽Jitalic_J is demicontinuous (Proposition 2.1 (e)), relation (4.4) implies that

J⁒(Jβˆ’1⁒Nf⁒(uk))=Nf⁒(uk)⇀0,𝐽superscript𝐽1subscript𝑁𝑓subscriptπ‘’π‘˜subscript𝑁𝑓subscriptπ‘’π‘˜β‡€0J(J^{-1}N_{f}\left(u_{k}\right))=N_{f}\left(u_{k}\right)\rightharpoonup 0,italic_J ( italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) = italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ⇀ 0 ,

weakly. Therefore, for any given Ο‡βˆˆKβˆ–{0}πœ’πΎ0\chi\in K\setminus\{0\}italic_Ο‡ ∈ italic_K βˆ– { 0 }, we have

⟨Nf⁒(uk),Ο‡βŸ©β†’0.β†’subscript𝑁𝑓subscriptπ‘’π‘˜πœ’0\langle N_{f}\left(u_{k}\right),\chi\rangle\rightarrow 0.⟨ italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_Ο‡ ⟩ β†’ 0 .

From the Harnack inequality and the monotonicity of the functions uksubscriptπ‘’π‘˜u_{k}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and Ο‡πœ’\chiitalic_Ο‡ on the interval [0,1/2],012\left[0,1/2\right],[ 0 , 1 / 2 ] , for every t∈(Ξ²,1/2),𝑑𝛽12t\in(\beta,1/2),italic_t ∈ ( italic_Ξ² , 1 / 2 ) , we have

uk⁒(t)β‰₯uk⁒(Ξ²)β‰₯ϕ⁒(Ξ²)⁒|uk|1,p, andformulae-sequencesubscriptπ‘’π‘˜π‘‘subscriptπ‘’π‘˜π›½italic-ϕ𝛽subscriptsubscriptπ‘’π‘˜1𝑝 and\displaystyle u_{k}(t)\geq u_{k}\left(\beta\right)\geq\phi(\beta)|u_{k}|_{1,p}% ,\,\text{ and }italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) β‰₯ italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_Ξ² ) β‰₯ italic_Ο• ( italic_Ξ² ) | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT , and
(4.5) χ⁒(t)β‰₯ϕ⁒(t)⁒|Ο‡|1,p.πœ’π‘‘italic-ϕ𝑑subscriptπœ’1𝑝\displaystyle\chi(t)\geq\phi(t)|\chi|_{1,p}.italic_Ο‡ ( italic_t ) β‰₯ italic_Ο• ( italic_t ) | italic_Ο‡ | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT .

Using the monotonicity of f𝑓fitalic_f, the symmetry of uksubscriptπ‘’π‘˜u_{k}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and Ο‡πœ’\chiitalic_Ο‡, and the bounds in (4.5), we obtain

⟨Nf⁒(uk),Ο‡βŸ©subscript𝑁𝑓subscriptπ‘’π‘˜πœ’\displaystyle\langle N_{f}\left(u_{k}\right),\chi\rangle⟨ italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_Ο‡ ⟩ =∫01f⁒(uk⁒(t))⁒χ⁒(t)⁒𝑑tβ‰₯2⁒∫β1/2f⁒(uk⁒(t))⁒χ⁒(t)⁒𝑑tabsentsuperscriptsubscript01𝑓subscriptπ‘’π‘˜π‘‘πœ’π‘‘differential-d𝑑2superscriptsubscript𝛽12𝑓subscriptπ‘’π‘˜π‘‘πœ’π‘‘differential-d𝑑\displaystyle=\int_{0}^{1}f(u_{k}(t))\chi(t)\,dt\geq 2\int_{\beta}^{1/2}f\left% (u_{k}(t)\right)\chi(t)\,dt= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) ) italic_Ο‡ ( italic_t ) italic_d italic_t β‰₯ 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) ) italic_Ο‡ ( italic_t ) italic_d italic_t
β‰₯2⁒|Ο‡|1,p⁒f⁒(ϕ⁒(Ξ²)⁒|uk|1,p)⁒∫β1/2ϕ⁒(t)⁒𝑑t=2⁒|Ο‡|1,p⁒f⁒(ϕ⁒(Ξ²)⁒|uk|1,p)⁒Φ.absent2subscriptπœ’1𝑝𝑓italic-ϕ𝛽subscriptsubscriptπ‘’π‘˜1𝑝superscriptsubscript𝛽12italic-ϕ𝑑differential-d𝑑2subscriptπœ’1𝑝𝑓italic-ϕ𝛽subscriptsubscriptπ‘’π‘˜1𝑝Φ\displaystyle\geq 2|\chi|_{1,p}f(\phi(\beta)|u_{k}|_{1,p})\int_{\beta}^{1/2}% \phi(t)\,dt=2|\chi|_{1,p}f(\phi(\beta)|u_{k}|_{1,p})\Phi.β‰₯ 2 | italic_Ο‡ | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT italic_f ( italic_Ο• ( italic_Ξ² ) | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ) ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_Ο• ( italic_t ) italic_d italic_t = 2 | italic_Ο‡ | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT italic_f ( italic_Ο• ( italic_Ξ² ) | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ) roman_Ξ¦ .

Since |uk|1,pβ‰₯rsubscriptsubscriptπ‘’π‘˜1π‘π‘Ÿ\left|u_{k}\right|_{1,p}\geq r| italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT β‰₯ italic_r for all k,π‘˜k,italic_k , we conclude that

0≀2⁒|Ο‡|1,p⁒f⁒(ϕ⁒(Ξ²)⁒r)β’Ξ¦β‰€βŸ¨Nf⁒(uk),Ο‡βŸ©β†’0,02subscriptπœ’1𝑝𝑓italic-Ο•π›½π‘ŸΞ¦subscript𝑁𝑓subscriptπ‘’π‘˜πœ’β†’00\leq 2|\chi|_{1,p}f(\phi(\beta)r)\Phi\leq\langle N_{f}\left(u_{k}\right),\chi% \rangle\rightarrow 0,0 ≀ 2 | italic_Ο‡ | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT italic_f ( italic_Ο• ( italic_Ξ² ) italic_r ) roman_Ξ¦ ≀ ⟨ italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_Ο‡ ⟩ β†’ 0 ,

whence f⁒(ϕ⁒(Ξ²)⁒r)=0,𝑓italic-Ο•π›½π‘Ÿ0f(\phi(\beta)r)=0,italic_f ( italic_Ο• ( italic_Ξ² ) italic_r ) = 0 , which contradicts the strict positivity of f𝑓fitalic_f on (0,R]0𝑅(0,R]( 0 , italic_R ] implied by (h2). Hence, (H2) holds.

