Abstract

Given a nonlinear mapping \(G:D\subseteq \mathbb{R}^n\rightarrow \mathbb{R}^n\) differentiable at a fixed point \(x^\ast\), the Ostrowski theorem offers the sharp sufficient condition \[\rho(G′(x^\ast))<1\] for \(x^\ast\) to be an attraction point, where \(\rho\) denotes the spectral radius. However, no estimate for the size of an attraction ball is known.

We show in this note that such an estimate may be readily obtained in terms of \(\|G^\prime(x^\ast)\|<1\) (with \(\|\cdot \|\) an arbitrary given norm) and of the Hölder (in particular Lipschitz) continuity constant of \(G’\).

An elementary example shows that this estimate may be sharp. Our assumptions do not necessarily require \(G\)  to be of contractive type on the whole estimated ball.

Authors

Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

fixed point; attraction points; attraction ball; local convergence; convergence order.

Cite this paper as:

E. Cătinaş, Estimating the radius of an attraction ball, Appl. Math. Lett., 22 (2009) no. 5, pp. 712-714.

PDF

About this paper

Publisher Name

Elsevier

Print ISSN

0893-9659

Online ISSN

Google Scholar citations

[1] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York (1970).

[2] A. M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed., Academic Press, New York (1966).

[3] W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, 2nd ed., SIAM, Philadelphia (1998).

[4] E. Zeidler, Nonlinear Functional Analysis and Its Applications, I. Fixed Point Theorems, Springer-Verlag, New York (1986).

[5] E. Catinas, On the superlinear convergence of the successive approximations method, J. Optim. Theory Appl. 113 473-485 (2002).

[6] F. A. Potra, On Q-order and R-order of convergence, J. Optim. Theory Appl. 63 415-431 (1989).

[7] F. A. Potra, Q-superlinear convergence of the iterates in primal-dual interior-point methods, Math. Progr. 91 1 ser. A 99-115 (2001).

[8] T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 583-590 (1984).

[9] E. Catinas, Inexact perturbed Newton methods and applications to a class of Krylov solvers, J. Optim. Theory Appl. 108 543-570 (2001).

[10] E. Catinas, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comp. 74 249 291-301 (2005).

[11] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Englewood Cliffs (1983).

[12] W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ. 3 129-142 (1977).

[13] P. Deuflhard and F. A. Potra, Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal. 29 1395-1412 (1992).

[14] I. K. Argyros, On the convergence and application of Newton’s method under weak Holder continuity assumptions, Int. J. Comp. Math. 80 6 767-780 (2003).

Paper (preprint) in HTML form

Catinas Estimating the radius of an attraction ball 2009

Estimating the radius of the attraction balls*

Emil Cătinaş ^(†){ }^{\dagger}

Abstract

Given a nonlinear mapping G G GGG differentiable at a fixed point x x x^(**)x^{*}x, the Ostrowski theorem offers the sharp sufficient condition ρ ( G ( x ) ) < 1 ρ G x < 1 rho(G^(')(x^(**))) < 1\rho\left(G^{\prime}\left(x^{*}\right)\right)<1ρ(G(x))<1 for x x x^(**)x^{*}x to be an attraction point, where ρ ρ rho\rhoρ denotes the spectral radius. However, no estimation for the size of an attraction ball is known.

We show in this note that such an estimate may be readily obtained in terms of G ( x ) < 1 G x < 1 ||G^(')(x^(**))|| < 1\left\|G^{\prime}\left(x^{*}\right)\right\|<1G(x)<1 (with ||*||\|\cdot\| an arbitrary given norm) and of the Hölder (in particular Lipschitz) continuity constant of G G G^(')G^{\prime}G. An elementary example shows that this estimate may be sharp.

Our assumptions do not necessarily require G G GGG to be of contractive-type on the whole estimated ball.

MSC 2000 Subject Classification: Primary 47H10; Secondary 65 H 10 .
Keywords: fixed points, attraction points, attraction balls.

