Abstract
The purpose of the present paper is to study the existence of solutions to initial value problems for nonlinear first order differential systems subject to nonlinear nonlocal initial conditions of functional type.
The approach uses vector-valued metrics and matrices convergent to zero. Two existence results are given by means of Schauder and Leray-Schauder fixed point principles and the existence and uniqueness of the solution is obtained via a fixed point theorem due to Perov. Two examples are given to illustrate the theory.
Authors
Octavia Bolojan
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Gennaro Infante
Università della Calabria, Dipartimento di Matematica ed Informatica, Cosenza, Italy
Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
nonlinear differential system; nonlocal boundary condition; nonlinear boundary condition; fixed point; vector-valued norm; matrix convergent to zero
Paper coordinates
O. Bolojan, G. Infante, R. Precup, Existence results for systems with nonlinear coupled nonlocal initial conditions, Math. Bohem. 140 (2015), no. 4, 371-384, http://dx.doi.org/10.21136/MB.2015.144455
About this paper
Journal
Mathematica Bohemica
Publisher Name
Institute of Mathematics of the Czech Academy of Sciences
Print ISSN
2464-7136
Online ISSN
0862-7959
google scholar link
[1] R. P. Agarwal, M. Meehan, D. O’Regan: Fixed Point Theory and Applications. Cambridge Tracts in Mathematics 141, Cambridge University Press, Cambridge, 2001.
[2] S. Aizicovici, H. Lee: Nonlinear nonlocal Cauchy problems in Banach spaces. Appl. Math. Lett. 18 (2005), 401–407.
[3] E. Alves, T. F. Ma, M. L. Pelicer: Monotone positive solutions for a fourth order equation with nonlinear boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 3834–3841.
[4] G. Avalishvili, M. Avalishvili, D. Gordeziani: On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation. Appl. Math. Lett. 24 (2011), 566–571.
[5] G. Avalishvili, M. Avalishvili, D. Gordeziani: On integral nonlocal boundary value problems for some partial differential equations. Bull. Georgian Natl. Acad. Sci. (N.S.) 5 (2011), 31–37.
[6] M. Benchohra, A. Boucherif: On first order multivalued initial and periodic value problems. Dyn. Syst. Appl. 9 (2000), 559–568.
[8] O. Bolojan-Nica, G. Infante, P. Pietramala: Existence results for impulsive systems with initial nonlocal conditions. Math. Model. Anal. 18 (2013), 599–611.
[9] O. Bolojan-Nica, G. Infante, R. Precup: Existence results for systems with coupled nonlocal initial conditions. Nonlinear Anal. 94 (2014), 231–242.
[10] A. Boucherif: First-order differential inclusions with nonlocal initial conditions. Appl. Math. Lett. 15 (2002), 409–414.
[11] A. Boucherif: Nonlocal Cauchy problems for first-order multivalued differential equations. Electron. J. Differ. Equ. (electronic only) 2002 (2002), Article No. 47, 9 pages.
[12] A. Boucherif: Differential equations with nonlocal boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 47 (2001), 2419–2430, Proceedings of the Third World Congress of Nonlinear Analysts 47, Part 4, Catania, 2000. Elsevier, Oxford.
[13] A. Boucherif, R. Precup: Semilinear evolution equations with nonlocal initial conditions. Dynam. Systems Appl. 16 (2007), 507–516.
[14] A. Boucherif, R. Precup: On the nonlocal initial value problem for first order differential equations. Fixed Point Theory 4 (2003), 205–212.
[15] L. Byszewski: Abstract nonlinear nonlocal problems and their physical interpretation. Biomathematics, Bioinformatics and Applications of Functional Differential Difference Equations (H. Akca et al., eds.). Akdeniz Univ. Publ., Antalya, Turkey, 1999.
[16] L. Byszewski: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494–505.
[17] L. Byszewski, V. Lakshmikantham: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40 (1991), 11–19.
[18] A. Cabada: An overview of the lower and upper solutions method with nonlinear boundary value conditions. Bound. Value Probl. (electronic only) 2011 (2011), Article No. 893753, 18 pages.
[19] A. Cabada, F. M. Minhós: Fully nonlinear fourth-order equations with functional boundary conditions. J. Math. Anal. Appl. 340 (2008), 239–251.
[20] A. Cabada, S. Tersian: Multiplicity of solutions of a two point boundary value problem for a fourth-order equation. Appl. Math. Comput. 219 (2013), 5261–5267.