Check of (H3). Let u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 } and denote w:=u|u|1,p.assign𝑀𝑒subscript𝑒1𝑝w:=\frac{u}{|u|_{1,p}}.italic_w := divide start_ARG italic_u end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG . We immediately see that the derivative of the mapping Ξ±usubscript𝛼𝑒\alpha_{u}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT defined in (3.1) is

Ξ±u′⁒(Οƒ)=Οƒpβˆ’1⁒|u|1,ppβˆ’βˆ«01f⁒(σ⁒u⁒(t))⁒u⁒(t)⁒𝑑t.superscriptsubscriptπ›Όπ‘’β€²πœŽsuperscriptπœŽπ‘1superscriptsubscript𝑒1𝑝𝑝superscriptsubscript01π‘“πœŽπ‘’π‘‘π‘’π‘‘differential-d𝑑\alpha_{u}^{\prime}\left(\sigma\right)=\sigma^{p-1}|u|_{1,p}^{p}-\int_{0}^{1}f% (\sigma u(t))u(t)\,dt.italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) = italic_Οƒ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Οƒ italic_u ( italic_t ) ) italic_u ( italic_t ) italic_d italic_t .

We claim that

(4.6) Ξ±u′⁒(r|u|1,p)>0andΞ±u′⁒(R|u|1,p)<0.formulae-sequencesuperscriptsubscriptπ›Όπ‘’β€²π‘Ÿsubscript𝑒1𝑝0andsuperscriptsubscript𝛼𝑒′𝑅subscript𝑒1𝑝0\alpha_{u}^{\prime}\left(\frac{r}{|u|_{1,p}}\right)>0\quad\text{and}\quad% \alpha_{u}^{\prime}\left(\frac{R}{|u|_{1,p}}\right)<0.italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) > 0 and italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) < 0 .

Since w⁒(t)≀1𝑀𝑑1w(t)\leq 1italic_w ( italic_t ) ≀ 1 for all t∈[0,1]𝑑01t\in[0,1]italic_t ∈ [ 0 , 1 ], it follows that f⁒(r⁒w⁒(t))≀f⁒(r)π‘“π‘Ÿπ‘€π‘‘π‘“π‘Ÿf(rw(t))\leq f(r)italic_f ( italic_r italic_w ( italic_t ) ) ≀ italic_f ( italic_r ) for all t∈[0,1]𝑑01t\in\left[0,1\right]italic_t ∈ [ 0 , 1 ]. Moreover, by HΓΆlder’s inequality and (4.2), we have

∫01w⁒(t)⁒𝑑t≀(∫01w⁒(t)p⁒𝑑t)1/p≀cp⁒|w|1,p=cp,superscriptsubscript01𝑀𝑑differential-d𝑑superscriptsuperscriptsubscript01𝑀superscript𝑑𝑝differential-d𝑑1𝑝subscript𝑐𝑝subscript𝑀1𝑝subscript𝑐𝑝\int_{0}^{1}w(t)\,dt\leq\left(\int_{0}^{1}w(t)^{p}\,dt\right)^{1/p}\leq c_{p}|% w|_{1,p}=c_{p},∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_w ( italic_t ) italic_d italic_t ≀ ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_w ( italic_t ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d italic_t ) start_POSTSUPERSCRIPT 1 / italic_p end_POSTSUPERSCRIPT ≀ italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT | italic_w | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ,

since |w|1,p=1subscript𝑀1𝑝1|w|_{1,p}=1| italic_w | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT = 1 by definition. Thus, using the first inequality in (4.3), we obtain

Ξ±u′⁒(r|u|1,p)superscriptsubscriptπ›Όπ‘’β€²π‘Ÿsubscript𝑒1𝑝\displaystyle\alpha_{u}^{\prime}\left(\frac{r}{|u|_{1,p}}\right)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) =rpβˆ’1⁒|u|1,pβˆ’βˆ«01f⁒(r⁒w⁒(t))⁒u⁒(t)⁒𝑑tabsentsuperscriptπ‘Ÿπ‘1subscript𝑒1𝑝superscriptsubscript01π‘“π‘Ÿπ‘€π‘‘π‘’π‘‘differential-d𝑑\displaystyle=r^{p-1}|u|_{1,p}-\int_{0}^{1}f(rw(t))u(t)dt= italic_r start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_r italic_w ( italic_t ) ) italic_u ( italic_t ) italic_d italic_t
=|u|1,p⁒(rpβˆ’1βˆ’βˆ«01f⁒(r⁒w⁒(t))⁒w⁒(t)⁒𝑑t)absentsubscript𝑒1𝑝superscriptπ‘Ÿπ‘1superscriptsubscript01π‘“π‘Ÿπ‘€π‘‘π‘€π‘‘differential-d𝑑\displaystyle=|u|_{1,p}\left(r^{p-1}-\int_{0}^{1}f(rw(t))w(t)dt\right)= | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_r italic_w ( italic_t ) ) italic_w ( italic_t ) italic_d italic_t )
β‰₯|u|1,p⁒(rpβˆ’1βˆ’f⁒(r)⁒∫01w⁒(t)⁒𝑑t)absentsubscript𝑒1𝑝superscriptπ‘Ÿπ‘1π‘“π‘Ÿsuperscriptsubscript01𝑀𝑑differential-d𝑑\displaystyle\geq|u|_{1,p}\left(r^{p-1}-f(r)\int_{0}^{1}w(t)dt\right)β‰₯ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - italic_f ( italic_r ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_w ( italic_t ) italic_d italic_t )
β‰₯|u|1,p⁒(rpβˆ’1βˆ’cp⁒f⁒(r))absentsubscript𝑒1𝑝superscriptπ‘Ÿπ‘1subscriptπ‘π‘π‘“π‘Ÿ\displaystyle\geq|u|_{1,p}\left(r^{p-1}-c_{p}f(r)\right)β‰₯ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_f ( italic_r ) )
>0,absent0\displaystyle>0,> 0 ,

that is, the first inequality in (4.6). To prove the second claim, note that the monotonicity of w𝑀witalic_w on [0,1/2]012[0,1/2][ 0 , 1 / 2 ], together with the Harnack inequality, yields that

(4.7) w⁒(t)β‰₯ϕ⁒(Ξ²) for all t∈[Ξ²,1/2].𝑀𝑑italic-ϕ𝛽 for all t∈[Ξ²,1/2]w(t)\geq\phi(\beta)\quad\text{ for all $t\in[\beta,1/2]$}.italic_w ( italic_t ) β‰₯ italic_Ο• ( italic_Ξ² ) for all italic_t ∈ [ italic_Ξ² , 1 / 2 ] .