Estimation of the radius

Let G : D R n D G : D R n D G:D subeR^(n)rarr DG: D \subseteq \mathbb{R}^{n} \rightarrow DG:DRnD be a nonlinear mapping which has a fixed point x int D x int D x^(**)in int Dx^{*} \in \operatorname{int} DxintD :
x = G ( x ) . x = G x . x^(**)=G(x^(**)).x^{*}=G\left(x^{*}\right) .x=G(x).
This point is an attraction point [1, Def. 10.1.1] if, given a norm on R n R n R^(n)\mathbb{R}^{n}Rn, there exists an open ball B r := B r ( x ) = { x R n : x x < r } D B r := B r x = x R n : x x < r D B_(r):=B_(r)(x^(**))={x inR^(n):||x-x^(**)|| < r}sube DB_{r}:=B_{r}\left(x^{*}\right)=\left\{x \in \mathbb{R}^{n}:\left\|x-x^{*}\right\|<r\right\} \subseteq DBr:=Br(x)={xRn:xx<r}D, such that for any initial approximation x 0 B r x 0 B r x_(0)inB_(r)x_{0} \in B_{r}x0Br, the successive approximations
(1) x k + 1 = G ( x k ) , k = 0 , 1 , (1) x k + 1 = G x k , k = 0 , 1 , {:(1)x_(k+1)=G(x_(k))","quad k=0","1","dots:}\begin{equation*} x_{k+1}=G\left(x_{k}\right), \quad k=0,1, \ldots \tag{1} \end{equation*}(1)xk+1=G(xk),k=0,1,
remain in D D DDD and converge to x x x^(**)x^{*}x. Note that a finite number of iterates are allowed to lie outside B r B r B_(r)B_{r}Br.
The following result is well known.
Theorem 1 (Ostrowski) (see, e.g., [2, Th.22.1], [1, Th.10.1.3] and [3, Th.3.5]). If G G GGG is differentiable at the fixed point x x x^(**)x^{*}x and the spectral radius satisfies
(2) σ := ρ ( G ( x ) ) = max { | λ | : λ C , λ eigenvalue of G ( x ) } < 1 (2) σ := ρ G x = max | λ | : λ C , λ  eigenvalue of  G x < 1 {:(2)sigma:=rho(G^(')(x^(**)))=max{|lambda|:lambda inC,lambda" eigenvalue of "G^(')(x^(**))} < 1:}\begin{equation*} \sigma:=\rho\left(G^{\prime}\left(x^{*}\right)\right)=\max \left\{|\lambda|: \lambda \in \mathbb{C}, \lambda \text { eigenvalue of } G^{\prime}\left(x^{*}\right)\right\}<1 \tag{2} \end{equation*}(2)σ:=ρ(G(x))=max{|λ|:λC,λ eigenvalue of G(x)}<1
then x x x^(**)x^{*}x is an attraction point.
Remark 1 According to [1, N.R.10.1-2], this result holds also when instead of R n R n R^(n)\mathbb{R}^{n}Rn one considers an arbitrary Banach space X X XXX, with the observation that in defining the spectral radius of a linear continuous operator from X X XXX to X X XXX one takes its resolvent and spectrum (see, e.g., [4, p. 795]).
Condition (2) is sharp:
Example 1 [1, E.10.1.2]. The function G : R R , G ( x ) = x + x 3 G : R R , G ( x ) = x + x 3 G:RrarrR,G(x)=x+x^(3)G: \mathbb{R} \rightarrow \mathbb{R}, G(x)=x+x^{3}G:RR,G(x)=x+x3, is differentiable on R R R\mathbb{R}R, and σ = 1 σ = 1 sigma=1\sigma=1σ=1 at the fixed point x = 0 x = 0 x^(**)=0x^{*}=0x=0, which is not an attraction point.
The spectral radius also offers some global information regarding the convergence rate of all the sequences of the successive approximations converging toward x x x^(**)x^{*}x, while the spectral elements of G ( x ) G x G^(')(x^(**))G^{\prime}\left(x^{*}\right)G(x) characterize the convergence rate of each individual such sequence. Indeed, σ σ sigma\sigmaσ yields in fact the worst convergence rate among all the sequences converging to x x x^(**)x^{*}x (see [1, Th.10.1.4] and [3, Th.3.5]), while the zero eigenvalue and its corresponding eigenvectors characterize the high convergence orders (more precisely, the q q qqq-superlinear convergence and with q q qqq-orders 1 + p , p ( 0 , 1 ] ) 1 + p , p ( 0 , 1 ] ) 1+p,p in(0,1])1+p, p \in(0,1])1+p,p(0,1]) of a single such sequence [5]. 1 1 ^(1){ }^{1}1
