Divided differences and derivatives

Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Différences divisées et dérivés, Mathematica (Cluj), 1(24) (1959) no. 2, pp. 297-319 (in French)

PDF

About this paper

Journal

Mathematica Cluj

Publisher Name

Published by the Romanian Academy  Publishing House

DOI
Print ISSN

1222-9016

Online ISSN

2601-744X

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

DIFFERENCES, DIVIDED AND DERIVED


Tiberiu Popoviciu paste
  1. 1.
    • EitherA[f]=A[f(x)]A[f]=A[f(x)]a linear functional, therefore additive and bonogenous, defined on a vector spaceSSfunctionsf=f(x)f=f(x), real, of the real variablexxdefined and continuous on an intervalIIWe will designate the end gate by a and bybbthe right endpoint of interval I. In what follows we will always assume that the elements ofSSsatisfy all the differentiability properties necessary for the linear functionals under consideration to be meaningful. We will always assume thatSScontains all polynomials. We always assume thata<ba<b.

Any linear functionalA[f]A[f]to a degreeddexactiode well determined. This degree of accuracy is the integern1n\geq-1, or the improper numbern=n=\inftycharacterized by the property:
1.n=11^{\circ}.n=-1. ifA[1]0A[1]\neq 0
2 . A[xi]=0,i=0,1,,n,A[xn+1]0A\left[x^{i}\right]=0,i=0,1,\ldots,n,A\left[x^{n+1}\right]\neq 0ifA[1]=0A[1]=0and if at least one of the numbersA[xi],t=0,1,A\left[x^{i}\right],t=0,1,\ldotsis different from zero.
3.n=3^{\circ}.n=\inftyifA[xi]=0,i=0,1,A\left[x^{i}\right]=0,i=0,1,\ldots
In the cases11^{\circ}And22^{\circ}The degree of accuracy is finite. This case occurs if and only ifA[f]A[f]is not zero on at least one polynomial. In the case33^{\circ}, the degree of accuracy is infinite and thenA[f]A[f]is zero for any polynomial.

For a linear functionalA[f]A[f]either zero on any polynomial of degreenn, it is necessary and sufficient that its degree of accuracy be equal tonnat least (we always assume thatn<n<\inftyA polynomial of degreennis of the formα0xn+α1xn1|+αn\alpha_{0}x^{n}+\alpha_{1}x^{n-1}-\mid\ldots+\alpha_{n}the coefficientsα0,α1,,αn\alpha_{0},\alpha_{1},\ldots,\alpha_{n}being: any real numbers. If the highest coefficientα0\alpha_{0}East0\neq 0The polynomial is said to have effective degreenn9.
- We will focus, in particular, on linear functionalsA[f]A[f]which are equal to a linear combination of the values, over a finite number of points, of the functionffand a finite number of its derivatives of various orders. Such a linear functional is of the form
(1)

A[f]=i=1pi=0ki1ai,Lf(L)(zi)A[f]=\sum_{i=1}^{p}\sum_{i=0}^{k_{i-1}}a_{i,l}f^{(l)}\left(z_{i}\right)

Or,p,k1,k2,,kpp,k_{1},k_{2},\ldots,k_{p}are given natural numbers,zi,i=1,2,,pz_{i},i=1,2,\ldots,p,ppdistinct points of the intervalIIAndai,j,j=0,1,,ki1,i=1,2,a_{i,j},j=0,1,\ldots,k_{i}-1,i=1,2,\ldots,ppnumbers independent of the functionffThe pointsztz_{t}are the nodes and the numbersai,ja_{i,j}are the coefficients of the linear functional (1).

In expression (1) and relative to the nodeziz_{i}include the values ​​of the function and itski1k_{i}-1first derivatives, therefore of its firstkik_{i}derivatives if we agree that the function itself is its own derivative of order 0, on this point. For this reason we agree that inziz_{i}be confusedkik_{i}knots. Sokik_{i}is the multiplicity order of the knotziz_{i}(it's a simple knot ifki=1k_{i}=1, double ifki=2k_{i}=2etc). We can also say thatzjz_{j}is a node of orderkik_{i}of multiplicity. In this way, the total number of distinct or non-distinct nodes (i.e., each node counted with its multiplicity order) is equal tom=k1+k2++km = k_1 + k_2 + ... + kThe numbermmEastp\geqq pand is equal toppif and only if all the nodes are simple.

THEmmknots, simple or not, can be designated byx1,x2,,xmx_{1},x_{2},\ldots,x_{m}Among these points, exactlykik_{i}coincide withziz_{i}Fori=1,2,,pi=1,2,\ldots,pIn this way, we have numbered a certain permutation of the nodes. In principle, the permutation, and therefore the numbering of the nodes, is arbitrary. However, there are certain preferred numbering systems, which we will call normal numbering systems. In a normal numbering system, for allii, THEkik_{i}knotsxjx_{j}which coincide withziz_{i}are numbered withkik_{i}consecutive indices. A normal numbering system is, for example,xk1+k2++ki1+v==zi,v=1,2,,kj,i=1,2,,p(k0=0)x_{k_{1}+k_{2}+\ldots+k_{i-1}+v}==z_{i},v=1,2,\ldots,k_{j},i=1,2,\ldots,p\left(k_{0}=0\right)In particular, if the followingx1,x2,,xnx_{1},x_{2},\ldots,x_{n}is monotonic (non-decreasing or non-increasing), the numbering is normal.
3. - The (identically) zero functional onSSis of the form (1), where all the coefficientsai,ja_{i,j}are equal to 0. This linear functional has a degree of accuracy equal to\infty

A linear functional of the form (1) does not completely determine the system of nodes.z1z_{1}with their respective multiplicity orders. Indeed, we can add any finite number of nodes without the linear functional under consideration being modified. It suffices to demonstrate this property for a single node.x0x_{0}added to the previous ones. So we can add toA[f]A[f]without changing its values, the term0.f(x0)0.f(x_{0})ifx0x_{0}does not coincide with the author of the nodesziz_{i}and the term 0.f(ki)(zi)f^{\left(k_{i}\right)}\left(z_{i}\right)ifx0=zix_{0}=z_{i}.

Let us then consider a linear functional (1) which does not have all its coefficients zero. We can assume, without restricting the generality, that
(2)

ai,ki10,i=1,2,,p.a_{i},k_{i-1}\neq 0,i=1,2,\ldots,p.

In this case, the nodes are reduced to their smallest number since, on the one hand, if conditions (2) are met, we can remove a certain number of nodes without modifying the functionalA[f]A[f]Furthermore ,
such node deletions are not possible if conditions (2) are not all met. It is easy to see how the minimum number of nodes can be obtained.

Consider the polynomial of degreemm
(3)

L(x)=v=1m(xxv).l(x)=\prod_{v=1}^{m}\left(x-x_{v}\right).

SO*)

A[L(x)xxi]=ai,ki1[L(x)xxi]xxi(ki1)=ai,ki1(ki1)!v=1p(zizv)kvi=1,2,,p\begin{gathered}A\left[\frac{l(x)}{x-x_{i}}\right]=a_{i,k_{i}-1}\left[\frac{l(x)}{x-x_{i}}\right]_{x-x_{i}} ^{\left(k_{i}-1\right)}=a_{i,k_{i}-1}\left(k_{i}-1\right)!\prod_{v=1}^{p}\left(z_{i}-z_{v}\right)^{k_{v}}\\ i=1,2,\ldots,p\end{gathered}

which, according to hypothesis (2), are all different from zero. We therefore have Lemma
1. - The linear functional (1), where the coefficientsai,ja_{i,j}are not all zero, has a degree of accuracy (finite and) at most equal tom2m-2.

It follows that if the linear functional (1) has a greater degree of accuracy thanm2m-2it is identically zero.
4. - If the linear functional (1) has a degree of accuracy equal tom2m-2, it reduces, apart from a non-zero factor independent of the functionff, to the difference divided by orderm1m-1on themmknotsx1,x2,,xmx_{1},x_{2},\ldots,x_{m}of the functionffThis divided difference will be denoted by
(4)

[x1,x2,,xm;f]\left[x_{1},x_{2},\ldots,x_{m};f\right]

out by

The divided difference is a linear functional of the form (1) determined completely by the conditions of vanishing on any polynomial of degreem2m-2and to reduce to 1 over the polynomialxn1x^{n-1}.

Divided differences possess various properties and satisfy well-known formulas. We will recall the main formulas that will be used later.

The divided difference is symmetric with respect to the nodes on which it is defined. It follows that in notation (4) the numbering of the nodes is irrelevant.

We have the recurrence relation
(5)

[t1,t2,,tQ+1;f]=[t2,t1+,tQ+1;f][t1,t2,,tQ;f]tQ+1t1\left[t_{1},t_{2},\ldots,t_{Q+1};f\right]=\frac{\left[t_{2},t_{1}+\ldots,t_{Q+1};f\right]-\left[t_{1},t_{2},\ldots,t_{Q};f\right]}{t_{Q+1}-t_{1}}
0 0 footnotetext: *)v=1pi,p|i|\sum_{v=1}^{p}i,\frac{p}{|i|}
meant that in the sum resp. the product la val i of the index is exclae.

which is the relationship between divided differences of order 0 and divided differences of ordera1a-1Formula (5) is valid only under the condition that the nodest1,t0+1t_{1},t_{0+1}, are distinct, assuming, of course, that the divided differences shown therein have meaning.

If all the nodes of a divided difference of order a coincide with the same pointLL, this difference divided is equal to1ρ!f(ϕ)(ϕ)\frac{1}{\rho^{!}}f^{(\phi)}(\phi)We therefore have formula
(b)

[t+1t1,t;f]=1e!f(p)(t).[\underbrace{t}_{\ell+1}t_{1}\ldots,t;f]=\frac{1}{e!}f^{(p)}(t).

We also have the formula for decomposition
(7)[t1,t2,,tQ,t1,t2,,tQ;f]=[t1,t2,,tQ;f(x)(xt1)(xt2)(xtQ)]+\left[t_{1},t_{2},\ldots,t_{Q},t_{1},t_{2},\ldots,t_{Q};f\right]=\left[t_{1},t_{2},\ldots,t _{Q};\frac{f(x)}{\left(x-t_{1}\right)\left(x-t_{2}\right)\ldots\left(x-t_{Q}\right)}\right]+

[i1,i2,,i0;(x1)(x1)(x1)(xi0)]-\left[i_{1},i_{2},\ldots,i_{0^{\prime}};\frac{(x-1)(x-1)}{(x-1)\ldots\left(x-i_{0}\right)}\right]

which is valid provided that none of the nodest1,t2,,t6t_{1},t_{2},\ldots,t_{6}do not coincide with one of the nodesi1,i2,,iQi_{1},i_{2},\ldots,i_{Q^{\prime}}.