Using the symmetry of w𝑀witalic_w and the second inequality in (4.3), we find that

Ξ±u′⁒(R|u|1,p)superscriptsubscript𝛼𝑒′𝑅subscript𝑒1𝑝\displaystyle\alpha_{u}^{\prime}\left(\frac{R}{|u|_{1,p}}\right)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) =Rpβˆ’1⁒|u|1,pβˆ’βˆ«01f⁒(R⁒w⁒(t))⁒u⁒(t)⁒𝑑tabsentsuperscript𝑅𝑝1subscript𝑒1𝑝superscriptsubscript01𝑓𝑅𝑀𝑑𝑒𝑑differential-d𝑑\displaystyle=R^{p-1}|u|_{1,p}-\int_{0}^{1}f(Rw(t))u(t)dt= italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_R italic_w ( italic_t ) ) italic_u ( italic_t ) italic_d italic_t
=|u|1,p⁒(Rpβˆ’1βˆ’2⁒∫01/2f⁒(R⁒w⁒(t))⁒w⁒(t)⁒𝑑t)absentsubscript𝑒1𝑝superscript𝑅𝑝12superscriptsubscript012𝑓𝑅𝑀𝑑𝑀𝑑differential-d𝑑\displaystyle=|u|_{1,p}\left(R^{p-1}-2\int_{0}^{1/2}f(Rw(t))w(t)dt\right)= | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_R italic_w ( italic_t ) ) italic_w ( italic_t ) italic_d italic_t )
≀|u|1,p⁒(Rpβˆ’1βˆ’2⁒∫β1/2f⁒(R⁒ϕ⁒(t))⁒ϕ⁒(t)⁒𝑑t)absentsubscript𝑒1𝑝superscript𝑅𝑝12superscriptsubscript𝛽12𝑓𝑅italic-ϕ𝑑italic-ϕ𝑑differential-d𝑑\displaystyle\leq|u|_{1,p}\left(R^{p-1}-2\int_{\beta}^{1/2}f(R\phi(t))\phi(t)% dt\right)≀ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_R italic_Ο• ( italic_t ) ) italic_Ο• ( italic_t ) italic_d italic_t )
≀|u|1,p⁒(Rpβˆ’1βˆ’2⁒Φ⁒f⁒(R⁒ϕ⁒(Ξ²)))absentsubscript𝑒1𝑝superscript𝑅𝑝12Φ𝑓𝑅italic-ϕ𝛽\displaystyle\leq|u|_{1,p}\left(R^{p-1}-2\Phi f(R\phi(\beta))\right)≀ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - 2 roman_Ξ¦ italic_f ( italic_R italic_Ο• ( italic_Ξ² ) ) )
<0.absent0\displaystyle<0.< 0 .

Consequently, the second inequality in (4.6) also holds.

To continue with the verification of (H⁒3)𝐻3(H3)( italic_H 3 ), let us denote w:=u|u|1,passign𝑀𝑒subscript𝑒1𝑝w:=\frac{u}{|u|_{1,p}}italic_w := divide start_ARG italic_u end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG and Ξ³:=σ⁒|u|1,passignπ›ΎπœŽsubscript𝑒1𝑝\gamma:=\sigma\left|u\right|_{1,p}italic_Ξ³ := italic_Οƒ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT. Then,

Ξ±u′⁒(Οƒ)superscriptsubscriptπ›Όπ‘’β€²πœŽ\displaystyle\alpha_{u}^{\prime}(\sigma)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) =Οƒpβˆ’1⁒|u|1,ppβˆ’βˆ«01f⁒(σ⁒u⁒(t))⁒u⁒(t)⁒𝑑tabsentsuperscriptπœŽπ‘1superscriptsubscript𝑒1𝑝𝑝superscriptsubscript01π‘“πœŽπ‘’π‘‘π‘’π‘‘differential-d𝑑\displaystyle=\sigma^{p-1}\left|u\right|_{1,p}^{p}-\int_{0}^{1}f\left(\sigma u% \left(t\right)\right)u\left(t\right)dt= italic_Οƒ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Οƒ italic_u ( italic_t ) ) italic_u ( italic_t ) italic_d italic_t
=Οƒpβˆ’1⁒|u|1,pp⁒(1βˆ’βˆ«01f⁒(γ⁒w⁒(t))Ξ³pβˆ’1⁒w⁒(t)⁒𝑑t)absentsuperscriptπœŽπ‘1superscriptsubscript𝑒1𝑝𝑝1superscriptsubscript01𝑓𝛾𝑀𝑑superscript𝛾𝑝1𝑀𝑑differential-d𝑑\displaystyle=\sigma^{p-1}\left|u\right|_{1,p}^{p}\left(1-\int_{0}^{1}\frac{f% \left(\gamma w\left(t\right)\right)}{\gamma^{p-1}}w\left(t\right)dt\right)= italic_Οƒ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( 1 - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_Ξ³ italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG italic_w ( italic_t ) italic_d italic_t )
=Οƒpβˆ’1⁒|u|1,pp⁒h⁒(Ξ³),absentsuperscriptπœŽπ‘1superscriptsubscript𝑒1π‘π‘β„Žπ›Ύ\displaystyle=\sigma^{p-1}|u|_{1,p}^{p}h(\gamma),= italic_Οƒ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_h ( italic_Ξ³ ) ,

where

h⁒(Ξ³):=1βˆ’βˆ«01f⁒(γ⁒w⁒(t))Ξ³pβˆ’1⁒w⁒(t)⁒𝑑t(γ∈[r,R]).assignβ„Žπ›Ύ1superscriptsubscript01𝑓𝛾𝑀𝑑superscript𝛾𝑝1𝑀𝑑differential-dπ‘‘π›Ύπ‘Ÿπ‘…h(\gamma):=1-\int_{0}^{1}\frac{f(\gamma w(t))}{\gamma^{p-1}}w(t)dt\ \ \ \left(% \gamma\in\left[r,R\right]\right).italic_h ( italic_Ξ³ ) := 1 - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_Ξ³ italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG italic_w ( italic_t ) italic_d italic_t ( italic_Ξ³ ∈ [ italic_r , italic_R ] ) .

We now show that the function hβ„Žhitalic_h is strictly decreasing on [r,R].π‘Ÿπ‘…\left[r,R\right].[ italic_r , italic_R ] . For this, let r≀γ1<Ξ³2≀R.π‘Ÿsubscript𝛾1subscript𝛾2𝑅r\leq\gamma_{1}<\gamma_{2}\leq R.italic_r ≀ italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≀ italic_R . One has

h⁒(Ξ³1)βˆ’h⁒(Ξ³2)=2⁒∫012(f⁒(Ξ³2⁒w⁒(t))Ξ³2pβˆ’1βˆ’f⁒(Ξ³1⁒w⁒(t))Ξ³1pβˆ’1)⁒w⁒(t)⁒𝑑t.β„Žsubscript𝛾1β„Žsubscript𝛾22superscriptsubscript012𝑓subscript𝛾2𝑀𝑑superscriptsubscript𝛾2𝑝1𝑓subscript𝛾1𝑀𝑑superscriptsubscript𝛾1𝑝1𝑀𝑑differential-d𝑑h(\gamma_{1})-h(\gamma_{2})=2\int_{0}^{\frac{1}{2}}\left(\frac{f(\gamma_{2}w(t% ))}{\gamma_{2}^{p-1}}-\frac{f(\gamma_{1}w(t))}{\gamma_{1}^{p-1}}\right)w\left(% t\right)dt.italic_h ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_h ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_f ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_f ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG ) italic_w ( italic_t ) italic_d italic_t .

