for all t in[t_(0),b],u_(j)in R,j= bar(1,4),i=1,2t \in\left[t_{0}, b\right], u_{j} \in R, j=\overline{1,4}, i=1,2; (H_(4))varphi in C([t_(0)-tau,t_(0)],R),psi in C([t_(0)-tau,t_(0)],R);\left(\mathrm{H}_{4}\right) \varphi \in C\left(\left[t_{0}-\tau, t_{0}\right], \mathbb{R}\right), \psi \in C\left(\left[t_{0}-\tau, t_{0}\right], \mathbb{R}\right) ;
In the above conditions, from the Theorem 1, in [4], we have that the problem (1.1)-(1.2) has a unique solution, (x_(1)(t),x_(2)(t))\left(x_{1}(t), x_{2}(t)\right).
2. Weakly Picard operators
In this paper we need some notions and results from the weakly Picard operator theory (for more details see I. A. Rus [9], [8], M. Şerban [14]).
Let ( X,dX, d ) be a metric space and A:X rarr XA: X \rightarrow X an operator. We shall use the following notations: F_(A):={x in X∣A(x)=x}F_{A}:=\{x \in X \mid A(x)=x\} - the fixed point set of AA; I(A):={Y in P(X)∣A(Y)sub Y}I(A):=\{Y \in P(X) \mid A(Y) \subset Y\} - the family of the nonempty invariant subset of AA; A^(n+1):=A@A^(n),A^(0)=1_(X),A^(1)=A,n inNA^{n+1}:=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in \mathbb{N} - the iterant operators of AA, where 1_(X)1_{X} is the identity operator; P(X):={Y sub X∣Y!=O/}P(X):=\{Y \subset X \mid Y \neq \emptyset\} - the set of the parts of XX.
Definition 2.1. Let ( X,dX, d ) be a metric space. An operator A:X rarr XA: X \rightarrow X is a Picard operator (PO) if there exists x^(**)in Xx^{*} \in X such that:
(i) F_(A)={x^(**)}F_{A}=\left\{x^{*}\right\};
(ii) the sequence (A^(n)(x_(0)))_(n inN)\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}} converges to x^(**)x^{*} for all x_(0)in Xx_{0} \in X.
Definition 2.2. Let ( X,dX, d ) be a metric space. An operator A:X rarr XA: X \rightarrow X is a weakly Picard operator (WPO) if the sequence (A^(n)(x))_(n inN)\left(A^{n}(x)\right)_{n \in \mathbb{N}} converges for all x in Xx \in X, and its limit ( which may depend on xx ) is a fixed point of AA.
Theorem 2.1. Let ( X,dX, d ) be a metric space and A:X rarr XA: X \rightarrow X an operator. The operator AA is WPO ( cc-WPO) if and only if there exists a partition of XX,
X=uu_(lambda in Lambda)X_(lambda)X=\cup_{\lambda \in \Lambda} X_{\lambda}
such that:
(a) X_(lambda)in I(A),lambda in Lambda,I(A)X_{\lambda} \in I(A), \lambda \in \Lambda, I(A)-the family of nonempty invariant subsets of AA;
(b) A|_(X_(lambda)):X_(lambda)rarrX_(lambda)\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda} is a Picard (c-Picard) operator for all lambda in Lambda\lambda \in \Lambda.
Theorem 2.2. (Fibre contraction principle). Let ( X,dX, d ) and ( Y,rhoY, \rho ) be two metric spaces and A:X xx X rarr X xx X,A=(B,C),(B:X rarr X,C:X xx Y rarr Y)A: X \times X \rightarrow X \times X, A=(B, C),(B: X \rightarrow X, C: X \times Y \rightarrow Y) a triangular operator. We suppose that
(i) (Y,rho)(Y, \rho) is a complete metric space;
(ii) the operator BB is POP O;
(iii) there exists L in[0,1)L \in[0,1) such that C(x,*):Y rarr YC(x, \cdot): Y \rightarrow Y is a LL-contraction, for all x in Xx \in X;
(iv) if (x^(**),y^(**))inF_(A)\left(x^{*}, y^{*}\right) \in F_{A}, then C(*,y^(**))C\left(\cdot, y^{*}\right) is continuous in x^(**)x^{*}.
Then the operator AA is POP O.
3. Main Result
Now we prove that
x_(i)(t,*)inC^(1)(J)," for all "t in[t_(0)-tau,b],i=1,2.x_{i}(t, \cdot) \in C^{1}(J), \text { for all } t \in\left[t_{0}-\tau, b\right], i=1,2 .
where t in[t_(0),b],x_(1)in C[t_(0)-tau_(1),b]nnC^(1)[t_(0),b],x_(2)in C[t_(0)-tau_(2),b]nnC^(1)[t_(0),b]t \in\left[t_{0}, b\right], x_{1} \in C\left[t_{0}-\tau_{1}, b\right] \cap C^{1}\left[t_{0}, b\right], x_{2} \in C\left[t_{0}-\tau_{2}, b\right] \cap C^{1}\left[t_{0}, b\right].
From the above considerations, we can formulate the following theorem
Theorem 3.3. Consider the problem (3.3)-(1.2), in the conditions (H_(1))-(H_(4))\left(H_{1}\right)-\left(H_{4}\right). Then the problem (3.3)-(1.2) has a unique solution (x_(1)^(**),x_(2)^(**)),x_(1)^(**)in C[t_(0)-tau_(1),b]nnC^(1)[t_(0),b],x_(2)^(**)in C[t_(0)-tau_(2),b]nnC^(1)[t_(0),b]\left(x_{1}^{*}, x_{2}^{*}\right), x_{1}^{*} \in C\left[t_{0}-\tau_{1}, b\right] \cap C^{1}\left[t_{0}, b\right], x_{2}^{*} \in C\left[t_{0}-\tau_{2}, b\right] \cap C^{1}\left[t_{0}, b\right] and the solution is differentiable on tau_(1)\tau_{1} and tau_(2)\tau_{2}.