We also have the translation formula
(8)

[t1,t2,,tQ,t1,t2,,tQ;f(x)(xt1)(xt2)(xtQ)]==[t1,t2,,t0;f]\begin{gathered}{\left[t_{1},t_{2},\ldots,t_{Q},t_{1},t_{2},\ldots,t_{Q};f(x)\left(x-t_{1}\right)\left(x-t_{2}\right)\ldots\left(x-t_{Q}\right)\right]=}\\ =\left[t_{1},t_{2},\ldots,t_{0};f\right]\end{gathered}

The previous formulas allow us to find the coefficients.ci,jc_{i,j}of the difference divided (1),

[x1,x2,,xm;f]=i=1pj=0it1ci,jf(h)(zi)\left[x_{1},x_{2},\ldots,x_{m};f\right]=\sum_{i=1}^{p}\sum_{j=0}^{i_{t}-1}c_{i,j}f^{(h)}\left(z_{i}\right) (9)

If we ask

hi(x)=u(x)(xzi)ki=Li|v=1(xzv)kv,i=1,2,,ph_{i}(x)=\frac{u(x)}{\left(x-z_{i}\right)^{k_{i}}}=\frac{l_{i}}{\mid v=1}\left(x-z_{v}\right)^{k_{v}},i=1,2,\ldots,p

OrL(x)l(x)is the polynomial (3), by appropriately applying, and several times if necessary, formulas (6), (7), 11011, we deduce

[x1,x2,,xm;f]=i=1p[z¯i,zi,,zi;Lhi]==i=1p1(h1)![f(x)hi(x)]xzi(h,1)\begin{gathered}{\left[x_{1},x_{2},\ldots,x_{m};f\right]=\sum_{i=1}^{p}\left[\underline{z}_{i,}z_{i},\ldots,z_{i};\frac{l}{h_{i}}\right]=}\\ =\sum_{i=1}^{p}\frac{1}{(h-1)!}-\left[\frac{f(x)}{h_{i}(x)}\right]_{x-z_{i}}^{(h,-1)}\end{gathered}

We have done

ci,j=1(hi1)!(ki1)[1Li(n)]z=sL(ki1j)j=0,1,,hi1,i=1,2,,p.\begin{gathered}c_{i,j}=\frac{1}{\left(h_{i}-1\right)!}\cdot\left(k_{i}-1\right)\left[\frac{1}{l_{i}(n)}\right]_{z=s_{l}}^{\left(k_{i}-1-j\right)}\\ j=0,1,\ldots,h_{i}-1,i=1,2,\ldots,p.\end{gathered}

We have, in particular.

ctt,k1=1(ht1)11p|i|(zzv)hv,i=1,2,,pc_{t_{t},k-1}=\frac{1}{\left(h_{t}-1\right)1}\cdot\frac{1}{\frac{p}{|i|}\left(z-z_{v}\right)^{h_{v}}},\quad i=1,2,\ldots,p

We see that, in the case of the divided difference (4), conditions (2) are satisfied. It follows that, in the case of the divided difference, the notation (4) precisely highlights the system of nodes with the minimum number.
5. - Let us denote byL(x1,x2,,xn;f|x)L\left(x_{1},x_{2},\ldots,x_{n};f\mid x\right), the Lagrange-Termite polynomial relating to the functionffand on the nodesx1,x2,,xmx_{1},x_{2},\ldots,x_{m}This is the (unique) polynomial.L(x)L(x)degreem1m-1who verifies the equalities

L(j)(zi)=f(j)(zi),j=0,1,ki1,i=1,2,,p.L^{(j)}\left(z_{i}\right)=f^{(j)}\left(z_{i}\right),\quad j=0,1,\ldots k_{i}\ldots 1,i=1,2,\ldots,p. (10)

We have*)
(11)

=v=0m1(xx1)(xx2)(xxv)[x1,x2,,xv+1;f].=\sum_{v=0}^{m-1}\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{v}\right)\cdot\left[x_{1},x_{2},\ldots,x_{v+1};f\right].

From (10) it follows that
(12)

A[f]=A[L(x1,x2,,xm;f|x)]A[f]=A\left[L\left(x_{1},x_{2},\ldots,x_{m};f\mid x\right)\right]

ct, account tenaut of formula (11),

A[f]=v=0m1av[x1,x2,,xv11;f]A[f]=\sum_{v=0}^{m-1}a_{v}\left[x_{1},x_{2},\ldots,x_{v-1-1};f\right] (13)

Or

 (14) av=A[(xx1)(xx2),(xxv)],v=0,1,,m1.\text{ (14) }\quad a_{v}=A\left[\left(x-x_{1}\right)\left(x-x_{2}\right),\ldots\left(x-x_{v}\right)\right],\quad v=0,1,\ldots,m-1.

If the linear functional under consideration has a degree of accuracy less than or equal tonn(0nm20\leq n\leq m-2) we haveav=0,v=0,1,,na_{v}=0,v=0,1,\ldots,nand vice versa. If it has a degree of accuracy equal ton(1nm2)n(-1\leqq n\leqq m-2)Furthermore, we havean1=A[x"+1]0a_{n-1}=A\left[x^{\prime\prime+1}\right]\neq 0and vice versa. This property can be stated in the form of

The same 2. - For the linear functional (1) to have a degree of accuracy at least equal tonn, it is necessary and sufficient that in its expression in the form (13) Zon hasa0=a1==an=0a_{0}=a_{1}=\ldots=a_{n}=0. So that the degree of exact-

0 0 footnotetext: 4. If v=0v=0the product(xx1)(xx2)(x1v)\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots(x-1v)is replaced by 1. These same conventions apply even more to analogous formulas

titude is exactly equal tonnIt is necessary and sufficient that, in addition, one hasan+10a_{n+1}\neq 06.
- The previous result is true for any numbering of the nodes.

Now suppose that the followingx1,x2,,xmx_{1},x_{2},\ldots,x_{m}(therefore the respective numbering) of the nodes depends on the property that ifi,ji,jare any indices1,2,,m1,2,\ldots,m,

jin+2xixj.j-i\geqq n+2\Rightarrow x_{i}\neq x_{j}. (15)

Applying formula (6) to divided differences [x1,x2,,x4;f]\left[x_{1},x_{2},\ldots,x_{4};f\right], v=n+2,n+3,,m1v=n+2,n+3,\ldots,m-1(ifmn3m\geq n-3), when necessary, even several times (ifm>n3m>n-3), we deduce the formula (mn+3m\geq n+3),

A[f]=v=0mav[x1,x2,,xv+1;f]+\displaystyle A[f]=\sum_{v=0}^{m}a_{v}\left[x_{1},x_{2},\ldots,x_{v+1};f\right]+ (16)
+i=1m1μi[xi,xi+1,,xi+n+1;f]\displaystyle\quad+\sum_{i=1}^{m-1}\mu_{i}\left[x_{i},x_{i+1},\ldots,x_{i+n+1};f\right]

where the coefficientsaya_{y}, given by (14), and the coefficientsμi,i=1,2,mn1\mu_{i},i=1,2,\ldots m-n-1are independent of the functionff.

We can then state
Lemma 3. - For the linear functional (1) to have a degree of exactness at least equal tonmax(k1,k2,,kp)2n\geq\max\left(k_{1},k_{2},\ldots,k_{p}\right)-2(done so that it is zero on your degree polytomenmax(k1,k2,,kp)2n\geqq\max\left(k_{1},k_{2},\ldots,k_{p}\right)-2)iLilfalse and it suffices which soil of the shape

A[f]=i=1mn1μi[xi,xi+1,,xi+n+1;f]A[f]=\sum_{i=1}^{m-n-1}\mu_{i}\left[x_{i},x_{i+1},\ldots,x_{i+n+1};f\right] (17)

where theμi,i=1,2,,mn1\mu_{i},i=1,2,\ldots,m-n-1sound independent coefficients of the functionff.

So that, under the same conditions, the degree of exachilude is equal tonnFurthermore, it is necessary and sufficient that one hasi=1mn1μi0\sum_{i=1}^{m-n-1}\mu_{i}\neq 0.

The condition is necessary. Indeed, on the one hand, under the assumptions of the lemma, we can find a numbering of the nodes such that conditions (15) are satisfied. Such a numbering is, for example, any normal numbering*). On the other hand, then from formula (16) it follows formula (17).

0 0 footnotetext: *). There may be numbering systems, different from normal numbering, for which conditions (15) are met. If, for example, we havep=3,k1=3,h2=h3=2p=3,k_{1}=3,h_{2}=h_{3}=2(SOm=7m=7),n=3n=3, the permutations (PP):z1,z1,z2,z2,z1,z3,z3,(P):z1,z2,z1,z1,z2,z3,z3z_{1},z_{1},z_{2},z_{2},z_{1},z_{3},z_{3},\left(P^{\prime}\right):z_{1},z_{2},z_{1},z_{1},z_{2},z_{3},z_{3}give numberings that verify the conditions (15). These two numberings differ in that the formula (17) corresponding to(P)(P)leads to the same divided differences as the permato(P*):z1,z1,z1,z2,z2,z3,z3,qui(P*):z_{1},z_{1},z_{1},z_{2},z_{2},z_{3},z_{3},quicorresponds to a nominal numbering, whereas formula (17) corresponds to (PP) leads to divided differences that are not the same (datts lent ettsentile). It follows that the numbering corresponding to the permutation (i) in a certain way, vedacibbe to a normal numbering, while it is not clear.

I1aI_{1}aThis condition is sufficient. Indeed, any difference divided by ordern+1n+1is the degree of accuracynn, therefore it vanishes on any polynomial of degreenn. The same is true for any linear combination of such divided differences.

The sufficiency of the last condition of the lemma results from the formulaA[xn1]=i=1mn1μiA\left[x^{n-1}\right]=\sum_{i=1}^{m-n-1}\mu_{i}.
Ira\mathrm{I}_{\mathrm{r}}\mathrm{a}conditionnmax(k1,k2,,kp)2n\geqq\max\left(k_{1},k_{2},\ldots,k_{p}\right)-2The lemma is essential. If this condition is not met, there may not exist a relation of the form (17). This follows easily from the fact that if the nodes of a linear functional of the form (17) are reduced to their minimum number, among these nodes there is none that has a multiplicity order.>n+2>n+2Moreover, ifn<max(k1,k2,,kp)2n<\max\left(k_{1},k_{2},\ldots,k_{p}\right)-2, there is no numbering that verifies property (15).

