Existence results for semilinear elliptic boundary value problems via topological methods


In this work, existence and localization results for \(C_1\)-solutions to elliptic Dirichlet boundary value problems are established. The approach is based on the nonlinear Leray-Schauder alternative.


Toufik Moussaoui
Department of Mathematics, E.N.S., P.O. Box 92, 16050 Kouba, Algiers, Algeria

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania


Nonlinear PDE of elliptic type; Boundary value problem; Dirichlet problem; Leray–Schauder principle; Fixed point

Paper coordinates

T. Moussaoui, R. Precup, Existence results for semilinear elliptic boundary value problems via topological methods, Appl. Math. Letters 22 (2009), 126-129,  https://doi.org/10.1016/j.aml.2008.03.002



About this paper


Applied Mathematics Letters

Publisher Name


Print ISSN
Online ISSN


google scholar link

[1] G.A. Afrouzi, S.H. Rasouli, On positive solutions for some nonlinear semipositone elliptic boundary value problems Nonlinear Anal.: Model. Control, 11 (4) (2006), pp. 323-329 View PDF CrossRefGoogle Scholar
[2] C. Azizieh, Ph. Clément A priori estimates and continuation methods for positive solutions of p-equations J. Differential Equations, 179 (2002), pp. 213-245 ArticleDownload PDFView Record in ScopusGoogle Scholar
[3] G. Anello, Existence of solutions for a perturbed Dirichlet problem without growth conditions, J. Math. Anal. Appl. 330 (2) 1169–1178 Google Scholar
[4] A. Castro, J. Cossio, J.M. Neuberger, A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems Electron. J. Differential Equations (2) (1998) 18 pp, Google Scholar
[5] D.G. Costa, H. Tehrani, J.J. Yang, On a variational approach to existence and multiplicity results for semipositone problems Electron. J. Differential Equations (11) (2006) 10 pp Google Scholar
[6] J. Dugundji, A. Granas, Fixed Point Theory, Monographie Math, Warsaw (1982) Google Scholar
[7] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1983), Google Scholar
[8] D. O’Regan, R. Precup, Theorems of Leray–Schauder Type and Applications, Gordon and Breach, Amsterdam (2001), Google Scholar
[9] E. Zeidler, Nonlinear Functional Analysis : Part I, Springer-Verlag, New York (1985), Google Scholar

Related Posts