Theorem 1 says nothing about the size r r rrr of the attraction ball. It is interesting to note that such an estimate can be deduced by applying some existing results. Indeed, under some additional differentiability assumptions on G G GGG and denoting F ( x ) = x G ( x ) F ( x ) = x G ( x ) F(x)=x-G(x)F(x)=x-G(x)F(x)=xG(x), the successive approximations may be regarded as inexact Newton iterates for solving the nonlinear system F ( x ) = 0 [ 5 ] F ( x ) = 0 [ 5 ] F(x)=0[5]F(x)=0[5]F(x)=0[5] :
(3) F ( x k ) s k = F ( x k ) + r k x k + 1 = x k + s k , k = 0 , 1 , (3) F x k s k = F x k + r k x k + 1 = x k + s k , k = 0 , 1 , {:[(3)F^(')(x_(k))s_(k)=-F(x_(k))+r_(k)],[x_(k+1)=x_(k)+s_(k)","quad k=0","1","dots]:}\begin{align*} & F^{\prime}\left(x_{k}\right) s_{k}=-F\left(x_{k}\right)+r_{k} \tag{3}\\ & x_{k+1}=x_{k}+s_{k}, \quad k=0,1, \ldots \end{align*}(3)F(xk)sk=F(xk)+rkxk+1=xk+sk,k=0,1,
Ypma [8] has obtained an estimation for the radius of attraction of this method, and we can deduce the corresponding one for the successive approximations.
However, instead of conditions in terms of Hölder continuity constant of I G I G I-G^(')I-G^{\prime}IG required by this approach, we obtain below (sharp) estimates in a direct manner, in terms of the Hölder continuity constant of G G G^(')G^{\prime}G. Before doing that, we notice that the successive approximations may also be regarded as quasi-Newton iterates (or, more general, as inexactly solved perturbed Newton iterates [9]) [10], but not as (exact) Newton iterates; in the first case there do not exist estimates for the radius of the convergence, while in the second there exist (see, e.g., [11], [12], [13], [14]).
Theorem 2 Suppose there exist r 1 > 0 , p ( 0 , 1 ] , K p > 0 r 1 > 0 , p ( 0 , 1 ] , K p > 0 r_(1) > 0,p in(0,1],K_(p) > 0r_{1}>0, p \in(0,1], K_{p}>0r1>0,p(0,1],Kp>0 and a norm ||*||\|\cdot\| in R n R n R^(n)\mathbb{R}^{n}Rn such that G G GGG is differentiable on B r 1 B r 1 B_(r_(1))B_{r_{1}}Br1, with G G G^(')G^{\prime}G Hölder continuous at exponent p p ppp :
G ( x ) G ( y ) K p x y p , x , y B r 1 . G ( x ) G ( y ) K p x y p , x , y B r 1 . ||G^(')(x)-G^(')(y)|| <= K_(p)||x-y||^(p),quad AA x,y inB_(r_(1)).\left\|G^{\prime}(x)-G^{\prime}(y)\right\| \leq K_{p}\|x-y\|^{p}, \quad \forall x, y \in B_{r_{1}} .G(x)G(y)Kpxyp,x,yBr1.
Moreover, assume that
(4) G ( x ) q < 1 (4) G x q < 1 {:(4)||G^(')(x^(**))|| <= q < 1:}\begin{equation*} \left\|G^{\prime}\left(x^{*}\right)\right\| \leq q<1 \tag{4} \end{equation*}(4)G(x)q<1
and denote
(5) r 2 = ( ( 1 + p ) ( 1 q ) K p ) 1 p r = min { r 1 , r 2 } (5) r 2 = ( 1 + p ) ( 1 q ) K p 1 p r = min r 1 , r 2 {:[(5)r_(2)=(((1+p)(1-q))/(K_(p)))^((1)/(p))],[r=min{r_(1),r_(2)}]:}\begin{align*} r_{2} & =\left(\frac{(1+p)(1-q)}{K_{p}}\right)^{\frac{1}{p}} \tag{5}\\ r & =\min \left\{r_{1}, r_{2}\right\} \end{align*}(5)r2=((1+p)(1q)Kp)1pr=min{r1,r2}
Then, for any initial approximation x 0 B r x 0 B r x_(0)inB_(r)x_{0} \in B_{r}x0Br, the successive approximations remain in B r B r B_(r)B_{r}Br and converge ( q q qqq-)linearly:
(6) x k + 1 x t x k x , k = 0 , 1 , (6) x k + 1 x t x k x , k = 0 , 1 , {:(6)||x_(k+1)-x^(**)|| <= t||x_(k)-x^(**)||","quad k=0","1","dots:}\begin{equation*} \left\|x_{k+1}-x^{*}\right\| \leq t\left\|x_{k}-x^{*}\right\|, \quad k=0,1, \ldots \tag{6} \end{equation*}(6)xk+1xtxkx,k=0,1,
where t = K p 1 + p x 0 x p + q < 1 t = K p 1 + p x 0 x p + q < 1 t=(K_(p))/(1+p)||x_(0)-x^(**)||^(p)+q < 1t=\frac{K_{p}}{1+p}\left\|x_{0}-x^{*}\right\|^{p}+q<1t=Kp1+px0xp+q<1.