II.

  1. 7.
    • We will recall the notion of a linear functional of simple form. Ira linear functionalA[f]A[f], defined on spaceSSis said to be of simple form if there exists an integern1n\geqq-1such as, for yourfϵSf_{\epsilon}S, one has

A[f]=K.[ξ1,ξ2,,ξn+2;f]A[f]=K.\left[\xi_{1},\xi_{2},\ldots,\xi_{n+2};f\right] (18)

OrKKis a coefficient other than 0 and independent of the functionffand theξ1,ξ2,,ξn+2\xi_{1},\xi_{2},\ldots,\xi_{n+2}aren+2n+2distinct points of the intervalII, ifn0n\geqq 0even from within the intervalIIand which, in general, can depend on the functionffThe fact that, forn0n\geq 0, the pointsξi\xi_{i}can be chosen within the intervalIIresults from the average properties of divided differences [6]. In this case, the degree of accuracy ofA[f]A[f]is necessarily equal tonnIt follows that if a linear functional is of the simple form, it is of this form for only one value ofnnThere is an important property that characterizes functionals of simple form [4] and that can be stated in the form of:

Lemma 4. - For the linear functionalA[f]A[f]either in the simple form, it is necessary and sufficient that there exists an integern1n\geqq-1such as one hasA[f]0A[f]\neq 0for everythingfSf_{\in}S, convex of ordernn.

The property of being of simple form is therefore very closely linked to the notion of a higher-order convex function.

A function defined onIIis said to be convex of ordernnif all its differences divided by ordern+1n+1, onn+2n+2distinct nodes (belonging toII) are positive. The function is said to be non-concave of ordernn(onII) if all its differences divided in ordern+1n+1at distinct points (or not) are non-negative. A convex function of ordernnis a non-concave function of ordernnparticular.

The numbernnof lemma 4 is that which appears in the corresponding formula (18). The coefficientKKof this formula is equal toA[x13+1]A\left[x^{13+1}\right]or
toA[f]A[f]Orffis an arbitrary polynomial of degreen+1n+1with the highest coefficient equal to 1.

If the linear functionalA[f]A[f]is of the simple form and if the functionffhas a derivative of ordern+1n+1(Forn0n\geqq 0) on the interior of the intervalII, we have

A[f]=K(n+1)!f(n+1)(ξ),A[f]=\frac{K}{(n+1)!}f^{(n+1)}(\xi), (19)

OrKKis a coefficient independent of the functionff(which is also equal to that shown in formula (18)) andξ\xia point ofII, ifn0n\geq 0, even from withinIIand which generally depends on the functionff.

We find ourselves in a well-known classic case ifA[f]A[f]is the remainder in Taylor's formula. Formula (19) is then the classical form of the remainder given by Lagrange.
B. - We will recall some properties of higher-order convex functions. Any convex function of ordern>0n>0onIIis continuous on the inside ofIIand ifn>1n>1it has a continuous derivative of ordern1n-1on the inside ofIIIf the derivativef(n+1)(x)f^{(n+1)}(x), of ordern+1n+1, exists, the conditionf(n+1)(x)0f^{(n+1)}(x)\geq 0onIIis necessary and sufficient for the function to be non-concave of ordernnonIIThis condition is only necessary and the conditionf(n+1)(x)>0f^{(n+1)}(x)>0onIIis only sufficient for the functionffeither convex of ordernnonII. Iff(n+1)(x)0f^{(n+1)}(x)\geq 0onIIand if there is no non-zero interval sound ofIIon whichf(n+1)(x)f^{(n+1)}(x)either no,ffis convex of ordernnon I. In particular we have the

Lemma 5. - For a polynomialffof effective degree>n>nconvex soil of ordernnonII, it is necessary and sufficient that onef(n+1)(x)0f^{(n+1)}(x)\geq 0onII.

The condition is sufficient since the derivative of ordern+1n+1of a polynomial of effective degree>n>nis not identically zero, therefore can only be zero over a finite number (0\geq 0) of points. This derivative therefore cannot be identically zero on any subinterval of positive length. A polynomial of effective degreennis a polynomial of degreennwhich does not reduce (over an interval of positive length) to a polynomial of degreen1n-1.

Convexity of order -1 is equivalent to positivity, and non-concavity of order -1 to non-negativity of the function. Convexity of order 0 is equivalent to increasing, and non-concavity of order 0 to non-decreasing of the function.
9. - A convex function of ordernnenjoys the property that any difference divided by ordern1n-1of this function onn12n-1-2nodes which are not all coincident, is positive, provided, of course, that this divided difference exists*)

Consider a linear functional of the form (17). By Lemma 4, it follows that if all the coefficientsμi,i=1,2,\mu_{i},i=1,2,\ldots,mn1m-n-1are0\geq 0or are they all0\leq 0and if there is at least one

0 0 footnotetext: *)J4\mathrm{J}_{4}existence an sem of nr 1 , therefore in the sense that the adnette function effectively less derivatives which occur in the expression (1) of the divided difference considered.

coefficientμi\mu_{i}different from zero for which the nodesxi,xi+1,,xi+n+1x_{i},x_{i+1},\ldots,x_{i+n+1}of the corresponding divided difference are not all confused, then the linear functional (17) is of the degree of accuracynnand is of the simple form.

The condition that the coefficientsμi\mu_{i}being of the same sign is not, in general, necessary for the linear functional (17) to have the degree of accuracynnand be of the simple form.

Let us now suppose thatx1x2xmx_{1}\leqq x_{2}\leqq\ldots\leqq x_{m}and that the multiplicity orders of distinct nodes aren\leqq n-t 2. According to some results already obtained [5], it follows that ifn=1,0n=-1,0or 1, the condition that all the coefficientsμi\mu_{i}that the linear functionals have the same sign and that there exists at least oneiifor whichμi0\mu_{i}\neq 0and the knotsxi,xi+1,,xi+n+1x_{i},x_{i+1},\ldots,x_{i+n+1}that they are not all confused, is necessary and sufficient for the linear functional in question to have the degree of accuracynnand in simple form. Of course, forn=1n=-1, the last condition, therefore, that thexi,xi+1,,xi+n+1x_{i},x_{i+1},\ldots,x_{i+n+1}that they are not confused, does not arise. We will repeat here the demonstration that we have, moreover, given, with certain non-essential modifications, in our work cited [b~\tilde{b}].

From the above, it suffices to show that if the linear functional (17) is of the degree of exactnessnn(Forn=1,0n=-1,0or 1) and is of the simple form, none of the coefficientsμi\mu_{i}cannot be different from zero and of opposite sign to the numberA[xn+1]=i=1mn1μiA\left[x^{n+1}\right]=\sum_{i=1}^{m-n-1}\mu_{i}(which is necessarily0\neq 0Assumingi=1miμi0\sum_{i=1}^{m-i}\mu_{i}\neq 0Therefore, property is equivalent to the fact that inequalities(v=1m1μv)μi0,i=1,2,,nn1\left(\sum_{v=1}^{m-1}\mu_{v}\right)\mu_{i}\geq 0,i=1,2,\ldots,n-n-1are verified. For the demonstration we take into account that ifffis a non-concave function of ordernn, it is necessary thatA[f]A[f]does not change sign (that it is constantly0\geq 0or constantly0\leqq 0More precisely, that, under the hypothesisi=1m1μi0\sum_{i=1}^{m-1}\mu_{i}\neq 0, 1'on ait(ν=1m1μν)A[f]0\left(\sum_{\nu=1}^{m-1}\mu_{\nu}\right)A[f]\geq 0, for any functionffnon-concave of ordernn10.
– For the demonstration we will distinguish three cases, depending on the values1,0,1-1,0,1ofnn.

Case 1.n=1n=-1We can assumex1<x2<<xmx_{1}<x_{2}<\ldots<x_{m}and the linear functional (17) reduces toA[f]=i=1ntμtf(xi)A[f]=\sum_{i=1}^{nt}\mu_{t}f\left(x_{i}\right). If0<ε<min1=1,2,,m1(xi+1xi)0<\varepsilon<<\min_{1=1,2,\ldots,m-1}\left(x_{i+1}-x_{i}\right), the continuous function

fi(x)=12ε(|xxi+ε|+|xxiε|2|xxi|)f_{i}(x)=\frac{1}{2\varepsilon}\left(\left|x-x_{i}+\varepsilon\right|+\left|x-x_{i}-\varepsilon\right|-2\left|x-x_{i}\right|\right)

is mon-negative, reduces to 1 out ofx1x_{1}and 0 on the other nodes. We have thereforeA[fi]=μi,i=1,2,,mA\left[f_{i}\right]=\mu_{i},i=1,2,\ldots,mIt follows that(v=1mμv)μi0,i==1,2,,m\left(\sum_{v=1}^{m}\mu_{v}\right)\mu_{i}\geq 0,i==1,2,\ldots,m, which demonstrates ownership.

Case 2.n=0n=0We can stipulate, without restricting the generality, that all the moods are double. Let us therefore suppose thatmmeither even andx2i1=x2t,i=1,2,,12,x1<x9<<xij1x_{2i-1}=x_{2t},i=1,2,\ldots,\frac{1}{2},x_{1}<x_{9}<\ldots<x_{ij-1}The linear functional (17) reduces toA[f]=f=1n1μf[xi,xi+1;f]A[f]=\sum_{f=1}^{n-1}\mu_{f}\left[x_{i},x_{i+1};f\right]The first case, where there are a few wins and all the nodes are simple, is included in the previous case as a special case. If, for example, there is a double knotx2i1=x2ix_{2i-1}=x_{2i}, we have a simple node that coincides with this point, we just need to takeμ21=0\mu_{2-1}=0in the previous formula. Then the derivative of the functionffon this point disappears in the expression ofA[f]A[f].

We must now distinguish between two cases, depending on the parity of the indexiithe coefficientμ1\mu_{1}.
11^{\circ}. Eitheriieven. So the nodesxi,xi+1x_{i},x_{i+1}are distinct(xi<xi+1)\left(x_{i}<x_{i+1}\right)and the continuous function

fi(x)=12(xi+1xi+|3x2xixi+1||3xxi2xi+1|)f_{i}(x)=\frac{1}{2}\left(x_{i+1}-x_{i}+\left|3x-2x_{i}-x_{i+1}\right|-\left|3x-x_{i}-2x_{i+1}\right|\right)
i=2,4,,m2i=2,4,\ldots,m-2

is non-decreasing and gives usA[fL]=μLA\left[f_{l}\right]=\mu_{l}We have done

(v=1m1μv)μi0\displaystyle\left(\sum_{v=1}^{m-1}\mu_{v}\right)\mu_{i}\geqq 0 (20)
 For i=2,4,,m2.\displaystyle\text{ pour }i=2,4,\ldots,m-2.