Since 0<w⁒(t)≀10𝑀𝑑10<w(t)\leq 10 < italic_w ( italic_t ) ≀ 1 for all t∈(0,1/2]𝑑012t\in(0,1/2]italic_t ∈ ( 0 , 1 / 2 ], it follows that 0<Ξ³1⁒w⁒(t)<Ξ³2⁒w⁒(t)≀R0subscript𝛾1𝑀𝑑subscript𝛾2𝑀𝑑𝑅0<\gamma_{1}w(t)<\gamma_{2}w(t)\leq R0 < italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) < italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w ( italic_t ) ≀ italic_R. Then, using assumption (h2), we have

g⁒(Ξ³2⁒w⁒(t))>g⁒(Ξ³1⁒w⁒(t)),𝑔subscript𝛾2𝑀𝑑𝑔subscript𝛾1𝑀𝑑g(\gamma_{2}w(t))>g(\gamma_{1}w(t)),italic_g ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w ( italic_t ) ) > italic_g ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) ,

which implies

(f⁒(Ξ³2⁒w⁒(t))Ξ³2pβˆ’1βˆ’f⁒(Ξ³1⁒w⁒(t))Ξ³1pβˆ’1)⁒w⁒(t)𝑓subscript𝛾2𝑀𝑑superscriptsubscript𝛾2𝑝1𝑓subscript𝛾1𝑀𝑑superscriptsubscript𝛾1𝑝1𝑀𝑑\displaystyle\left(\frac{f(\gamma_{2}w(t))}{\gamma_{2}^{p-1}}-\frac{f(\gamma_{% 1}w(t))}{\gamma_{1}^{p-1}}\right)w(t)( divide start_ARG italic_f ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_f ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG ) italic_w ( italic_t ) =(f⁒(Ξ³2⁒w⁒(t))Ξ³2pβˆ’1⁒w⁒(t)pβˆ’1βˆ’f⁒(Ξ³1⁒w⁒(t))Ξ³1pβˆ’1⁒w⁒(t)pβˆ’1)⁒w⁒(t)pabsent𝑓subscript𝛾2𝑀𝑑superscriptsubscript𝛾2𝑝1𝑀superscript𝑑𝑝1𝑓subscript𝛾1𝑀𝑑superscriptsubscript𝛾1𝑝1𝑀superscript𝑑𝑝1𝑀superscript𝑑𝑝\displaystyle=\left(\frac{f(\gamma_{2}w(t))}{\gamma_{2}^{p-1}w(t)^{p-1}}-\frac% {f(\gamma_{1}w(t))}{\gamma_{1}^{p-1}w(t)^{p-1}}\right)w(t)^{p}= ( divide start_ARG italic_f ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT italic_w ( italic_t ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_f ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) end_ARG start_ARG italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT italic_w ( italic_t ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG ) italic_w ( italic_t ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT
=(g⁒(Ξ³2⁒w⁒(t))βˆ’g⁒(Ξ³1⁒w⁒(t)))⁒w⁒(t)pabsent𝑔subscript𝛾2𝑀𝑑𝑔subscript𝛾1𝑀𝑑𝑀superscript𝑑𝑝\displaystyle=\left(g(\gamma_{2}w(t))-g(\gamma_{1}w(t))\right)w(t)^{p}= ( italic_g ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w ( italic_t ) ) - italic_g ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) ) italic_w ( italic_t ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT
>0,absent0\displaystyle>0,> 0 ,

for all t∈(0,1/2]𝑑012t\in(0,1/2]italic_t ∈ ( 0 , 1 / 2 ]. Therefore h⁒(Ξ³1)>h⁒(Ξ³2)β„Žsubscript𝛾1β„Žsubscript𝛾2h\left(\gamma_{1}\right)>h\left(\gamma_{2}\right)italic_h ( italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) > italic_h ( italic_Ξ³ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and thus hβ„Žhitalic_h is strictly decreasing on [r,R].π‘Ÿπ‘…\left[r,R\right].[ italic_r , italic_R ] . Moreover, since h⁒(r)>0β„Žπ‘Ÿ0h\left(r\right)>0italic_h ( italic_r ) > 0 and h⁒(R)<0,β„Žπ‘…0h\left(R\right)<0,italic_h ( italic_R ) < 0 , it follows that hβ„Žhitalic_h has exactly one zero Ξ³0subscript𝛾0\gamma_{0}italic_Ξ³ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in (r,R),π‘Ÿπ‘…\left(r,R\right),( italic_r , italic_R ) , is positive on (r,Ξ³0)π‘Ÿsubscript𝛾0\left(r,\gamma_{0}\right)( italic_r , italic_Ξ³ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and negative on (Ξ³0,R).subscript𝛾0𝑅\left(\gamma_{0},R\right).( italic_Ξ³ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) . Correspondingly, Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has the unique zero at

s⁒(u):=Ξ³0|u|1,p,assign𝑠𝑒subscript𝛾0subscript𝑒1𝑝s\left(u\right):=\frac{\gamma_{0}}{\left|u\right|_{1,p}},italic_s ( italic_u ) := divide start_ARG italic_Ξ³ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ,

is positive on (r|u|H01,s⁒(u))π‘Ÿsubscript𝑒superscriptsubscript𝐻01𝑠𝑒\left(\frac{r}{|u|_{H_{0}^{1}}},s(u)\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ) and negative on (s⁒(u),R|u|H01).𝑠𝑒𝑅subscript𝑒superscriptsubscript𝐻01\left(s(u),\frac{R}{|u|_{H_{0}^{1}}}\right).( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) . So condition (H3) is verified.

Since all the conditions (H1)-(H3) are satisfied, Theorem 3.2 applies and gives the conclusion. ∎

Instead of condition (h2), we may consider an alternative assumption formulated in relation to the annular conical set Kr,RsubscriptπΎπ‘Ÿπ‘…K_{r,R}italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT. More exactly,

  1. (h2’)

    The function f𝑓fitalic_f is of class C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT on ℝℝ\mathbb{R}blackboard_R and

    (4.8) mint∈[r⁒ϕ⁒(Ξ²),R]⁑f′⁒(t)>(pβˆ’1)⁒Rpβˆ’22⁒Ψ⁒ ,subscriptπ‘‘π‘Ÿitalic-ϕ𝛽𝑅superscript𝑓′𝑑𝑝1superscript𝑅𝑝22Ξ¨ \min_{t\in[r\phi(\beta),R]}f^{\prime}(t)>\frac{(p-1)R^{p-2}}{2\Psi}\text{ },roman_min start_POSTSUBSCRIPT italic_t ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) > divide start_ARG ( italic_p - 1 ) italic_R start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 roman_Ξ¨ end_ARG ,

    where

    Ξ¨=∫β1/2ϕ⁒(t)2⁒𝑑t.Ξ¨superscriptsubscript𝛽12italic-Ο•superscript𝑑2differential-d𝑑\Psi=\int_{\beta}^{1/2}\phi(t)^{2}dt.roman_Ξ¨ = ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_Ο• ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t .
Theorem 4.2.