Therefore,
x k x t k x 0 x , k = 1 , 2 , x k x t k x 0 x , k = 1 , 2 , ||x_(k)-x^(**)|| <= t^(k)||x_(0)-x^(**)||,quad k=1,2,dots\left\|x_{k}-x^{*}\right\| \leq t^{k}\left\|x_{0}-x^{*}\right\|, \quad k=1,2, \ldotsxkxtkx0x,k=1,2,
Proof. The continuity hypothesis on G G G^(')G^{\prime}G implies (see, e.g., [1, 3.2.12]):
G ( x ) G ( x ) G ( x ) ( x x ) K p 1 + p x x 1 + p , x B r 1 . G ( x ) G x G x x x K p 1 + p x x 1 + p , x B r 1 . ||G(x)-G(x^(**))-G^(')(x^(**))(x-x^(**))|| <= (K_(p))/(1+p)||x-x^(**)||^(1+p),quad AA x inB_(r_(1)).\left\|G(x)-G\left(x^{*}\right)-G^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)\right\| \leq \frac{K_{p}}{1+p}\left\|x-x^{*}\right\|^{1+p}, \quad \forall x \in B_{r_{1}} .G(x)G(x)G(x)(xx)Kp1+pxx1+p,xBr1.
Next,
x 1 x G ( x 0 ) G ( x ) G ( x ) ( x 0 x ) + G ( x ) ( x 0 x ) ( K p 1 + p x 0 x p + q ) x 0 x := t x 0 x x 1 x G x 0 G x G x x 0 x + G x x 0 x K p 1 + p x 0 x p + q x 0 x := t x 0 x {:[||x_(1)-x^(**)|| <= ||G(x_(0))-G(x^(**))-G^(')(x^(**))(x_(0)-x^(**))||+||G^(')(x^(**))(x_(0)-x^(**))||],[ <= ((K_(p))/(1+p)||x_(0)-x^(**)||^(p)+q)||x_(0)-x^(**)||:=t||x_(0)-x^(**)||]:}\begin{aligned} \left\|x_{1}-x^{*}\right\| & \leq\left\|G\left(x_{0}\right)-G\left(x^{*}\right)-G^{\prime}\left(x^{*}\right)\left(x_{0}-x^{*}\right)\right\|+\left\|G^{\prime}\left(x^{*}\right)\left(x_{0}-x^{*}\right)\right\| \\ & \leq\left(\frac{K_{p}}{1+p}\left\|x_{0}-x^{*}\right\|^{p}+q\right)\left\|x_{0}-x^{*}\right\|:=t\left\|x_{0}-x^{*}\right\| \end{aligned}x1xG(x0)G(x)G(x)(x0x)+G(x)(x0x)(Kp1+px0xp+q)x0x:=tx0x
The key condition is t < 1 t < 1 t < 1t<1t<1, which yields x 0 x < r 2 x 0 x < r 2 ||x_(0)-x^(**)|| < r_(2)\left\|x_{0}-x^{*}\right\|<r_{2}x0x<r2. The rest of the proof follows by induction.
Remark 2 a) The relationship between condition (2) ( σ < 1 σ < 1 sigma < 1\sigma<1σ<1 ) and the existence of a norm such that ( 4 ) ( G ( x ) < 1 ) ) G x < 1 )(||G^(')(x^(**))|| < 1))\left(\left\|G^{\prime}\left(x^{*}\right)\right\|<1\right))(G(x)<1) holds is the following. Condition (4) implies (2), since the spectral radius satisfies
(7) ρ ( G ( x ) ) G ( x ) , for any norm on R n . (7) ρ G x G x ,  for any norm   on  R n . {:(7)rho(G^(')(x^(**))) <= ||G^(')(x^(**))||","quad" for any norm "||*||" on "R^(n).:}\begin{equation*} \rho\left(G^{\prime}\left(x^{*}\right)\right) \leq\left\|G^{\prime}\left(x^{*}\right)\right\|, \quad \text { for any norm }\|\cdot\| \text { on } \mathbb{R}^{n} . \tag{7} \end{equation*}(7)ρ(G(x))G(x), for any norm  on Rn.
Condition (2) does not imply (4) in any norm, but for any ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 there exists a norm ( ε ) ( ε ) ||*||_((epsi))\|\cdot\|_{(\varepsilon)}(ε) on R n R n R^(n)\mathbb{R}^{n}Rn such that (see, e.g., [1, 2.2.8], [2, Th.19.3]):
(8) σ G ( x ) ( ε ) σ + ε (8) σ G x ( ε ) σ + ε {:(8)sigma <= ||G^(')(x^(**))||_((epsi)) <= sigma+epsi:}\begin{equation*} \sigma \leq\left\|G^{\prime}\left(x^{*}\right)\right\|_{(\varepsilon)} \leq \sigma+\varepsilon \tag{8} \end{equation*}(8)σG(x)(ε)σ+ε
In the case of a Banach space instead of R n R n R^(n)\mathbb{R}^{n}Rn, the statements regarding relations (7) and (8) remain true, with the remark that the involved norms must be equivalent to the initial one (see, e.g., [4, p. 795]). Therefore, the relationship between (2) and (4) remains the same.