22^{\circ}. Eitheriiodd. Soxi1<xi=xi+1<xi+2x_{i-1}<x_{i}=x_{i+1}<x_{i+2}If0<ε<min(xixi1,xi+2xi+1)0<\varepsilon<<\min\left(x_{i}-x_{i-1},x_{i+2}-x_{i+1}\right), the continuous function

fi(x)=12(2ε+|xxi+ε||xxiε|)i=1,3,,m1\begin{gathered}f_{i}(x)=\frac{1}{2}\left(2\varepsilon+\left|x-x_{i}+\varepsilon\right|-\left|x-x_{i}-\varepsilon\right|\right)\\ i=1,3,\ldots,m-1\end{gathered}

is non-decreasing and we haveA[fi]=ε(μi1xixi1+μi+1xi+2xi+1)+μiA\left[f_{i}\right]=\varepsilon\left(\frac{\mu_{i-1}}{x_{i}-x_{i-1}}+\frac{\mu_{i+1}}{x_{i+2}-x_{i+1}}\right)+\mu_{i}. Ifμi0\mu_{i}\neq 0, Forε\varepsilonsmall enough,A[fi]A\left[f_{i}\right]is also0\neq 0and of the same sign withμi\mu_{i}We deduce that inequality (20) is also true fori=1i=1.3,,m13,\ldots,m-1.

Inequality (20) is therefore true fori=1,2,,m1i=1,2,\ldots,m-1and ownership is demonstrated.

Case 3.n=1n=1We can assume, without restricting the generality, that all knots are triple. Thereforemma multiple of 3 and arex3i2=x3i1=x3i,i=1,2,,m3,x1<x4<x7<<xm2x_{3i-2}=x_{3i-1}=x_{3i},i=1,2,\ldots,\frac{m}{3},x_{1}<x_{4}<x_{7}<\ldots<x_{m-2}The linear functional (17) reduces toA[f]=i=1m2μi[xi,xi+1,xi+2;f]A[f]=\sum_{i=1}^{m-2}\mu_{i}\left[x_{i},x_{i+1},x_{i+2};f\right]The case where some or all of the knots are double or single is included in the preceding case as a special case. If, for example, instead of the triple knotx3i2=x3i1=x3ix_{3i-2}=x_{3i-1}=x_{3i}we have a double knot coinciding with this point, just takeμ3i2=0\mu_{3i-2}=0in the previous formula. Then the
second derivative of the functionffon this point disappears in the expression ofAfA\lceil fIf instead of a double knot, we have a simple knot at this point, we simply takeμ3i2=0\mu_{3i-2}=0Andμ3i1,μ3i3\mu_{3i-1},\mu_{3i-3}so that 1 we have(x3i+1x3)μ3i3=(x3i2x3i3)μ3i1\left(x_{3i+1}-x_{3}\right)\mu_{3i-3}=\left(x_{3i-2}-x_{3i-3}\right)\mu_{3i-1}, so that in the expression ofA[f]A[f]disappearance anssi the first derivative offfon this point.

Here again, we will distinguish between two cases, depending on the values ​​of the index.iiofμi\mu_{i}compared to the divisor 3.
11^{\circ}Let us consider the pair of coefficientsμi,μi+1\mu_{i},\mu_{i+1}Ori+1i+1is a multiple of 3. We havexi+1<xi+2x_{i+1}<x_{i+2}and the continuum function

fi(x)=(xi+2xi+1)xλ+|xλ|2i=2,5,8,,m4\begin{gathered}f_{i}(x)=\left(x_{i+2}-x_{i+1}\right)\frac{x-\lambda+|x-\lambda|}{2}\\ i=2,5,8,\ldots,m-4\end{gathered}

Orxi+1<λ<xi+2x_{i+1}<\lambda<x_{i+2}is non-concave of order 1 and we have

A[fi]=μi(xi+2λ)+μi+1(λxi+1)xi+2xi+1A\left[f_{i}\right]=\frac{\mu_{i}\left(x_{i+2}-\lambda\right)+\mu_{i+1}\left(\lambda-x_{i+1}\right)}{x_{i+2}-x_{i+1}}

We can see that ifμi0\mu_{i}\neq 0Andλ\lambdais sulistically closexi+1,A[fi]x_{i+1},A\left[f_{i}\right]East0\neq 0and has the same sign asμ1\mu_{1}and ifμi+10\mu_{i+1}\neq 0Andλ\lambdais close enough toxi+2,A[fi]x_{i+2},A\left[f_{i}\right]East0\neq 0and has the same sign asμi+1\mu_{i+1}It follows that

(v=1m2μv)μv0\left(\sum_{v=1}^{m-2}\mu_{v}\right)\mu_{v}\geqq 0 (21)

Fori=2,3,5,6,8,9,,m4,m3i=2,3,5,6,8,9,\ldots,m-4,m-3.
22^{\circ}Now suppose thatiieither congruent to 1 modulo 3. Thenxi==xi+1=xi+2x_{i}==x_{i+1}=x_{i+2}. If0<ε<min(xixi1,xi+3xi+2)0<\varepsilon<\min\left(x_{i}-x_{i-1},x_{i+3}-x_{i+2}\right), the continuous function

fi(x)=12[4ε(xxi)+(xxi+ε)|xxi+ε|(xxiε)|xxiε|]i=1,1,7,,m2\begin{gathered}f_{i}(x)=\frac{1}{2}\left[4\varepsilon\left(x-x_{i}\right)+\left(x-x_{i}+\varepsilon\right)\left|x-x_{i}+\varepsilon\right|-\right.\\ \left.-\left(x-x_{i}-\varepsilon\right)\cdot\left|x-x_{i}-\varepsilon\right|\right]\\ i=1,1,7,\ldots,m-2\end{gathered}

is non-concave of order 1 and we have

A[fi]=ε2[μi2μi1(xixi1)2+μi+2μi+1(xi+3xi+2)2]+2ε[μi1xixi1+μi+1xi+1xi+2]+μi.A\left[f_{i}\right]=\varepsilon^{2}\left[\frac{\mu_{i-2}-\mu_{i-1}}{\left(x_{i}-x_{i-1}\right)^{2}}+\frac{\mu_{i+2}-\mu_{i+1}}{\left(x_{i+3}-x_{i+2}\right)^{2}}\right]+2\varepsilon\left[\frac{\mu_{i-1}}{x_{i}-x_{i-1}}+\frac{\mu_{i+1}}{x_{i+1}-x_{i+2}}\right]+\mu_{i}.

Ifμi0\mu_{i}\neq 0, for small enough,A[fi]A\left[f_{i}\right]East0\neq 0and is of the same sign asμi\mu_{i}It follows that inequality (21.) is also true fori=1,4,7i=1,4,7,,m2\ldots,m-2Inequality (21) is therefore true fori=1,2,,m2i=1,2,\ldots,m-2and the property is demonstrated.
11. - The property demonstrated forn=1,0n=-1,0and 1 is no longer true forn>1n>1To unravel this property, it suffices to show that ifn>1,x1<x2<<xn+4n>1,x_{1}<x_{2}<\ldots<x_{n+4}and ifμ,μ"\mu^{\prime},\mu^{\prime\prime}are two sufficiently large positive numbers (μ+μ">1\mu^{\prime}+\mu^{\prime\prime}>1), the linear functional
(22)μ[x1,x2,,xn+2;f][x2,x3,,xn+3;f]+μ"[x3,x1,,xn+4;f]\mu^{\prime}\left[x_{1},x_{2},\ldots,x_{n+2};f\right]-\left[x_{2},x_{3},\ldots,x_{n+3};f\right]+\mu^{\prime\prime}\left[x_{3},x_{1},\ldots,x_{n+4};f\right]
is (degree of accuracy)nn et) de la forme simple. En effet, introduisons entre les noends xix_{i} encore n+3n+3 noends, en formant ainsi la suite de noeuds x1<x2<<x2n+7,x2i1=xi,i=1,2,,n+4x_{1}<x_{2}<\ldots<x_{2n+7},x_{2i-1}=x_{i},i=1,2,\ldots,n+4. Des formules de moyenne des différences divisées [3] il résulte que

[x1,x2,,xn+2;f]=i=1n+2αi[xi,xi+1,,xi+n+1;f]\displaystyle{\left[x_{1},x_{2},\ldots,x_{n+2};f\right]=\sum_{i=1}^{n+2}\alpha_{i}\left[x_{i},x_{i+1}^{\prime},\ldots,x_{i+n+1};f\right]}
[x2,x2,,xn+3;f]=i=3n+4βi[xi,xi+1,,xi+n+1;f]\displaystyle{\left[x_{2},x_{2},\ldots,x_{n+3};f\right]=\sum_{i=3}^{n+4}\beta_{i}\left[x_{i}^{\prime},x_{i+1}^{\prime},\ldots,x_{i+n+1}^{\prime};f\right]}
[x3,x4,,xn+4;f]=i=5n+6γi[xi,xi+1,,xi+n+1;f]\left[x_{3},x_{4},\ldots,x_{n+4};f\right]=\sum_{i=5}^{n+6}\gamma_{i}\left[x_{i}^{\prime},x_{i+1}^{\prime},\ldots,x_{i+n+1}^{\prime};f\right]

αi,βi,γi\alpha_{i},\beta_{i},\gamma_{i} sont des coefficients positifs, indépendants de la fonction ff (et i=1n+2αi=i=3n+4βi=i=5n+6γi=1\sum_{i=1}^{n+2}\alpha_{i}=\sum_{i=3}^{n+4}\beta_{i}=\sum_{i=5}^{n+6}\gamma_{i}=1 ). La fonctionnelle linéaire (22) peut donc s’écrire sous la forme

i=1n+6(μαi+μ′′γiβi)[xi,xi+1,,xi+n+1;f]\sum_{i=1}^{n+6}\left(\mu^{\prime}\alpha_{i}+\mu^{\prime\prime}\gamma_{i}-\beta_{i}\right)\left[x_{i}^{\prime},x_{i+1}^{\prime},\ldots,x_{i+n+1}^{\prime};f\right]

ouαn+3=αn+4=αn+5=αn+6=β1=β2=βn+5=βn+6=γ1=γ2=γ3==γ4=0\alpha_{n+3}=\alpha_{n+4}=\alpha_{n+5}=\alpha_{n+6}=\beta_{1}=\beta_{2}=\beta_{n+5}=\beta_{n+6}=\gamma_{1}=\gamma_{2}=\gamma_{3}==\gamma_{4}=0. La propriété résulte du fait qu’il n’existe aucun indice ii pour lequel les coefficients αi,γi\alpha_{i},\gamma_{i} soient nuls à la fois (on voit facilement que ceci n’est plus vrai pour n=0n=0=1=1 ).

