Andrei Stan

Current position:

Assistant researcher at Tiberiu Popoviciu Institute of Numerical Analysis

Interests:

  • Partial Differential Equations
  • Nonlinear Analysis
  • Numerical Analysis

Date and Place of Birth

Câmpeni (Alba), 1997

Education and degrees

2021-present: Ph.D. Student in Mathematics, Nonlinear Analysis.Scientific advisor: Prof. dr.  Radu Precup

2019-2021: Master Degree in Advanced Mathematics, Babeș-Bolyai University, Cluj-Napoca

2016-2019: Bachelor Degree in Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca

2012-2016, Avram Iancu National College, Câmpeni

Employment history

2021-present: Research assistant at ICTP

Talks at Conferences

  • 15’th Franco-Romanian Colloquium of Applied Mathematics, Toulouse, France, 29 August -2 September, 2022.
  • Fourth Romanian Itinerant Seminar on Mathematical Analysis and its Applications (RISSMA), Brasov, 19-21 May, 2022.
  • Zilele Academice Clujene, 70 de ani de la înființarea Institutului de calcul „Tiberiu Popoviciu” (28.10.2021), Cluj-Napoca.
  • International Student Conference StudMath-IT (11.2020), Arad (online).

Computer experience

  • Programming languages: Matlab, Julia, PHP (CakePHP, Laravel), Python.

Scientific articles:

  1. R. Precup, A. Stan Critical point localization and multiplicity results in Banach spaces via Nehari manifold technique, Preprint, 2025. https://doi.org/10.48550/arXiv.2505.08678
  2. R. Precup, A. Stan, A mutual control problem for semilinear system via fixed point approach, 2024, accepted.  arXiv:2407.21131
  3. A. Stan Localization of critical points in annular conical sets via the method of Nehari manifold, Preprint, 2025. https://doi.org/10.48550/arXiv.2503.12371
  4. R. Precup, A. Stan, Du, W.-S. Control of Semilinear Differential Equations with Moving Singularities Spaces, Fractal Fract., 2025. https://doi.org/10.3390/fractalfract9040198
  5. R. Precup, A. Stan, Fixed Point Results and the Ekeland Variational Principle in Vector B-Metric Spaces, Axioms, 2025. https://doi.org/10.3390/axioms14040250
  6. A. Stan, Role of partial functionals in the study of variational, Topological Methods in Nonlinear Analysis, 65 (2025) no. 1, pp. 383 – 399.  https://doi.org/10.12775/TMNA.2024.033  
  7. A. Stan, Free-surface equatorial flows with surface tension in spherical coordinates, Preprint, 2024. https://doi.org/10.48550/arXiv.2412.04763
  8. C. Gheorghe, A. Stan, Stratified equatorial flows in cylindrical coordinates with surface tension, Monatsh. Math., 205 (2024), 497–509. https://doi.org/10.1007/s00605-024-02007-4
  9. R. Precup, A. Stan, On equilibrium in control problems with applications to evolution systems, Preprint, 2024. arXiv:2409.09805.. 
  10. A. Stan, Localization of Nash-type equilibria for systems with partial variational structure, J. Numer. Anal. Approx. Theory, 52 (2023) no. 2, pp. 253-272, https://doi.org/10.33993/jnaat522-1356.
  11. R. Precup, A. Stan, Linking methods for componentwise variational systems, Results Math. 78 (2023) 246, https://doi.org/10.1007/s00025-023-02026-x
  12. A. Stan, Nash equilibria for componentwise variational systems, Journal of Nonlinear Functional Analysis, 2023 (2023), art. no. 6, http://jnfa.mathres.org/archives/3029
  13. R. Precup, A. Stan, Stationary Kirchhoff equations and systems with reaction terms, AIMS Mathematics, 7 (2022) no. 8, pp. 15258-15281. doi: 10.3934/math.2022836