Corollary 1 Under the hypotheses of Theorem 2, if G G G^(')G^{\prime}G is Lipschitz continuous, i.e., Hölder continuous with p = 1 , L := K 1 p = 1 , L := K 1 p=1,L:=K_(1)p=1, L:=K_{1}p=1,L:=K1, then instead of (5) one may take
(9) r 2 = 2 ( 1 q ) L (9) r 2 = 2 ( 1 q ) L {:(9)r_(2)=(2(1-q))/(L):}\begin{equation*} r_{2}=\frac{2(1-q)}{L} \tag{9} \end{equation*}(9)r2=2(1q)L
and, correspondingly, t = L 2 x 0 x + q t = L 2 x 0 x + q t=(L)/(2)||x_(0)-x^(**)||+qt=\frac{L}{2}\left\|x_{0}-x^{*}\right\|+qt=L2x0x+q.
Corollary 2 The assumptions of Theorem 2 imply the necessary condition
(10) G ( x ) < 1 + p ( 1 q ) , x B r , (10) G ( x ) < 1 + p ( 1 q ) , x B r , {:(10)||G^(')(x)|| < 1+p(1-q)","quad AA x inB_(r)",":}\begin{equation*} \left\|G^{\prime}(x)\right\|<1+p(1-q), \quad \forall x \in B_{r}, \tag{10} \end{equation*}(10)G(x)<1+p(1q),xBr,
regardless of the value of the Hölder or Lipschitz continuity constant.
If G G G^(')G^{\prime}G is Lipschitz continuous, then (10) becomes
(11) G ( x ) < 2 q , x B r . (11) G ( x ) < 2 q , x B r . {:(11)||G^(')(x)|| < 2-q","quad AA x inB_(r).:}\begin{equation*} \left\|G^{\prime}(x)\right\|<2-q, \quad \forall x \in B_{r} . \tag{11} \end{equation*}(11)G(x)<2q,xBr.
Proof. The statement is obtained by taking into account the triangle inequality
G ( x ) G ( x ) G ( x ) + G ( x ) K p r p + q = K p ( ( 1 + p ) ( 1 q ) K p ) p p + q = 1 + p ( 1 q ) G ( x ) G ( x ) G x + G x K p r p + q = K p ( 1 + p ) ( 1 q ) K p p p + q = 1 + p ( 1 q ) {:[||G^(')(x)|| <= ||G^(')(x)-G^(')(x^(**))||+||G^(')(x^(**))|| <= K_(p)r^(p)+q=K_(p)(((1+p)(1-q))/(K_(p)))^((p)/(p))+q],[=1+p(1-q)]:}\begin{aligned} \left\|G^{\prime}(x)\right\| & \leq\left\|G^{\prime}(x)-G^{\prime}\left(x^{*}\right)\right\|+\left\|G^{\prime}\left(x^{*}\right)\right\| \leq K_{p} r^{p}+q=K_{p}\left(\frac{(1+p)(1-q)}{K_{p}}\right)^{\frac{p}{p}}+q \\ & =1+p(1-q) \end{aligned}G(x)G(x)G(x)+G(x)Kprp+q=Kp((1+p)(1q)Kp)pp+q=1+p(1q)
The assumptions we have considered do not necessarily require contractivetype nonlinear mappings on the whole estimated ball, as the following example shows.
Example 2 Let G : R R , G ( x ) = x 2 G : R R , G ( x ) = x 2 G:RrarrR,G(x)=x^(2)G: \mathbb{R} \rightarrow \mathbb{R}, G(x)=x^{2}G:RR,G(x)=x2, having x = 0 x = 0 x^(**)=0x^{*}=0x=0 as attraction point; r 1 > 0 r 1 > 0 r_(1) > 0r_{1}>0r1>0 may be chosen arbitrarily large, the derivative G G G^(')G^{\prime}G is Lipschitz continuous on R R R\mathbb{R}R, with L = 2 L = 2 L=2L=2L=2. Since G ( 0 ) = 0 G ( 0 ) = 0 G^(')(0)=0G^{\prime}(0)=0G(0)=0, one obtains from (9) that r = r 2 = 1 r = r 2 = 1 r=r_(2)=1r=r_{2}=1r=r2=1. Moreover,
G ( x ) = 2 , for x x = r = 1 . G ( x ) = 2 ,  for  x x = r = 1 . ||G^(')(x)||=2,quad" for "||x-x^(**)||=r=1.\left\|G^{\prime}(x)\right\|=2, \quad \text { for }\left\|x-x^{*}\right\|=r=1 .G(x)=2, for xx=r=1.
The above example also shows that estimates (9) and (11) are sharp.
Remark 3 We notice that the predicted radius r 2 r 2 r_(2)r_{2}r2 may vary inverse proportionally with r 1 r 1 r_(1)r_{1}r1, since the Hölder continuity constant may increase with r 1 r 1 r_(1)r_{1}r1. In the previous example, if we take r 1 = 1 2 r 1 = 1 2 r_(1)=(1)/(2)r_{1}=\frac{1}{2}r1=12 we get L = 1 L = 1 L=1L=1L=1 and then r 2 = 2 r 2 = 2 r_(2)=2r_{2}=2r2=2, which is too large. Analogously, we can obtain too small values for r 2 r 2 r_(2)r_{2}r2 if we take for instance G ( x ) = x 3 G ( x ) = x 3 G(x)=x^(3)G(x)=x^{3}G(x)=x3 and large values for r 1 r 1 r_(1)r_{1}r1.