Proof. In what follows we consider the following integral equations:
Let X:=C[t_(0)-tau_(1),b]xx C[t_(0)-tau_(2),b]X:=C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right] and ||*||_(C)\|\cdot\|_{C}, the Chebyshev norm on XX. It is clear, from the proof of the Theorem 1 ([4]), that in the conditions (H_(1))-(H_(4))\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right), the operator A_(f)A_{f} is a Picard operator.
Let ( x_(1)^(**),x_(2)^(**)x_{1}^{*}, x_{2}^{*} ) the only fixed point of A_(f)A_{f}.
We consider the subset X_(1)sub XX_{1} \subset X,
We remark that (x_(1)^(**),x_(2)^(**))inX_(1),A(X_(1))subX_(1),A:(X_(1),||*||_(C))rarr(X_(1),||*||_(C))\left(x_{1}^{*}, x_{2}^{*}\right) \in X_{1}, A\left(X_{1}\right) \subset X_{1}, A:\left(X_{1},\|\cdot\|_{C}\right) \rightarrow\left(X_{1},\|\cdot\|_{C}\right) is PO.
We suppose that there exists (delx_(i)^(**))/(deltau_(1)),(delx_(i)^(**))/(deltau_(2)),i=1,2\frac{\partial x_{i}^{*}}{\partial \tau_{1}}, \frac{\partial x_{i}^{*}}{\partial \tau_{2}}, i=1,2.
Then, from (3.4) we have that:
where t in[t_(0),b],i=1,2t \in\left[t_{0}, b\right], i=1,2.
This relation suggests us to consider the following operator
C_(f):X xx X rarr XC_{f}: X \times X \rightarrow X
where
{:[C_(f)(x_(1),x_(2),u,v)(t,tau_(1))=0","" for all "t in[t_(0)-tau_(2),t_(0)]],[C_(f)(x_(1),x_(2),u,v)(t,tau_(1))=0","" for all "t in[t_(0)-tau_(1),t_(0)]]:}\begin{aligned}
& C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right)=0, \text { for all } t \in\left[t_{0}-\tau_{2}, t_{0}\right] \\
& C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right)=0, \text { for all } t \in\left[t_{0}-\tau_{1}, t_{0}\right]
\end{aligned}
{:[D:X xx X rarr X xx X],[(x_(1),x_(2),u,v) rarr(A_(f)(x_(1),x_(2)),C_(f)(x_(1),x_(2),u,v))]:}\begin{aligned}
D & : X \times X \rightarrow X \times X \\
\left(x_{1}, x_{2}, u, v\right) & \rightarrow\left(A_{f}\left(x_{1}, x_{2}\right), C_{f}\left(x_{1}, x_{2}, u, v\right)\right)
\end{aligned}
where A_(f)A_{f} is a Picard operator and C_(f)(x_(1),x_(2),*,*):X rarr XC_{f}\left(x_{1}, x_{2}, \cdot, \cdot\right): X \rightarrow X is an LL-contraction, with L=(4L_(f))/(rho)L=\frac{4 L_{f}}{\rho}, where rho\rho is the Bielecki constant we use in [4].
From the fibre contraction theorem we have that the operator DD is Picard operator and F_(D)=(x_(1)^(**),x_(2)^(**),u^(**),v^(**))F_{D}=\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right).
Let (x_(1)^(**),x_(2)^(**),u^(**),v^(**))\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right) the only fixed point of the operator DD. Then the sequences
converge uniformly (with respect to t in Xt \in X ) to (x_(1)^(**),x_(2)^(**),u^(**),v^(**))inF_(D)\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right) \in F_{D}, for all x_(1,0),x_(2,0),u_(0),v_(0)in Xx_{1,0}, x_{2,0}, u_{0}, v_{0} \in X.
Analogously we can prove the differentiability with respect to tau_(2)\tau_{2}.
References
[1] Berinde V., Generalized Contractions and Applications (in Romanian), Ph. D. Thesis, Univ. "BabeşBolyai" Cluj-Napoca, 1993.
[2] Buică A., Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1-14.
[3] Mureşan V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
[4] Otrocol D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), No. 1 (2006), 61-68.
[5] Otrocol D., Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum, 10 (2) (2005), 193-199.
[6] Rus I. A., Principles and applications of the fixed point theory (in Romanian), Editura Dacia, ClujNapoca, 1979.
[7] Rus I. A., Generalized contractions, Seminar on Fixed Point Theory, "Babeş-Bolyai" University, 1983, pp. 1-130.
[8] Rus I. A., Weakly Picard mappings, Comment. Math. Univ. Caroline, 34 (1993), 769-773.
[9] Rus I. A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, Vol. 3, 2002, 335-346.
[10] Rus I. A., Generalized Contractions and Applications, Cluj University Press, 2001.
[11] Rus I. A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 2 (2001), 41-58.
[12] Rus I. A. and Egri E., Boundary value problems for iterative functional-differential equations, Studia Univ. "Babeş-Bolyai", Matematica, Vol. LI, No. 2, 2006, pp. 109-126.
[13] Saito Y., Hara T. and Ma W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236 (1999), 534-556.
[14] Şerban M. A., Fiber varphi\varphi-contractions, Studia Univ. "Babeş-Bolyai", Mathematica, 44 (1999), No. 3, 99-108.
"Tiberiu Popoviciu" Institute of Numerical Analysis
P.O. Box 68-1