Enfin rappelons que pour qu’une fonctionnelle linéaire de la forme (1) ait un degré d’exactitude nn et pour qu’elle soit de la forme simple, il faut que les ordres de multiplicité k1,k2,,k0k_{1},k_{2},\ldots,k_{0} des noeuds, supposés réduits à leur nombre minimum, soient tous n+2[5]\leqq n+2[5].

III.

  1. 12.
    • Nous allons nous occuper du reste de certaines formules drapproximation pour la fonctionnelle linéaire A[f]A[f]. Ces formules peuvent être considérées conme des généralisations de la formule d’interpolation de Lagrange, qui a comme cas particulier la formule de Taylor.

Soit A[f]A[f] une fonctionnelle linéaire définie sur l’espace SS (voir ur. 1). Nous considérons une suite finie ou infinie de points
(23)

y0,y1,y_{0},y_{1},\ldots

distincts on non. Nous considérons une section
(24)

y0,y1,,ysy_{0},y_{1},\ldots,y_{s}

de cette suite et le polynome de Lagrange-Hermite L(y0,y1,,ys;fx)L\left(y_{0},y_{1},\ldots,y_{s};f\mid x\right) sur ces points et relativement à la fonction ff. Pour tout xIx\in I ce polynome est une fonctionnelle linéaire de la forme (1). Plus exactement, ce polynome pent être mis sous la forme (1), où les ai,ja_{i,j} sont des polynomes indépendants de la fonction ff, le nombre total des noeuds, distincts ou non, étant égal à s+1s+1^{*} ).

Nous avons alors la formule d’approximation

A[f]=A[L(y0,y1,,ys;fx)]+Rs[f]A[f]=A\left[L\left(y_{0},y_{1},\ldots,y_{s};f\mid x\right)\right]+R_{s}[f] (25)

Rs[f]R_{s}[f] est le reste de cette formule.
La formule (11) nous donne
*) Il existe des valeurs de xx (en nombre fini), pour lesquels le nowbre minimum des noeuds est plus petit que s+1s+1.

A[f]\displaystyle A[f] =v=0scv[y0,y1,,yv;f]+Rs[f]\displaystyle=\sum_{v=0}^{s}c_{v}\left[y_{0},y_{1},\ldots,y_{v};f\right]+R_{s}[f] (26)
cv\displaystyle c_{v} =A[i=0v1(xyi)],v=0,1,,s\displaystyle=A\left[\prod_{i=0}^{v-1}\left(x-y_{i}\right)\right],v=0,1,\ldots,s (27)

La formule (25) est completement caractérisée par le fait qu’elle est de la forme (26), avec un reste Rs[f]R_{s}[f] fonctionnelle linéaire de degré d’exactitude au moins égal à s. En effet, pour tout polynome ff de degré ss, le polynome L(y0,y1,,ys;fx)L\left(y_{0},y_{1},\ldots,y_{s};f\mid x\right) se réduit à ff, donc Rs[f]R_{s}[f] est nul. Alors les coefficients cvc_{v}, donnés par la formule (26) sont bien déterminés et, pour vv donné, cvc_{v} est indépendant de ss.

Nous supposons, bien entendu, que les conditions d’existence, données au ur. 1, soient vérifiées pour la fonctionnelle linéaire Rs[f]R_{s}[f]. Ainsi, les points (24), ou bien les points (23) sils interviennent tous, appartiennent à l’intervalle II. Les différences divisées [y0,y1,,yv;f],v=0\left[y_{0},y_{1},\ldots,y_{v};f\right],v=0, 1,,s1,\ldots,s, existent au sens expliqué au nr. 4, etc.

Il est clair que si le reste Rs[f]R_{s}[f] est définie, tous les restes précédents R0[f],R1[f],,Rs1[f]R_{0}[f],R_{1}[f],\ldots,R_{s-1}[f] sont également des fonctionnelles linéaires définies sur SS.

Dans ce qui suit nous allons étudier quelques cas où le reste Rs[f]R_{s}[f] de la formule d’approximation (25) est de la forme simple.
13. - Considérons une fonctionnelle linéaire A[f]A[f]of the form (1). Unless otherwise stated, we will deal exclusively with linear functionals of this form. The restRs[f]R_{s}[f]The formula (25) then has the same form. The multiplicity orders of the nodes can all be takenmax(k1,k2,,kp,s+1)\leqq\max\left(k_{1},k_{2},\ldots,k_{p},s+1\right), so ifs+2max(k1,k2,,kp)s+2\Longrightarrow\max\left(k_{1},k_{2},\ldots,k_{p}\right)We can apply Lemma 3 and the linear functionalRs[f]R_{s}[f]is a linear combination of divided differences of orders+1s+1To putRs[f]R_{s}[f]indeed in form (17), it is sufficient first to carry out a suitable numbering of the nodes so that the corresponding condition (15) is verified.

To go further, we will distinguish between the cases where the sequence (24) and the sequence of knotsz1,z2,,zpz_{1},z_{2},\ldots,z_{p}of the linear functionalA[f]A[f]have on common terms. In the following we will examine only the cases where the coincidence took place with only one of the termsziz_{i}. Eitherz1z_{1}this node, whose multiplicity order isk1k_{1}and suppose thatx1,x2,,xmx_{1},x_{2},\ldots,x_{m}either a normal numbering of the nodes ofA[f]A[f], Orx1=x2==xh1=z1x_{1}=x_{2}=\ldots=x_{h_{1}}=z_{1}So (ifp>1p>1) no term of the sequence (24) does not coincide with one of the pointsxk1+1,xk1+2,,xinx_{k_{1}+1},x_{k_{1}+2},\ldots,x_{in}.

Eitherk(0kk1)k\left(0\leqq k\leqq k_{1}\right)the smallest of the numberk1k_{1}and the number of terms in sequence (24) equal toz1z_{1}Equalityk=0k=0means that none of the terms in sequence (24) coincide with a nodeziz_{i}. Ifk>0k>0, among the points (24) there are at leastkkwhich coincide withz1z_{1}Let us designate bysrs^{r}the smallest index such as the sequencey0,y1,,ys1y_{0},y_{1},\ldots,y_{s^{\prime}-1}(havingss^{\prime}(terms) contains at leastkkterms equal toz1z_{1}. We havesks^{\prime}\equiv kand ifk=0k=0we can takes=0s^{\prime}=0.

The nodes of the linear functionRs[f]R_{s}[f]can be written in 1a sequence*)ys,ys1,,y0,xk+1,xk+2,,xmy_{s},y_{s-1},\ldots,y_{0},x_{k+1},x_{k+2},\ldots,x_{m}Their number is equal tos+1+mks+1+m-kand the numbering corresponding to this sequence satisfies condition (15) (withn=sn=s) ifss+mk1(m1)s\geq s^{\prime}+m-k-1(\geq m-1)It follows that ifmkm\leqq kthe linear functionalRs[f]R_{s}[f]is zero identically**). But the inequalitymkm\leq ktakes place if and only if all the nodesxix_{i}are confused with the same pointz1z_{1}and the sutte (24) contains at leastmmterms equal toz1z_{1}.

Otherwise, doic si out bienp>1p>1orp=1,k<k1p=1,k<k_{1}(in both cases we havem>km>k), we have the formula

Rs[f]=i=k+1mμi(s)[y0,y1,,ys+1+ki,xk+1,xk+2,,xi;f]R_{s}[f]=\sum_{i=k+1}^{m}\mu_{i}^{(s)}\left[y_{0},y_{1},\ldots,y_{s+1+k-i},x_{k+1},x_{k+2},\ldots,x_{i};f\right] (28)

where the coefficientsμi(i)\mu_{i}^{(i)}are independent of the functionffWe
can calculate the coefficientμμ(s)\mu_{\mu}^{(s)}in the following way. That isxm=zμx_{m}=z_{\mu}Therefore, taking into account formula (1), the coefficient off(kμ1)(zμ)f^{\left(k_{\mu}-1\right)}\left(z_{\mu}\right)in the first member of (28) is equal toaμ,kμ1a_{\mu,k_{\mu}-1}and the same coefficient on the second member is equal toμn(s)\mu_{n}^{(s)}multiplied by

1(kμ1)!1P(zμ)v=k+1mkμ(zμxv), if p>1( SO μ1)1(k11)!k!P(k)(z1), if p=1,k<k1,\begin{gathered}\frac{1}{\left(k_{\mu}-1\right)!}\cdot\frac{1}{P^{\prime}\left(z_{\mu}\right)\prod_{v=k+1}^{m-k_{\mu}}\left(z_{\mu}-x_{v}\right)}\text{, si }p>1(\text{ alors }\mu\neq 1)\\ \frac{1}{\left(k_{1}-1\right)!}\cdot\frac{k!}{P^{(k)\left(z_{1}\right)}},\text{ si }p=1,k<k_{1},\end{gathered}

outP(x)=v=03+1+km(xyv)P(x)=\prod_{v=0}^{3+1+k-m}\left(x-y_{v}\right)
It follows that

μn(s)={(kμ1)!P(zμ)v=k+1mkμ(zμxν)aμ,kμ1 if p>1.(h11)!k!P(k)(z1)a1,k11 if p=1,k<k1.\mu_{n}^{(s)}=\left\{\begin{array}[]{l}\left(k_{\mu}-1\right)!P\left(z_{\mu}\right)_{v=k+1}^{m-k}\prod_{\mu}\left(z_{\mu}-x_{\nu}\right)a_{\mu,k_{\mu}-1}\text{ si }p>1.\\ \frac{\left(h_{1}-1\right)!}{k!}P^{(k)}\left(z_{1}\right)a_{1,k_{1}-1}\text{ si }p=1,k<k_{1}.\end{array}\right.

Assuming, therefore, that condition (2) is satisfied, we haveμn(s)0\mu_{n}^{(s)}\neq 0
It follows that if the previous assumptions are verified and if the coefficients μi(s),i=k+1,k+2,,m\mu_{i}^{(s)},i=k+1,k+2,\ldots,mare all of the same sign, the restRs[f]R_{s}[f]is of degree of accuracy s and is of the simple form. The coefficientKKof the corresponding formula (18) is equal toRs[xs+1]=A[v=0s(xyv)]R_{s}\left[x^{s+1}\right]=A\left[\prod_{v=0}^{s}\left(x-y_{v}\right)\right].

