Andrei Stan

Current position:

Scientific researcher III  at Tiberiu Popoviciu Institute of Numerical Analysis

Interests:

  • Partial Differential Equations
  • Nonlinear Analysis
  • Numerical Analysis

Date and Place of Birth

Câmpeni (Alba), 1997

Education and degrees

2021-2024: Ph.D. Student in Mathematics, Nonlinear Analysis.Scientific advisor: Prof. dr.  Radu Precup

2019-2021: Master Degree in Advanced Mathematics, Babeș-Bolyai University, Cluj-Napoca

2016-2019: Bachelor Degree in Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca

2012-2016, Avram Iancu National College, Câmpeni

Employment history

2025-present: scientific researcher III at ICTP

2021-2025: Research assistant at ICTP

Talks at Conferences

  • Numerical Analysis, Numerical Modeling, Approximation Theory (NA-NM-AT 2025), Nash equilibria of fractional functionals via a Dinkelbach–Ekeland type approach, Cluj-Napoca, Romania, 3–6 November 2025.
    https://ictp.acad.ro/nanmat/nanmat-2025/

  • The First Balkan Workshop on Fixed Point Theory and Applications, Fixed point results and the Ekeland variational principle in vector B-metric spaces, Babeș-Bolyai University, Cluj-Napoca, Romania, 12–14 June 2025.
    https://www.cs.ubbcluj.ro/1st-balkan-workshop-on-fixed-point-theory/

  • Recent Advances in Nonlinear Differential Problems and Applications, Localization of critical points in conical sets via the method of Nehari manifolds, Perugia, Italy, 4–6 June 2025.
    https://analisi.sites.dmi.unipg.it/Randpa2025/program.htm

  • Numerical Analysis, Numerical Modeling, Approximation Theory (NA-NM-AT 2023), Localization of Nash equilibria for systems with partial variational structure, Cluj-Napoca, Romania, 6–10 November 2023.
    https://ictp.acad.ro/nanmat/nanmat-2023/

  • The 14th International Conference on Fixed Point Theory and its Applications, Nash equilibria for nonpotential systems, Brașov, Romania, 11–14 July 2023.
    https://icfpta2023.files.wordpress.com/2023/07/icfpta_2023-abstractbook-v7.pdf

  • The 14th Joint Conference on Mathematics and Computer Science, On the existence of Nash equilibria for nonvariational systems, Cluj-Napoca, Romania, 24–27 November 2022.
    https://www.cs.ubbcluj.ro/~macs/2022/index.php?m=2

  • XVème Colloque Franco-Roumain de Mathématiques Appliquées, Existence and localization of Nash equilibria for systems with partial variational structure, Toulouse, France, 29 August – 2 September 2022.
    https://15colfrro.sciencesconf.org

  • Fourth Romanian Itinerant Seminar on Mathematical Analysis and its Applications (RISMAA), Localization of Nash-type equilibria for systems with a partial variational structure, Brașov, Romania, 19–21 May 2022.
    https://mateinfo.unitbv.ro/ro/136-conferin%C8%9Be-category/507-rismaa-about

  • Zilele Academice Clujene, 70 de ani de la înființarea Institutului de calcul „Tiberiu Popoviciu” (28.10.2021), Cluj-Napoca.
  • International Student Conference StudMath-IT (11.2020), Arad (online).

Computer experience

  • Programming languages: Matlab, Julia, PHP (CakePHP, Laravel), Python.

Scientific articles:

  1. A. Stan, Two abstract methods of lower and upper solutions with applications (Preprint), 2025
  2. R. Precup, A. Stan, A Nehari manifold method for nonvariational problems (Preprint), 2025.
  3. R. Precup, A. Stan, Hybrid Nehari-Schauder type fixed point results and applications (Preprint), 2025.
  4. A. Stan, Symmetric Water Waves with Surface Tension: Traveling Wave Behavior and Maximal Horizontal Velocity, Water Waves, 2025. 
  5. A. Stan, Free-surface equatorial flows with surface tension in spherical coordinates, Applicable Analysis, 2025. https://doi.org/10.48550/arXiv.2412.04763
  6. R. Precup, A. Stan Critical point localization and multiplicity results in Banach spaces via Nehari manifold technique, Preprint, 2025. https://doi.org/10.48550/arXiv.2505.08678
  7. R. Precup, A. Stan, A mutual control problem for semilinear system via fixed point approach, J. Nonlinear Convex Anal., 26(2025), no. 5, 1081-1094.
  8. A. Stan Localization of critical points in annular conical sets via the method of Nehari manifold, Preprint, 2025. https://doi.org/10.48550/arXiv.2503.12371
  9. R. Precup, A. Stan, Du, W.-S. Control of Semilinear Differential Equations with Moving Singularities Spaces, Fractal Fract., 2025. https://doi.org/10.3390/fractalfract9040198
  10. R. Precup, A. Stan, Fixed Point Results and the Ekeland Variational Principle in Vector B-Metric Spaces, Axioms, 2025. https://doi.org/10.3390/axioms14040250
  11. A. Stan, Role of partial functionals in the study of variational, Topological Methods in Nonlinear Analysis, 65 (2025) no. 1, pp. 383 – 399.  https://doi.org/10.12775/TMNA.2024.033  
  12. C. Gheorghe, A. Stan, Stratified equatorial flows in cylindrical coordinates with surface tension, Monatsh. Math., 205 (2024), 497–509. https://doi.org/10.1007/s00605-024-02007-4
  13. R. Precup, A. Stan, On equilibrium in control problems with applications to evolution systems, Preprint, 2024. arXiv:2409.09805.. 
  14. A. Stan, Localization of Nash-type equilibria for systems with partial variational structure, J. Numer. Anal. Approx. Theory, 52 (2023) no. 2, pp. 253-272, https://doi.org/10.33993/jnaat522-1356.
  15. R. Precup, A. Stan, Linking methods for componentwise variational systems, Results Math. 78 (2023) 246, https://doi.org/10.1007/s00025-023-02026-x
  16. A. Stan, Nash equilibria for componentwise variational systems, Journal of Nonlinear Functional Analysis, 2023 (2023), art. no. 6, http://jnfa.mathres.org/archives/3029
  17. R. Precup, A. Stan, Stationary Kirchhoff equations and systems with reaction terms, AIMS Mathematics, 7 (2022) no. 8, pp. 15258-15281. doi: 10.3934/math.2022836