Under conditions (h1) and (h2’), the problem (4.1) has a solution u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K satisfying

r<|u|1,p<R.π‘Ÿsubscript𝑒1𝑝𝑅r<\left|u\right|_{1,p}<R.italic_r < | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT < italic_R .
Proof.

Similar to the proof of Theorem 4.1, assumption (H1) from Theorem 3.2 is satisfied. In addition, it is easy to see that the strict positivity of f′⁒(r⁒ϕ⁒(Ξ²))superscriptπ‘“β€²π‘Ÿitalic-ϕ𝛽f^{\prime}\left(r\phi\left(\beta\right)\right)italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_r italic_Ο• ( italic_Ξ² ) ) implies f⁒(r⁒ϕ⁒(Ξ²))>0,π‘“π‘Ÿitalic-ϕ𝛽0f\left(r\phi\left(\beta\right)\right)>0,italic_f ( italic_r italic_Ο• ( italic_Ξ² ) ) > 0 , which as above guarantees (H2). Moreover, by (h1), relation (4.6) also holds. To verify condition (H2), it remains to prove that Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has a unique zero s⁒(u)𝑠𝑒s\left(u\right)italic_s ( italic_u ) within the interval (r|u|1,p,R|u|1,p),π‘Ÿsubscript𝑒1𝑝𝑅subscript𝑒1𝑝\left(\frac{r}{|u|_{1,p}},\frac{R}{|u|_{1,p}}\right),( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) , is positive on (r|u|1,p,s⁒(u))π‘Ÿsubscript𝑒1𝑝𝑠𝑒\left(\frac{r}{|u|_{1,p}},s(u)\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ) and negative on (s⁒(u),R|u|1,p).𝑠𝑒𝑅subscript𝑒1𝑝\left(s(u),\frac{R}{|u|_{1,p}}\right).( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) . Under the notations from the proof of the previous theorem, consider the function

h~⁒(Ξ³):=Ξ³pβˆ’1βˆ’βˆ«01f⁒(γ⁒w⁒(t))⁒w⁒(t)⁒𝑑t=Ξ³pβˆ’1⁒h⁒(Ξ³)(γ∈[r,R]).formulae-sequenceassign~β„Žπ›Ύsuperscript𝛾𝑝1superscriptsubscript01𝑓𝛾𝑀𝑑𝑀𝑑differential-d𝑑superscript𝛾𝑝1β„Žπ›Ύπ›Ύπ‘Ÿπ‘…\tilde{h}(\gamma):=\gamma^{p-1}-\int_{0}^{1}f(\gamma w(t))w(t)dt=\gamma^{p-1}h% \left(\gamma\right)\ \ \ \left(\gamma\in\left[r,R\right]\right).over~ start_ARG italic_h end_ARG ( italic_Ξ³ ) := italic_Ξ³ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Ξ³ italic_w ( italic_t ) ) italic_w ( italic_t ) italic_d italic_t = italic_Ξ³ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT italic_h ( italic_Ξ³ ) ( italic_Ξ³ ∈ [ italic_r , italic_R ] ) .

Then, we have

(4.9) Ξ±u′⁒(Οƒ)=|u|1,p⁒h~⁒(σ⁒|u|1,p)=|u|1,p⁒h~⁒(Ξ³).superscriptsubscriptπ›Όπ‘’β€²πœŽsubscript𝑒1𝑝~β„ŽπœŽsubscript𝑒1𝑝subscript𝑒1𝑝~β„Žπ›Ύ\alpha_{u}^{\prime}(\sigma)=|u|_{1,p}\tilde{h}(\sigma|u|_{1,p})=|u|_{1,p}% \tilde{h}(\gamma).italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) = | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT over~ start_ARG italic_h end_ARG ( italic_Οƒ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ) = | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT over~ start_ARG italic_h end_ARG ( italic_Ξ³ ) .

We now show that h~~β„Ž\tilde{h}over~ start_ARG italic_h end_ARG is strictly decreasing on [r,R]π‘Ÿπ‘…\left[r,R\right][ italic_r , italic_R ]. Since f𝑓fitalic_f is of class C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, it suffices to show that

h~′⁒(Ξ³)<0,for all β’γ∈[r,R].formulae-sequencesuperscript~β„Žβ€²π›Ύ0for all π›Ύπ‘Ÿπ‘…\tilde{h}^{\prime}(\gamma)<0,\quad\text{for all }\gamma\in[r,R].over~ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ³ ) < 0 , for all italic_Ξ³ ∈ [ italic_r , italic_R ] .

Differentiating, and using that f𝑓fitalic_f is nondecreasing, we obtain

h~′⁒(Ξ³)superscript~β„Žβ€²π›Ύ\displaystyle\tilde{h}^{\prime}\left(\gamma\right)over~ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ³ ) =(pβˆ’1)⁒γpβˆ’2βˆ’2⁒∫01/2f′⁒(γ⁒w⁒(t))⁒w⁒(t)2⁒𝑑tabsent𝑝1superscript𝛾𝑝22superscriptsubscript012superscript𝑓′𝛾𝑀𝑑𝑀superscript𝑑2differential-d𝑑\displaystyle=\left(p-1\right)\gamma^{p-2}-2\int_{0}^{1/2}f^{\prime}(\gamma w% \left(t\right))w\left(t\right)^{2}dt= ( italic_p - 1 ) italic_Ξ³ start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT - 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ³ italic_w ( italic_t ) ) italic_w ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
≀(pβˆ’1)⁒γpβˆ’2βˆ’2⁒∫β1/2f′⁒(γ⁒w⁒(t))⁒w⁒(t)2⁒𝑑t.absent𝑝1superscript𝛾𝑝22superscriptsubscript𝛽12superscript𝑓′𝛾𝑀𝑑𝑀superscript𝑑2differential-d𝑑\displaystyle\leq\left(p-1\right)\gamma^{p-2}-2\int_{\beta}^{1/2}f^{\prime}(% \gamma w\left(t\right))w\left(t\right)^{2}dt.≀ ( italic_p - 1 ) italic_Ξ³ start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT - 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ³ italic_w ( italic_t ) ) italic_w ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t .

For t∈[Ξ²,1/2],𝑑𝛽12t\in\left[\beta,1/2\right],italic_t ∈ [ italic_Ξ² , 1 / 2 ] , one has r⁒ϕ⁒(Ξ²)≀γ⁒w⁒(t)≀R,π‘Ÿitalic-ϕ𝛽𝛾𝑀𝑑𝑅r\phi\left(\beta\right)\leq\gamma w\left(t\right)\leq R,italic_r italic_Ο• ( italic_Ξ² ) ≀ italic_Ξ³ italic_w ( italic_t ) ≀ italic_R , whence

f′⁒(γ⁒w⁒(t))β‰₯mins∈[r⁒ϕ⁒(Ξ²),R]⁑f′⁒(s).superscript𝑓′𝛾𝑀𝑑subscriptπ‘ π‘Ÿitalic-ϕ𝛽𝑅superscript𝑓′𝑠f^{\prime}(\gamma w\left(t\right))\geq\min_{s\in\left[r\phi\left(\beta\right),% R\right]}f^{\prime}\left(s\right).italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ³ italic_w ( italic_t ) ) β‰₯ roman_min start_POSTSUBSCRIPT italic_s ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) .