0 0 footnotetext: *) These are not necessarily the nodes reduced to their minimum quantity.
*) The property will not subsist ifs<s+mk1s<s^{\prime}+m-k-1.

In what follows we will always assume, unless otherwise stated, that for the linear functionalA[f]A[f]condition (2) is satisfied.
14. - We obtain an interesting special case by taking forA[f]A[f]the difference divided (4). To state the respective property, we will seta=min(z1,z2,,zp),b=max(z1,z2,,zp)a^{\prime}=\min\left(z_{1},z_{2},\ldots,z_{p}\right),b^{\prime}=\max\left(z_{1},z_{2},\ldots,z_{p}\right). SO[a,b]I\left[a^{\prime},b^{\prime}\right]\subseteq Iis the smallest closed interval that contains the nodes of the functionalA[f]A[f]We then have the

THEORHMORAL 1. - If we accept the preceding hypotheses and notations:11^{\circ}the points (24) sound on well lowsa\leq a^{\prime}, or lowsb,2\geq b^{\prime},2^{\circ}Now we havep>1p>1or btenp=1p=1ofk<k1,3k<k_{1},3^{\circ}. s=k,sm1=k,s\geq m-1, the restRs[f]R_{s}[f]of the approximation formula
(29)

[x1,x2,,xm;f]==y=1s[x1,x2,,xm;i=1v1(xyi)][y0,y1,,yv;f]+Rs[f]\begin{gathered}{\left[x_{1},x_{2},\ldots,x_{m};f\right]=}\\ =\sum_{y=1}^{s}\left[x_{1},x_{2},\ldots,x_{m};\prod_{i=1}^{v-1}\left(x-y_{i}\right)\right]\cdot\left[y_{0},y_{1},\ldots,y_{v};f\right]+R_{s}[f]\end{gathered}

a the degree of accuracy s ob ost of the simple form.
For the demonstration it will suffice to verify that the coefficients[ti(*)\left[t_{i}^{(*)}\right.The coefficients of the corresponding formula (28) all have the same sign. We will calculate these coefficients.

Let's calculate, in general, the coefficientsμ4(s)\mu_{4}^{(s)}of formula (28) forA[f]A[f]of the form (1), assuming that the conditions22^{\circ}And33^{\circ}of theorem 1 are verified. To perform the calculation, note that we have*)

A[/(x)(xz1)k]=i=k+1mμi(5)[xk+1,xk+2,,xi;f(x)s+1+ki(xyv)]A\left[/(x)\left(x-z_{1}\right)^{k}\right]=\sum_{i=k+1}^{m}\mu_{i}^{(5)}\left[x_{k+1},x_{k+2},\ldots,x_{i};\frac{f(x)}{s+1+k-i}\left(x-y_{v}\right)\right] (30)

Ifk<k1k<k_{1}This formula results, by applying formulas (7), (8), through the identification of the parts of the expressions ofR5[f]R_{5}[f]taken from (26) and (28) and which contain only the terms corresponding to the nodeszi{z_{i}}. Ifh=kjh=k_{j}The formula results in the same way, by identifying the terms that originate from the nodes.zz,za,,zpz_{z},z_{a},\ldots,z_{p}.

Frenons naintenant comme fonctionffthe polynomial
(xiys+1+ki)v=ks+ki(xyv)v=k+1i1(xxv)\left(x_{i}-y_{s+1+k-i}\right)\prod_{v=k}^{s+k-i}\left(x-y_{v}\right)\prod_{v=k+1}^{i-1}\left(x-x_{v}\right), Orv=k+1i1(xxv)\prod_{v=k+1}^{i-1}\left(x-x_{v}\right)Fori=+ki=\ldots+kAndv=ks+km(xyr)\prod_{v=k}^{s+k-m}\left(x-y_{r}\right)for=m1=m-1are replaced by 1. Then the right-hand side of (30) reduces toμi[s]\mu_{i}^{[s]}and we obtain

k(s)=(xiys+1+ki)A[v=1i1(xxv)v=ks+ki(xyv)]\displaystyle k^{(s)}=\left(x_{i}-y_{s+1+k-i}\right)A\left[\prod_{v=1}^{i-1}\left(x-x_{v}\right)\prod_{v=k}^{s+k-i}\left(x-y_{v}\right)\right] (31)
i=k+1,k+2,,m.\displaystyle i=k+1,k+2,\ldots,m.

*) Ifh=0,A[f(x)(xz1)h]h=0,A\left[f(x)\left(x-z_{1}\right)^{h}\right]boils down tod[f]d[f].

Returning to Theorem 1, we have in this caseA[f]==[x1,x2,,xm;f]A[f]==\left[x_{1},x_{2},\ldots,x_{m};f\right]and taking into account formula (8),

μi(s)=(xiys+1+ki)[xi,xi+1,,xm;v=ks+ki(xyv)],\displaystyle\mu_{i}^{(s)}=\left(x_{i}-y_{s+1+k-i}\right)\cdot\left[x_{i},x_{i+1},\ldots,x_{m};\prod_{v=k}^{s+k-i}\left(x-y_{v}\right)\right], (32)
i=k+1,k+2,,m.\displaystyle i=k+1,k+2,\ldots,m.

But the polynomialv=ks+ki(xyv)\prod_{v=k}^{s+k-i}\left(x-y_{v}\right)has a derivative of ordermim--inegative on the interval(a,b)\left(a^{\prime},b^{\prime}\right)if the points (24) are to the right ofbb^{\prime}Andsn+1s-n+1is odd. In other cases, compatible with the hypotheses of Theorem 1, this derivative is positive on (a,ba^{\prime},b^{\prime}). It follows that the coefficientsμ(s)\mu^{(s)}are positive if the points (24) are either to the left ofaa^{\prime}or to the right ofbb^{\prime}Andsm+1s-m+1is odd and they are negative if the points (24) are to the right ofbb^{\prime}Andsm+1s-m+1is even. We assumeda<ba^{\prime}<b^{\prime}. Whena=ba^{\prime}=b^{\prime}we are in the casep=1,k<k1p=1,k<k_{1}and it is easy to see that the property is still true.

Theorem 1 is therefore proven.
In the case of Theorem 1, in formulas (27) we havec0=c1===cm2=0c_{0}=c_{1}==\ldots=c_{m-2}=0, done ifs<m1s<m-1we haveRs[f]=[x1,x2,,xm;f]R_{s}[f]=\left[x_{1},x_{2},\ldots,x_{m};f\right].

Theorem 1 generalizes certain properties of H. D. Kloostermann [1]. These properties are obtained for

xi=x+(i1)h,i=1,2,,m(h0),yi=x,i=0,1,,s\displaystyle x_{i}=x+(i-1)h,i=1,2,\ldots,m(h\neq 0),y_{i}=x,i=0,1,\ldots,s
xi=x,i=1,2,,m,yi=x+ih,i=0,1,,s(h0)\displaystyle x_{i}=x,i=1,2,\ldots,m,y_{i}=x+ih,i=0,1,\ldots,s(h\neq 0)

respectively, and if, moreover, we assume that the functionffadmits a continuous derivative of orders+1s+1within the smallest interval containing the pointsxi,yix_{i},y_{i}15.
- Let us return to formula (28) and consider the conditions under which this formula was established. We can then find a simple relationship between the coefficientsμi(s),μi(s+1)\mu_{i}^{(s)},\mu_{i}^{(s+1)}. We have

Rs[f]cs+1[y0,y1,,ys+1;f]=Rs+1[f]==i=k+1mμi(s+1)xiys+2+ki{[y0,y1,,ys+1+ki,xk+1,xk+2,,xi;f][y0,y1,,ys+2+ki,xk+1,xk+2,,xi1;f]}\begin{gathered}R_{s}[f]-c_{s+1}\left[y_{0},y_{1},\ldots,y_{s+1};f\right]=R_{s+1}[f]=\\ =\prod_{i=k+1}^{m}\frac{\mu_{i}^{(s+1)}}{x_{i}-y_{s+2+k-i}}\left\{\left[y_{0},y_{1},\ldots,y_{s+1+k-i},x_{k+1},x_{k+2},\ldots,x_{i};f\right]-\right.\\ \left.-\left[y_{0},y_{1},\ldots,y_{s+2+k-i},x_{k+1},x_{k+2},\ldots,x_{i-1};f\right]\right\}\end{gathered}

where the second difference divided reduces to[y0,y1,,ys+t;f]\left[y_{0},y_{1},\ldots,y_{s+t};f\right]Fori=k+1i=k+1The formula makes sense, since under the stated assumptions,xiys+2+ki,i=k+1,k+2,,mx_{i}\neq y_{s+2+k-i},i=k+1,k+2,\ldots,m.

By comparing with formula (28), we deduce,

μi(s+1)=(xiys+2+ki)(μi(s)+μi+1(s)++μm(s))\displaystyle\mu_{i}^{(s+1)}=\left(x_{i}-y_{s+2+k-i}\right)\left(\mu_{i}^{(s)}+\mu_{i+1}^{(s)}+\cdots+\mu_{m}^{(s)}\right) (33)
i=k+1,k+2,,m.\displaystyle i=k+1,k+2,\ldots,m.

These formulas allow us to state the

THEOREM 2. - Under the assumptions under which formula (28) was established, and if:11^{\circ}Let's look at the points (24)a\leqq a^{\prime}oh well, they are allb2\geq b^{\prime}2^{\circ}there is a valleys0s_{0}of s pow in which all the coefficientsμ(s)\mu_{-}^{(s)}are from the same sign.
The restRs[f]R_{s}[f]of the approximation formula (25) is the degree of accuracyssand is of the simple form forss0s\geq s_{0}.

Indeed, under the conditions of the theorem, we see that if the coefficientsμi(s)\mu_{i}^{(s)}all have the same sign, the coefficientsμi(s+1)\mu_{i}^{(s+1)}are also all of the same sign.
16. - One might wonder if they always exist, for a linear functionalA[f]A[f], of the form (1) e.g., values ​​ofssfor which the restRs[f]R_{s}[f]is it of simple form, or is this remainder of simple form for a sufficiently large s? We will give an example to show that the answer is negative.

