Abstract
Let \(X_{1},X_{2}\) be two complete metric spaces, \(X=X_{1}\times X_{2}\) and the nonlinear mappings \(F_{1}:X\rightarrow X_{1},\ F_{2}:X\rightarrow X_{2}\). In order to solve the nonlinear system \(x_{1}=F_{1}\left( x_{1},x_{2}\right),\ x_{2}=F_{2}\left( x_{1},x_{2}\right)\) we consider the Gauss-Seidel type method \[x_{n}=F_1 \left(x_{n-1},y_{n-1}\right), \\ y_{n}=F_2 \left( x_{n},y_{n-1}\right) .\] We obtain error estimations when the nonlinear mappings \(F_{1}\) and \(F_{2}\) are approximated by other mappings.
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Estimation des erreurs dans le résolution numérique des systèmes d’équations dans des espaces métriques
English translation of the title
Error estimations in the numerical solving of systems of equations in metric spaces
Keywords
system of equations in metric space; Gauss-Seidel type method; error estimations
Cite this paper as:
I. Păvăloiu, Estimation des erreurs dans le résolution numérique des systèmes d’équations dans des espaces métriques, Seminar on functional analysis and numerical methods, Preprint no. 1 (1987), pp. 121-129 (in French).
About this paper
Journal
Seminar on functional analysis and numerical methods,
Preprint
Publisher Name
“Babes-Bolyai” University,
Faculty of Mathematics and Physics,
Research Seminars
DOI
Not available yet.
References
[1] Pavaloiu, I., La resolution des systemes operationnelles a l’aide des methodes iteratives, Mathematica, 11(34), 1969, 137–141.
[2] Urabe, M., Error estimation in numerical solution of equation by iteration processes, J. Sci. Hiroshima Univ., Ser. A-I, 26 (1962), 77–91.