Abstract
We study the nonlinear equations of the form \[x=\lambda D\left( x\right) +y,\] where \(\lambda \in \mathbb{R}\) and \(y\in E\) are fixed, and \(D:E\rightarrow E,\) with \(D\left( 0\right) =0\) a nonlinear mapping on the Banach space \(E\). We consider the iterative method \[\xi_{n+1}=\lambda D_{\varepsilon}\left( \xi_{n}\right) +y_{\varepsilon},\] where \(D_{\varepsilon}\) is an operator which approximates \(D\) and \(y_{\varepsilon}\) is an approximation for \(y\). We obtain an evaluation for \(\left \Vert \bar{x}-\xi_{n+1}\right \Vert \) in terms of \(\left \Vert D_{\varepsilon}\left( x\right) -D\left( x\right) \right \Vert \) and \(\left \Vert y-y_{\varepsilon}\right \Vert \).
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Sur l’estimation des erreurs en convergence numérique de certaines méthodes d’iteration
English translation of the title
On the error estimation in the numerical convergence of certain iterative methods
Keywords
nonlinear equation in Banach space; iterative method; error estimation
PDF-Latex version of the paper. (in English)
Cite this paper as:
I. Păvăloiu, Sur l’estimation des erreurs en convergence numérique de certaines méthodes d’iteration, Seminar on functional analysis and numerical methods, Preprint no. 1 (1986), pp. 133-136 (in French).
About this paper
Journal
Seminar on functional analysis and numerical methods,
Preprint
Publisher Name
“Babes-Bolyai” University,
Faculty of Mathematics and Physics,
Research Seminars
DOI
Not available yet.
References
[1] Babici, D.M., Ivanov, V.N., Otenca polnoi progresnosti prireshenia nelineinyh operatornyh uravnenii metodov prostei iteratii. Jurnal vycislitelnoi matematiki i matematiceskoi fisiki 7, 5 (1967), 988–1000.
[2] Pavaloiu, I., Introduction in the Theory of Approximating the Solutions of Equations, Ed. Dacia 1976 (in Romanian).
[3] Urabe, M., Error estimation in numerical solution of equations by iteration process, J. Sci. Hiroshima Univ. Ser. A-I, 26 (1962), 77–91