Then, also using (4.8), we obtain

h~′⁒(Ξ³)≀(pβˆ’1)⁒Rpβˆ’2βˆ’2⁒Ψ⁒mins∈[r⁒ϕ⁒(Ξ²),R]⁑f′⁒(s)<0,superscript~β„Žβ€²π›Ύπ‘1superscript𝑅𝑝22Ξ¨subscriptπ‘ π‘Ÿitalic-ϕ𝛽𝑅superscript𝑓′𝑠0\tilde{h}^{\prime}\left(\gamma\right)\leq\left(p-1\right)R^{p-2}-2\Psi\min_{s% \in\left[r\phi\left(\beta\right),R\right]}f^{\prime}\left(s\right)<0,over~ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ³ ) ≀ ( italic_p - 1 ) italic_R start_POSTSUPERSCRIPT italic_p - 2 end_POSTSUPERSCRIPT - 2 roman_Ξ¨ roman_min start_POSTSUBSCRIPT italic_s ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) < 0 ,

as we desired. Finally, by (4.6) and (4.9), we conclude that Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has a unique zero within the interval (r|u|1,p,R|u|1,p).π‘Ÿsubscript𝑒1𝑝𝑅subscript𝑒1𝑝\left(\frac{r}{|u|_{1,p}},\frac{R}{|u|_{1,p}}\right).( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) . Moreover, Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is positive on (r|u|1,p,s⁒(u))π‘Ÿsubscript𝑒1𝑝𝑠𝑒\left(\frac{r}{|u|_{1,p}},s(u)\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ) and Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is negative on (s⁒(u),R|u|1,p)𝑠𝑒𝑅subscript𝑒1𝑝\left(s(u),\frac{R}{|u|_{1,p}}\right)( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ), so condition (H2) is verified.

Therefore, Theorem 3.2 applies and gives the conclusion. ∎

Remark 4.3.

Condition (h2) given on the whole interval (0,R]0𝑅(0,R]( 0 , italic_R ] does not lead to multiplicity. To see why, suppose there are two pairs (ri,Ri)subscriptπ‘Ÿπ‘–subscript𝑅𝑖(r_{i},R_{i})( italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), i=1,2𝑖12i=1,2italic_i = 1 , 2, with 0<r1<R1<r2<R20subscriptπ‘Ÿ1subscript𝑅1subscriptπ‘Ÿ2subscript𝑅20<r_{1}<R_{1}<r_{2}<R_{2}0 < italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT for which conditions (h1) and (h2) are both satisfied. By assumption (h1), we have

f⁒(r2)r2pβˆ’1<1cp.𝑓subscriptπ‘Ÿ2superscriptsubscriptπ‘Ÿ2𝑝11subscript𝑐𝑝\frac{f(r_{2})}{r_{2}^{p-1}}<\frac{1}{c_{p}}.divide start_ARG italic_f ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG < divide start_ARG 1 end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG .

On the other hand, (h2) yields

f⁒(R1)R1pβˆ’1≀f⁒(r2)r2pβˆ’1<1cp.𝑓subscript𝑅1superscriptsubscript𝑅1𝑝1𝑓subscriptπ‘Ÿ2superscriptsubscriptπ‘Ÿ2𝑝11subscript𝑐𝑝\frac{f(R_{1})}{R_{1}^{p-1}}\leq\frac{f(r_{2})}{r_{2}^{p-1}}<\frac{1}{c_{p}}.divide start_ARG italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG ≀ divide start_ARG italic_f ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG < divide start_ARG 1 end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG .

This implies

Ξ±u′⁒(R1|u|1,p)superscriptsubscript𝛼𝑒′subscript𝑅1subscript𝑒1𝑝\displaystyle\alpha_{u}^{\prime}\left(\frac{R_{1}}{|u|_{1,p}}\right)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT end_ARG ) =R1pβˆ’1⁒|u|1,pβˆ’βˆ«01f⁒(R1⁒w⁒(t))⁒u⁒(t)⁒𝑑tabsentsuperscriptsubscript𝑅1𝑝1subscript𝑒1𝑝superscriptsubscript01𝑓subscript𝑅1𝑀𝑑𝑒𝑑differential-d𝑑\displaystyle=R_{1}^{p-1}|u|_{1,p}-\int_{0}^{1}f(R_{1}w(t))u(t)dt= italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) italic_u ( italic_t ) italic_d italic_t
=|u|1,p⁒(R1pβˆ’1βˆ’βˆ«01f⁒(R1⁒w⁒(t))⁒w⁒(t)⁒𝑑t)absentsubscript𝑒1𝑝superscriptsubscript𝑅1𝑝1superscriptsubscript01𝑓subscript𝑅1𝑀𝑑𝑀𝑑differential-d𝑑\displaystyle=|u|_{1,p}\left(R_{1}^{p-1}-\int_{0}^{1}f(R_{1}w(t))w(t)dt\right)= | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w ( italic_t ) ) italic_w ( italic_t ) italic_d italic_t )
β‰₯|u|1,p⁒(R1pβˆ’1βˆ’f⁒(R1))absentsubscript𝑒1𝑝superscriptsubscript𝑅1𝑝1𝑓subscript𝑅1\displaystyle\geq|u|_{1,p}\left(R_{1}^{p-1}-f(R_{1})\right)β‰₯ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) )
β‰₯|u|1,p⁒(R1pβˆ’1βˆ’cp⁒f⁒(R1))absentsubscript𝑒1𝑝superscriptsubscript𝑅1𝑝1subscript𝑐𝑝𝑓subscript𝑅1\displaystyle\geq|u|_{1,p}\left(R_{1}^{p-1}-c_{p}f(R_{1})\right)β‰₯ | italic_u | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) )
>0,absent0\displaystyle>0,> 0 ,

which contradicts (4.6). However, condition (h2’) can be applied separately to each of several disjoint annular sets, which leads to multiple solutions, as shown in the following result illustrating the general multiplicity principle given by Theorem 3.3

Theorem 4.4.
(10):

If there are finite sequences of numbers (rk)1≀k≀msubscriptsubscriptπ‘Ÿπ‘˜1π‘˜π‘š\left(r_{k}\right)_{1\leq k\leq m}( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_k ≀ italic_m end_POSTSUBSCRIPT and (Rk)1≀k≀msubscriptsubscriptπ‘…π‘˜1π‘˜π‘š\left(R_{k}\right)_{1\leq k\leq m}( italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_k ≀ italic_m end_POSTSUBSCRIPT with