EitherA[f]=f(0)+f(0)A[f]=f(0)+f^{\prime}(0)and let's take the pointsyv=(v+1)(v+2)y_{v}=(v+1)(v+2),v=0,1,v=0,1,\ldotsIn this case we have (s0s\geq 0),

Rs[f]=(1)ss!(s+1)!{[0,0,y0,y1,,ys1;f](s+2)[0,y0,y1,,ys;f]}\begin{gathered}R_{s}[f]=(-1)^{s}s!(s+1)!\left\{\left[0,0,y_{0},y_{1},\ldots,y_{s-1};f\right]-\right.\\ \left.-(s+2)\left[0,y_{0},y_{1},\ldots,y_{s};f\right]\right\}\end{gathered}

Based on previous results,Rs[f]R_{s}[f], which is the degree of accuracyss, is not of the simple form for any value ofs3s\geq 317.
- The preceding example demonstrates that the following property is of some interest,

THEOREM 3. - Under the hypotheses under which the formula (28) was established and if all the points (23) coincide at a single point not belonging to the interval (a,ba^{\prime},b^{\prime}),
the restcRs[f]R_{s}[f]is of the degree of accuracy s and is of the simple form forsslarge enough.

In this case we havek=0k=0(if points (24) are outside of[a,b]\left[a^{\prime},b^{\prime}\right]) Orh=h1h=h_{1}(if the points (24) all coincide withaa^{\prime}or all withbb^{\prime}). It will suffice to give the demonstration in the casek=0k=0.

So be itk=0k=0Formulas (33) become (sm1s\geq m-1)

μi(s+1)=(xiy0)(μi(s)+μi+1(s)++μm(s)),i=1,2,,n\mu_{i}^{(s+1)}=\left(x_{i}-y_{0}\right)\left(\mu_{i}^{(s)}+\mu_{i+1}^{(s)}+\ldots+\mu_{m}^{(s)}\right),i=1,2,\ldots,n (31)

We will now choose the notations so that the followingx1,x2,,xn2x_{1},x_{2},\ldots,x_{n2}either non-decreasing or non-increasing depending on whethery0<ay_{0}<a^{\prime}resp.y0>by_{0}>b^{\prime}So, the numbersxiy0x_{i}-y_{0}are different from zero, of the same sign, and the sequence|x1y0|,|x2y0||xmy0|\left|x_{1}-y_{0}\right|,\left|x_{2}-y_{0}\right|\ldots\ldots\left|x_{m}-y_{0}\right|, of their absolute values ​​is non-decreasing.

From (34) we deduce

μi(s)=i=imtMi,j(ξ)μj(m1),i=1,2,,m.\mu_{i}^{(s)}=\sum_{i=i}^{mt}M_{i,j}^{(\xi)}\mu_{j}^{(m-1)},i=1,2,\ldots,m. (35)

where the triangular matrix(Mi,j(s))\left(M_{i,j}^{(s)}\right)is the(sn1)th (s-n-1)^{\text{ème }}power of the triangular matrix
u)(x1y0x1y00x1y0000\left(\begin{array}[]{ccc}x_{1}-y_{0}&x_{1}-y_{0}&\ldots\\ 0&x_{1}-y_{0}&\ldots\\ 0&\ldots&\ldots\\ 0&0&\ldots\end{array}\right.

Let us designate byWi(z1,z2,,zr)W_{i}\left(z_{1},z_{2},\ldots,z_{r}\right)the symmetric functionz1a1z2a2ztar\sum z_{1}^{a_{1}}z_{2}^{a_{2}}\ldots z_{t^{\prime}}^{a_{r}}, the sum being extended to the solutions in non-negative integers of the equation inαi,α1+α2++αr=i(W0(z1,z2,,zr)=1)\alpha_{i},\alpha_{1}+\alpha_{2}+\ldots+\alpha_{r}=i\quad\left(W_{0}\left(z_{1},z_{2},\ldots,z_{r}\right)=1\right), We have

ΔIi,j(o)(xiy0)Wsm(xiy0,xi+1y0,,xjy0),\displaystyle\Delta I_{i,j}^{(o)}-\left(x_{i}-y_{0}\right)W_{s-m}\left(x_{i}-y_{0},x_{i+1}-y_{0},\ldots,x_{j}-y_{0}\right), (36)
j=i,i+1,,mi=1,2,,m.\displaystyle j=i,i+1,\ldots,mi=1,2,\ldots,m.
  1. 18.
    • Before going any further, we will establish a lemma that is of interest, regardless of the application we give it here.

Lemma 6. – If your non-negative numbersz1,z2,,zr1(r>1)z_{1},z_{2},\ldots,z_{r-1}(r>1)sond compris dans l'iniervalle[0,zr]\left[0,z_{r}\right], nons awons l'inequality

F1(ε1,ε2,,εr)(r1+i)Wi(ε1,ε2,,zr1)(r2+i)\frac{F_{1}\left(\varepsilon_{1},\varepsilon_{2},\ldots,\varepsilon_{r}\right)}{(r-1+i)}\geq\frac{W_{i}\left(\varepsilon_{1},\varepsilon_{2},\ldots,z_{r-1}\right)}{(r-2+i)} (37)

the gählé dani waie si el senlement si ou bieni=0i=0ori>0i>0down the wombresz1,z2,,zrz_{1},z_{2},\ldots,z_{r}sone éganex.

The property is innádiate fori=0i=0and fori>0i>0Andz1=z2===rr1=0z_{1}=z_{2}==\ldots=r_{r-1}=0.

Suppose thatz1,z2,,zr1z_{1},z_{2},\ldots,z_{r-1}not all of them are useless. So we necessarily havezr>0z_{r}>0We admit

Wi(z1,z2,,zr)=[z1,z2,,zr;xr1+i]Wi(z1,z2,,zr1)=[z1,z2,,zr1;xr2+i]==[z1,z2,,zr;xr2+i(tzr)]\begin{gathered}W_{i}\left(z_{1},z_{2},\ldots,z_{r}\right)=\left[z_{1},z_{2},\ldots,z_{r};x^{r-1+i}\right]\\ W_{i}\left(z_{1},z_{2},\ldots,z_{r-1}\right)=\left[z_{1},z_{2},\ldots,z_{r-1};x^{r-2+i}\right]=\\ =\left[z_{1},z_{2},\ldots,z_{r};x^{r-2+i}\left(t-z_{r}\right)\right]\end{gathered}

oil
(r1+i)[wi(r1,r2,,rr)(r11+i)wi(r1,r2,,rr1)(r2i+i)]=Wi(r1,w^2,,rr)(r-1+i)\left[\frac{w_{i}\left(r_{1},r_{2},\ldots,r_{r}\right)}{\left(r-\frac{1}{1}+i\right)}-\frac{w_{i}\left(r_{1},r_{2},\ldots,r_{r-1}\right)}{\left(r-\frac{2}{i}+i\right)}\right]=W_{i}\left(r_{1},\hat{w}_{2},\ldots,r_{r}\right)-
y1+iy1Wi(z1,z2,,z11)1y1[z1,z2,,zr;xr2+i((r11)zri,1)]-\frac{y-1+i}{y-1}W_{i}\left(z_{1},z_{2},\ldots,z_{1-1}\right)-\frac{1}{y-1}\left[z_{1},z_{2},\ldots,z_{r};x^{r-2+i}\left((r-1-1)z_{r}\cdots i,1\right)\right]But
the derivative(r1)well (r-1)^{\text{bine }}of the polynomialxr2+i[(r1|i)zrix]x^{r-2+i}\left[(r-\cdots 1-\mid-i)z_{r}-ix\right]is equal(v11)!(i1)!x1(zrx)\frac{(v-1-1)!}{(i-1)!}x^{-1}\left(z_{r}-x\right), which is positive on Lindervalle(0,zr)\left(0,z_{r}\right)It follows that the poiynome in question is convex of orderψ2\psi-2Inequality (37) follows immediately.

The case of equality is easy to study.
Je\mathrm{J}_{\mathrm{e}}The lenume a is therefore proven.
The number (r1+ir-1+i) is precisely the number of terms of the symmetric functionWi(z1,z2,,zr)1)\left.W_{i}\left(z_{1},z_{2},\ldots,z_{r}\right)^{1}\right)

If0<z1z2zr0<z_{1}\leqq z_{2}\leqq\ldots\leqq z_{r}This is the case that particularly interests us in the proof of Theorem 3; we can deduce a remarkable inequality. In this case, we have
(v1)Wi(z1,z2,,zv)(v11)Wi(z1,z2,,zv1)0,v2,3,,,v.(v-1)W_{i}\left(z_{1},z_{2},\ldots,z_{v}\right)-(v-1-1)W_{i}\left(z_{1},z_{2},\ldots,z_{v}-1\right)\geq 0,v-2,3,,,v_{.}If we add these inequalities member by member ,
we deduce(r>1)(r>1),

Wi(z1,z2,,zi)v=1TWi(z1,z2,,zv)i1r1\frac{W_{i}\left(z_{1},z_{2},\ldots,z_{i}\right)}{\sum_{v=1}^{T}W_{i}\left(z_{1},z_{2},\ldots,z_{v}\right)}\geq\frac{i-1}{r-1} (38)
  1. 19.
    • Let us return to the proof of Theorem 3. Taking into account (36) and (38), we deduce

Mi,m(s)j=im1Mi,j(s)sm1mism+1m1,i=1,2,,m1\frac{M_{i,m}^{(s)}}{\sum_{j=i}^{m-1}M_{i,j}^{(s)}}\geq\frac{s-m-1}{m-i}\geq\frac{s-m+1}{m-1},i=1,2,\ldots,m-1 (39)

and from formula (36) we obtain

μi(s)={Mi,m(s)j=1m1Mi,j(s)1,1,j=in1μj(m1)Mi,j(s)j=1n1Mi,j(s)}j=im1Mi,j(s)i=1,2,,mi1.\begin{gathered}\mu_{i}^{(s)}=\left\{\begin{array}[]{c}M_{i,m}^{(s)}\\ \sum_{j=1}^{m-1}M_{i,j}^{(s)}-1,-1,-\frac{\sum_{j=i}^{n-1}\mu_{j}^{(m-1)}M_{i,j}^{(s)}}{\sum_{j=1}^{n-1}M_{i,j}^{(s)}}\end{array}\right\}\sum_{j=i}^{m-1}M_{i,j}^{(s)}\\ i=1,2,\ldots,mi-1.\end{gathered}

We now notice that:11^{\circ}the sumsj=im1Mi,j(j),i=1,2,\sum_{j=i}^{m-1}M_{i,j}^{(j)},i=1,2,\ldotsmm- 1 are different from zero and have the same sign.22^{\circ}the quotientj=1m1μj(m1)Mi,j(s)/j=1m1Mi,j(s)\sum_{j=1}^{m-1}\mu_{j}^{(m-1)}M_{i,j}^{(s)}/\sum_{j=1}^{m-1}M_{i,j}^{(s)}is a weighted arithmetic mean of the numbersμi(m1),μi+1(m1),,μn1(m1)\mu_{i}^{(m-1)},\mu_{i+1}^{(m-1)},\ldots,\mu_{n-1}^{(m-1)}These numbers remain between two fixed numbers, independent ofs(s\left(\right.betweenμi(m1)i=1,2,,m1{}_{i=1,2,\ldots,m-1}^{\mu_{i}^{(m-1)}}Andmaxi=1,2,,m1μi(m1))\left.\max_{i=1,2,\ldots,m-1}^{\mu_{i}^{(m-1)}}\right),
*) Inequality (07) can also be written in the form of an inequality between two nominal values.