References

[1] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York (1970).
[2] A. M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed., Academic Press, New York (1966).
[3] W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, 2nd ed., SIAM, Philadelphia (1998).
[4] E. Zeidler, Nonlinear Functional Analysis and Its Applications, I. FixedPoint Theorems, Springer-Verlag, New York (1986).
[5] E. Cătinas, On the superlinear convergence of the successive approximations method, J. Optim. Theory Appl. 113 473-485 (2002).
[6] F. A. Potra, On Q Q QQQ-order and R R RRR-order of convergence, J. Optim. Theory Appl. 63 415-431 (1989).
[7] F. A. Potra, Q Q QQQ-superlinear convergence of the iterates in primal-dual interior-point methods, Math. Progr. 911 ser. A 99-115 (2001).
[8] T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 583-590 (1984).
[9] E. Cătinaş, Inexact perturbed Newton methods and applications to a class of Krylov solvers, J. Optim. Theory Appl. 108 543-570 (2001).
[10] E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comp. 74249 291-301 (2005).
[11] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Englewood Cliffs (1983).
[12] W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ. 3 129-142 (1977).
[13] P. Deuflhard and F. A. Potra, Asymptotic mesh independence of NewtonGalerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal. 29 1395-1412 (1992).
[14] I. K. Argyros, On the convergence and application of Newton's method under weak Hölder continuity assumptions, Int. J. Comp. Math. 806 767780 (2003).

  1. *This work has been supported by MEdc under grant 2CEEX-06-11-96/19.09.2006.
    ^(†){ }^{\dagger} Romanian Academy, "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail: ecatinas@ictp.acad.ro, url: http://www.ictp.acad.ro/catinas.
  2. 1 1 ^(1){ }^{1}1 For the rigorous definitions of the convergence rates and for different relating results we refer the reader to [1, ch.9] and [6] (see also [3, ch.3] and [7]).
2009

Related Posts