0<r1<R1<r2<R2<β‹―<rm<Rm0subscriptπ‘Ÿ1subscript𝑅1subscriptπ‘Ÿ2subscript𝑅2β‹―subscriptπ‘Ÿπ‘šsubscriptπ‘…π‘š0<r_{1}<R_{1}<r_{2}<R_{2}<\dots<r_{m}<R_{m}0 < italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < β‹― < italic_r start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT

such that conditions (h1) and (h2’) are satisfied for every pair (rk,Rk),k=1,2,…,m,formulae-sequencesubscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜π‘˜12β€¦π‘š\left(r_{k},R_{k}\right),\ k=1,2,...,m,( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_k = 1 , 2 , … , italic_m , then there exist mπ‘šmitalic_m solutions ukβˆ—superscriptsubscriptπ‘’π‘˜βˆ—u_{k}^{\ast}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT of problem (4.1) with

ukβˆ—βˆˆK,rk<|ukβˆ—|1,p<Rk(k=1,2,…,m).formulae-sequenceformulae-sequencesuperscriptsubscriptπ‘’π‘˜βˆ—πΎsubscriptπ‘Ÿπ‘˜subscriptsuperscriptsubscriptπ‘’π‘˜βˆ—1𝑝subscriptπ‘…π‘˜π‘˜12β€¦π‘šu_{k}^{\ast}\in K,\ \ r_{k}<\left|u_{k}^{\ast}\right|_{1,p}<R_{k}\ \ \ \left(k% =1,2,...,m\right).italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_k = 1 , 2 , … , italic_m ) .
(20):

If there are increasing sequences of numbers (rk)kβ‰₯1subscriptsubscriptπ‘Ÿπ‘˜π‘˜1\left(r_{k}\right)_{k\geq 1}( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT and (Rk)kβ‰₯1subscriptsubscriptπ‘…π‘˜π‘˜1\left(R_{k}\right)_{k\geq 1}( italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT with

0<rk<Rk<rk+1(kβ‰₯1),rkβ†’βˆžas β’kβ†’βˆžformulae-sequence0subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜subscriptπ‘Ÿπ‘˜1β†’π‘˜1subscriptπ‘Ÿπ‘˜β†’as π‘˜0<r_{k}<R_{k}<r_{k+1}\ \ \left(k\geq 1\right),\ \ \ r_{k}\rightarrow\infty\ \ % \text{as }k\rightarrow\infty0 < italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ( italic_k β‰₯ 1 ) , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ ∞ as italic_k β†’ ∞

such that conditions (h1) and (h2’) are satisfied for every pair (rk,Rk),kβ‰₯1,subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜π‘˜1\left(r_{k},R_{k}\right),\ k\geq 1,( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_k β‰₯ 1 , then there exists a sequence of solutions (ukβˆ—)kβ‰₯1subscriptsuperscriptsubscriptπ‘’π‘˜βˆ—π‘˜1\left(u_{k}^{\ast}\right)_{k\geq 1}( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT of problem (4.1) with

ukβˆ—βˆˆK,rk<|ukβˆ—|1,p<Rk;|ukβˆ—|1,pβ†’βˆžas β’kβ†’βˆž.formulae-sequenceformulae-sequencesuperscriptsubscriptπ‘’π‘˜βˆ—πΎsubscriptπ‘Ÿπ‘˜subscriptsuperscriptsubscriptπ‘’π‘˜βˆ—1𝑝subscriptπ‘…π‘˜formulae-sequenceβ†’subscriptsuperscriptsubscriptπ‘’π‘˜βˆ—1𝑝→as π‘˜u_{k}^{\ast}\in K,\ \ r_{k}<\left|u_{k}^{\ast}\right|_{1,p}<R_{k};\ \ \left|u_% {k}^{\ast}\right|_{1,p}\rightarrow\infty\ \ \ \text{as }k\rightarrow\infty.italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ; | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT β†’ ∞ as italic_k β†’ ∞ .
(30):

If there are decreasing sequences of numbers (rk)kβ‰₯1subscriptsubscriptπ‘Ÿπ‘˜π‘˜1\left(r_{k}\right)_{k\geq 1}( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT and (Rk)kβ‰₯1subscriptsubscriptπ‘…π‘˜π‘˜1\left(R_{k}\right)_{k\geq 1}( italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT with

0<Rk+1<rk<Rk(kβ‰₯1),Rkβ†’0as β’kβ†’βˆžformulae-sequence0subscriptπ‘…π‘˜1subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜β†’π‘˜1subscriptπ‘…π‘˜0β†’as π‘˜0<R_{k+1}<r_{k}<R_{k}\ \ \left(k\geq 1\right),\ \ \ R_{k}\rightarrow 0\ \ % \text{as }k\rightarrow\infty0 < italic_R start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_k β‰₯ 1 ) , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ 0 as italic_k β†’ ∞

such that conditions (h1) and (h2’) are satisfied for every pair (rk,Rk),kβ‰₯1,subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜π‘˜1\left(r_{k},R_{k}\right),\ k\geq 1,( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_k β‰₯ 1 , then there exists a sequence of solutions (ukβˆ—)kβ‰₯1subscriptsuperscriptsubscriptπ‘’π‘˜βˆ—π‘˜1\left(u_{k}^{\ast}\right)_{k\geq 1}( italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT of problem (4.1) with

ukβˆ—βˆˆK,rk<|xkβˆ—|1,p<Rk;|ukβˆ—|1,pβ†’0as β’kβ†’βˆž.formulae-sequenceformulae-sequencesuperscriptsubscriptπ‘’π‘˜βˆ—πΎsubscriptπ‘Ÿπ‘˜subscriptsuperscriptsubscriptπ‘₯π‘˜βˆ—1𝑝subscriptπ‘…π‘˜formulae-sequenceβ†’subscriptsuperscriptsubscriptπ‘’π‘˜βˆ—1𝑝0β†’as π‘˜u_{k}^{\ast}\in K,\ \ r_{k}<\left|x_{k}^{\ast}\right|_{1,p}<R_{k};\ \ \left|u_% {k}^{\ast}\right|_{1,p}\rightarrow 0\ \ \ \text{as }k\rightarrow\infty.italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K , italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < | italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ; | italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT 1 , italic_p end_POSTSUBSCRIPT β†’ 0 as italic_k β†’ ∞ .
Remark 4.5.