Wi(z1,z2,,zr)(r1+i)iFi(z1,z2,,z11)(r2+i)i\sqrt[i]{\frac{W_{i}\left(z_{1},z_{2},\ldots,z_{r}\right)}{(r-1+i)}}\geq\sqrt[i]{\frac{F_{i}\left(z_{1},z_{2},\ldots,z_{1}-1\right)}{(r-2+i)}}

3μm(m1)3^{\circ}\mu_{m}^{(m-1)}is different from zero, under the hypotheses of Theorem 3 (see note 13). From (39) it therefore follows that, for

s>(m1)(1+maxi1,2m1|μi(m1)μm(m1)|),s>(m-1)\left(1+\max_{i-1,2\ldots\ldots m-1}\left|\frac{\mu_{i}^{(m-1)}}{\mu_{m}^{(m-1)}}\right|\right),

all numbersμ(s),i=1,2,,m\mu^{(s)},i=1,2,\ldots,mare different from zero and have the same sign (their sign is that of[sg(xiy0)]smsgμm(m1)\left[\operatorname{sg}\left(x_{\mathrm{i}}-y_{0}\right)\right]^{s-m}\cdot\operatorname{sg}\mu_{m}^{(m-1)}).

Theorem 3 is thus proven fork=0k=0. Fork=k1k=k_{1}(in this casep>1p>1), the demonstration is done in a completely analogous way, based on formulas ( 33 ) fork=k1k=k_{1}.

Theorem 3 is therefore proven.
20. - Pont domer nut example takenous the linear functional

A[f]=f(0)f(0)0,28[f(0)|f(0)]\displaystyle A[f]=f(0)-f(0)-0,8\left[f^{\prime}(0)-\mid f^{\prime}(0)\right]
1,62[f(1)|f(5)]2,2×f(3)\displaystyle\quad-1,2\left[f^{\prime}(1)-\mid-f^{\prime}(5)\right]-2,2\times f^{\prime}(3)

which is the remainder of Hardy's quadrature formula [2]

06f(x)dx=0,28[f(0)+f(6)]+1,62[f(1)+f(5)]+2,2×f(3)+R*[f]\int_{0}^{6}f(x)dx=0,28[f(0)+f(6)]+1,62[f(1)+f(5)]+2,2\times f(3)+R^{*}[f]

applied to the functionf(x)(R*[f]=A[f])f^{\prime}(x)\left(R^{*}\left[f^{\prime}\right]=A[f]\right).
A[f]A[f]is of the degree of accuracy 6, but is not of the simple form [7]. If we consider the Taylor development

A[f]=v=1sA[xv]f(v)(0)v|+Rs[f]A[f]=\sum_{v=1}^{s}A\left[x^{v}\right]\frac{f^{(v)}(0)}{v\mid}+R_{s}[f]

by virtue of theorem 3, the remainderRs[f]R_{s}[f]is clu degree of accuracy s and is of the simple form for sufficiently large s.

In this case, we havep=5,k1=k2=k3=k1=k0=2,m=10p=5,k_{1}=k_{2}=k_{3}=k_{1}=k_{0}=2,m=10,h=s=2,x1=x2=0,x3=x4=1,x5=x6=3,x7=x8=5,x9=x10==6,y0=y1==0h=s^{\prime}=2,x_{1}=x_{2}=0,x_{3}=x_{4}=1,x_{5}=x_{6}=3,x_{7}=x_{8}=5,x_{9}=x_{10}==6,y_{0}=y_{1}=\ldots=0We can apply formulas (31) and we find

μ3(s)=A[xs],μ7(s)=5A[xs4(x1)2(x3)2]μ4(s)=A[xs)(x1)],μ8(s)=5A[xs5(x1)2(x3)2(x5)]μ5(s)=3A[xs2(x1)2],μ9(s)=6A[xs6(x1)2(x3)2(x5)2]μ6(s)=3A[xs3(x1)2(x3)],μ10(s)=6A[xs7(x1)2(x3)2(x5)2(x6)]\begin{array}[]{ll}\mu_{3}^{(s)}=A\left[x^{s}\right],&\mu_{7}^{(s)}=5A\left[x^{s-4}(x-1)^{2}(x-3)^{2}\right]\\ \mu_{4}^{(s)}=A\left[x^{s)}(x-1)\right],&\mu_{8}^{(s)}=5A\left[x^{s-5}(x-1)^{2}(x-3)^{2}(x-5)\right]\\ \mu_{5}^{(s)}=3A\left[x^{s-2}(x-1)^{2}\right],&\mu_{9}^{(s)}=6A\left[x^{s-6}(x-1)^{2}(x-3)^{2}(x-5)^{2}\right]\\ \mu_{6}^{(s)}=3A\left[x^{s-3}(x-1)^{2}(x-3)\right],&\mu_{10}^{(s)}=6A\left[x^{s-7}(x-1)^{2}(x-3)^{2}(x-5)^{2}(x-6)\right]\end{array}

Using these formulas, we can calculate the coefficients.μi(9)\mu_{i}^{(9)}, by doings=9s=9taking into account thatA[f]A[f]has a degree of accuracy of 6 and by calculating the numbers

A[x7]=64,8A[x8]=1555,2A[x9]=19828,8A\left[x^{7}\right]=64,8\quad A\left[x^{8}\right]=1555,2\quad A\left[x^{9}\right]=19828,8

To calculate the coefficientsμi(s)\mu_{i}^{(s)}Fors>9s>9, we apply the recurrence formulas (33) which become here

μ3(s+1)=μ3(s)+μ4(s)+μ5(s)+μ6(s)+μ7(s)+μ8(s)+μ9(s)+μ10(s)\displaystyle\mu_{3}^{(s+1)}=\mu_{3}^{(s)}+\mu_{4}^{(s)}+\mu_{5}^{(s)}+\mu_{6}^{(s)}+\mu_{7}^{(s)}+\mu_{8}^{(s)}+\mu_{9}^{(s)}+\mu_{10}^{(s)}
μ4(s+1)=μ4(s)+μ5(s)+μ6(s)+μ9(s)+μ8(s)+μ9(s)+μ10(s)\displaystyle\mu_{4}^{(s+1)}=\mu_{4}^{(s)}+\mu_{5}^{(s)}+\mu_{6}^{(s)}+\mu_{9}^{(s)}+\mu_{8}^{(s)}+\mu_{9}^{(s)}+\mu_{10}^{(s)}
μ5(s+1)=3(μ5(s)+μ6(s)+μ7(s)+μ8(s)+μ9(s)+μ10(s))\displaystyle\mu_{5}^{(s+1)}=3\left(\mu_{5}^{(s)}+\mu_{6}^{(s)}+\mu_{7}^{(s)}+\mu_{8}^{(s)}+\mu_{9}^{(s)}+\mu_{10}^{(s)}\right)
μ6(s)=3(μ6(s)+μ7(s)+μ8(s)+μ9(s)+μ10(s))\displaystyle\mu_{6}^{(s)}=3\left(\mu_{6}^{(s)}+\mu_{7}^{(s)}+\mu_{8}^{(s)}+\mu_{9}^{(s)}+\mu_{10}^{(s)}\right)
μ7(s+1)=5(μ7(s)+μ8(s)+μ9(s)+μ10(s))\displaystyle\mu_{7}^{(s+1)}=5\left(\mu_{7}^{(s)}+\mu_{8}^{(s)}+\mu_{9}^{(s)}+\mu_{10}^{(s)}\right)
μ8(s+1)=5(μ8(s)+μ9(s)+μ10(s))\displaystyle\mu_{8}^{(s+1)}=5\left(\mu_{8}^{(s)}+\mu_{9}^{(s)}+\mu_{10}^{(s)}\right)
μ9(s+1)=6(μ9(s)+μ10(s)),μ10(s+1)=6μ10(s)\displaystyle\mu_{9}^{(s+1)}=6\left(\mu_{9}^{(s)}+\mu_{10}^{(s)}\right),\quad\mu_{10}^{(s+1)}=6\mu_{10}^{(s)}
s=9,10,\displaystyle\quad s=9,0,\ldots

Simply perform the calculations up to the value of 13.ssand we find the values ​​of the coefficientsμi(i)\mu_{i}^{(i)}included in the table

i\8i\backslash 8 9 10 11 12 13
3 19828.8 174960 1108792.8 3888777.6 -19594484.2
4 18273.6 155131.2 933832.8 2779984.8 -23483260.8
5 50349.6 4111572.8 2336104.8 5538456 -78789736.8
6 37519.2 259524 1104386.4 -1469858.4 -95405104.8
7 44064 244944 543024 -7971696 -151659216
8 18144 24624 -681696 -10686816 -111800736
9 988.8 -79315.2 -965770.2 -8734003.2 -70439987.2
10 -13608 -81648 -489888 -2939328 -17635988

We can see that the rest is of the simple form fors13s\geq 13.

BIBIOLOGY:

[1] Kloostermann, HD Derivatives and finite differences. Duke Math, Journat, 17, 109-186 (1950).
[3] Popovieiu, T., Introduction to the theory of divided differences, Bull. Math, from Soc. Roumaine des sc., 42, 65-78 (1940).
[4] - Asupra formed restului in ande formula of aprotimare ale analizer. Lacr. His. Gen, ştiittifice, Acad. RPR, 183-185, 1950.
[5] - Asupra restudui an whele forwale of deriouse numerica. Studio si Cerc. Mat., III, 53-122 (1952).
[6] - Folylonos figguényes hözépérpékléletéröl. Magic. Tud. Akad., II oszt. közlem., IV, 353-356 (1954).
[7] - Sw the remainder in certain linear approximation formals of the analysis. Mathematica, 1 (24), 95-142 (1959).
Received 1st 28. XI. 1959.

  1. 4.
1959

Related Posts