It is worth mentioning that requirement (h1) can be satisfied for a sequence of pairs (rk,Rk)subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜(r_{k},R_{k})( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) as in (20), if for example

liminfΟ„β†’βˆžf⁒(Ο„)Ο„pβˆ’1<1cpand β’limsupΟ„β†’βˆžf⁒(Ο„)Ο„pβˆ’1>12⁒Φ⁒ϕ⁒(Ξ²)pβˆ’1.formulae-sequencesubscriptinfimumβ†’πœπ‘“πœsuperscriptπœπ‘11subscript𝑐𝑝and subscriptsupremumβ†’πœπ‘“πœsuperscriptπœπ‘112Ξ¦italic-Ο•superscript𝛽𝑝1\lim\inf_{\tau\rightarrow\infty}\frac{f\left(\tau\right)}{\tau^{p-1}}<\frac{1}% {c_{p}}\ \ \ \text{and\ \ \ }\lim\sup_{\tau\rightarrow\infty}\frac{f\left(\tau% \right)}{\tau^{p-1}}>\frac{1}{2\Phi\phi\left(\beta\right)^{p-1}}.roman_lim roman_inf start_POSTSUBSCRIPT italic_Ο„ β†’ ∞ end_POSTSUBSCRIPT divide start_ARG italic_f ( italic_Ο„ ) end_ARG start_ARG italic_Ο„ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG < divide start_ARG 1 end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG and roman_lim roman_sup start_POSTSUBSCRIPT italic_Ο„ β†’ ∞ end_POSTSUBSCRIPT divide start_ARG italic_f ( italic_Ο„ ) end_ARG start_ARG italic_Ο„ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG > divide start_ARG 1 end_ARG start_ARG 2 roman_Ξ¦ italic_Ο• ( italic_Ξ² ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG .

Similarly, (h1) can be satisfied for a sequence of pairs (rk,Rk)subscriptπ‘Ÿπ‘˜subscriptπ‘…π‘˜(r_{k},R_{k})( italic_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) as in (30), if

liminfΟ„β†’0+f⁒(Ο„)Ο„pβˆ’1<1cpand β’limsupΟ„β†’0+f⁒(Ο„)Ο„pβˆ’1>12⁒Φ⁒ϕ⁒(Ξ²)pβˆ’1.formulae-sequencesubscriptinfimumβ†’πœlimit-from0π‘“πœsuperscriptπœπ‘11subscript𝑐𝑝and subscriptsupremumβ†’πœlimit-from0π‘“πœsuperscriptπœπ‘112Ξ¦italic-Ο•superscript𝛽𝑝1\lim\inf_{\tau\rightarrow 0+}\frac{f\left(\tau\right)}{\tau^{p-1}}<\frac{1}{c_% {p}}\ \ \ \text{and\ \ \ }\lim\sup_{\tau\rightarrow 0+}\frac{f\left(\tau\right% )}{\tau^{p-1}}>\frac{1}{2\Phi\phi\left(\beta\right)^{p-1}}.roman_lim roman_inf start_POSTSUBSCRIPT italic_Ο„ β†’ 0 + end_POSTSUBSCRIPT divide start_ARG italic_f ( italic_Ο„ ) end_ARG start_ARG italic_Ο„ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG < divide start_ARG 1 end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG and roman_lim roman_sup start_POSTSUBSCRIPT italic_Ο„ β†’ 0 + end_POSTSUBSCRIPT divide start_ARG italic_f ( italic_Ο„ ) end_ARG start_ARG italic_Ο„ start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG > divide start_ARG 1 end_ARG start_ARG 2 roman_Ξ¦ italic_Ο• ( italic_Ξ² ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG .

Both situations mean a very strong oscillation towards infinity and zero, respectively, from below 1cp1subscript𝑐𝑝\frac{1}{c_{p}}divide start_ARG 1 end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG to above 12⁒Φ⁒ϕ⁒(Ξ²)pβˆ’1.12Ξ¦italic-Ο•superscript𝛽𝑝1\frac{1}{2\Phi\phi\left(\beta\right)^{p-1}}.divide start_ARG 1 end_ARG start_ARG 2 roman_Ξ¦ italic_Ο• ( italic_Ξ² ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT end_ARG .

References

  • [1] A. Calamai, G. Infante and J. Rodriguez–Lopez, A Birkhoff–Kellogg type theorem for discontinuous operators with applications, arXiv:2401.16050v2, 10 Jun 2024.
  • [2] G.D. Birkhoff and O.D. Kellogg, Invariant points in function space, Trans. Amer. Math. Soc. 23 (1922), 96–115. doi:10.1090/s0002-9947-1922-1501192-9
  • [3] W. Chen and S. Deng, The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities, Z. Angew. Math. Phys. 66 (2015), 1387–1400.
  • [4] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
  • [5] G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with p𝑝pitalic_p-Laplacian, Portugal. Math. 58 (2001), 339–378.
  • [6] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1980.
  • [7] P. Drabek and S.I. Pohozaev, Positive solutions of the p𝑝pitalic_p-Laplacian: application of the fibering method, Proc. Royal Soc. Edinb. 127 (1997), 703–726.
  • [8] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367.
  • [9] A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces (I), Rozprawy Mat. 30 (1962), 1–93.
  • [10] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
  • [11] M.A. Krasnoselskii and L.A. Ladyzenskii , The structure of the spectrum of positive nonhomogeneous operators, Tr. Mosk. Mat. Obscestva 3 (1954), 321–346.
  • [12] H. Lisei, R. Precup and C. Varga, A Schechter type critical point result in annular conical domains of a Banach space and applications, Discrete Contin. Dyn. Syst. 36 (2016), 3775–3789.
  • [13] R. Precup, A compression type mountain pass theorem in conical shells, J. Math. Anal. Appl. 338 (2008), 1116-1130.
  • [14] R. Precup, On a bounded critical point theorem of Schechter, Studia Univ. BabeΕŸβ€“Bolyai Math. 58 (2013), No. 1, 87–95.
  • [15] R. Precup, P. Pucci and C. Varga, A three critical points result in a bounded domain of a Banach space and applications, Differ. Integral Equ. 30 (2017), 555–568.
  • [16] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
  • [17] A. Szulkin, The method of Nehari revisited, Research Institute for Mathematical Sciences, Kyoto University, 2011, no 1740, p. 89–102.
  • [18] A. Szulkin and T. Weth, The method of Nehari manifold. In: D.Y. Gao and D. Motreanu Eds., Handbook of Nonconvex Analysis and Applications, International Press, Somerville, 2010, pp 597–632.
  • [19] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681–703.
  • [20] M. Schechter, Linking Methods in Critical Point Theory, Birkh¨auser, Boston, 1999.
  • [21] M. Schechter and K. Tintarev, Nonlinear eigenvalues and mountain pass methods, Topol. Methods Nonlinear Anal. 1 (1993), 183–201.
  • [22] A. Stan, Localization of critical points in annular conical sets via the method of Nehari manifold, 10 Mar 2025 https://arxiv.org/abs/2503.12371
  • [23] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones. Academic Press, Boston, 1988.
  • [24] C. Azizieh and P. ClΓ©ment, A priori estimates and continuous methods for positive solutions of p𝑝pitalic_p-Laplace equations, J. Differential Equations 179 (2002), 213–245.
  • [25] M. Willem, Minimax Theorems, BirkhΓ€user, Boston, 1996.

Related Posts

No results found.