[21] K. Deimling: Multivalued Differential Equations. W. de Gruyter Series in Nonlinear Analysis and Applications 1, Walter de Gruyter, Berlin, 1992.
[22] D. Franco, D. O’Regan, J. Perán: Fourth-order problems with nonlinear boundary conditions. J. Comput. Appl. Math. 174 (2005), 315–327.
[23] M. Frigon: Applications of the Theory of Topological Transversality to Nonlinear Problems for Ordinary Differential Equations. Diss. Math. (Rozprawy Mat.) 296, 1990. (In French.)
[24] M. Frigon, J. W. Lee: Existence principles for Carathéodory differential equations in Banach spaces. Topol. Methods Nonlinear Anal. 1 (1993), 95–111.
[25] C. S. Goodrich: On nonlinear boundary conditions satisfying certain asymptotic behavior. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 76 (2013), 58–67.
[26] C. S. Goodrich: On nonlocal BVPs with nonlinear boundary conditions with asymptotically sublinear or superlinear growth. Math. Nachr. 285 (2012), 1404–1421.
[27] C. S. Goodrich: Positive solutions to boundary value problems with nonlinear boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 417–432.
[28] H.-K. Han, J.-Y. Park: Boundary controllability of differential equations with nonlocal condition. J. Math. Anal. Appl. 230 (1999), 242–250.
[29] G. Infante: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12 (2008), 279–288.
[30] G. Infante, F. M. Minhós, P. Pietramala: Non-negative solutions of systems of ODEs with coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952–4960.
[31] G. Infante, P. Pietramala: Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions. Math. Methods Appl. Sci. 37 (2014), 2080–2090.
[32] G. Infante, P. Pietramala: A cantilever equation with nonlinear boundary conditions. Electron. J. Qual. Theory Differ. Equ. (electronic only) 2009 (2009), Article No. 15, 14 pages.
[33] G. Infante, P. Pietramala: Eigenvalues and non-negative solutions of a system with nonlocal BCs. Nonlinear Stud. 16 (2009), 187–196.
[34] G. Infante, P. Pietramala: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1301–1310.
[35] D. Jackson: Existence and uniqueness of solutions to semilinear nonlocal parabolic equations. J. Math. Anal. Appl. 172 (1993), 256–265.
[36] T. Jankowski: Ordinary differential equations with nonlinear boundary conditions. Georgian Math. J. 9 (2002), 287–294.
[37] G. L. Karakostas, P. C. Tsamatos: Existence of multiple positive solutions for a nonlocal boundary value problem. Topol. Methods Nonlinear Anal. 19 (2002), 109–121.
[38] O. Nica: Existence results for second order three-point boundary value problems. Differ. Equ. Appl. 4 (2012), 547–570.
[39] O. Nica: Initial-value problems for first-order differential systems with general nonlocal conditions. Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 74, 15 pages.
[40] O. Nica: Nonlocal initial value problems for first order differential systems. Fixed Point Theory 13 (2012), 603–612.
[41] O. Nica, R. Precup: On the nonlocal initial value problem for first order differential systems. Stud. Univ. Babe¸s-Bolyai, Math. 56 (2011), 113–125.
[42] S. K. Ntouyas, P. C. Tsamatos: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), Article No. ay975425, 679–687.
[43] D. O’Regan, R. Precup: Theorems of Leray-Schauder Type and Applications. Series in Mathematical Analysis and Applications 3, Gordon and Breach Science Publishers, London, 2001.
[44] P. Pietramala: A note on a beam equation with nonlinear boundary conditions. Bound. Value Probl. (electronic only) 2011 (2011), Article No. 376782, 14 pages.
[45] R. Precup: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Modelling 49 (2009), 703–708.
[46] R. Precup: Methods in Nonlinear Integral Equations. Kluwer Academic Publishers, Dordrecht, 2002.
[47] R. S. Varga: Matrix Iterative Analysis. Springer Series in Computational Mathematics 27, Springer, Dordrecht, 2009.
[48] J. R. L. Webb: A unified approach to nonlocal boundary value problems. Dynamic Systems and Applications 5. Proc. of the 5th International Conf., Morehouse College, Atlanta, 2007 (G. S. Ladde et al., eds.). Dynamic Publishers, Atlanta, 2008, pp. 510–515.
[49] J. R. L. Webb, G. Infante: Semi-positone nonlocal boundary value problems of arbitrary order. Commun. Pure Appl. Anal. 9 (2010), 563–581.
[50] J. R. L. Webb, G. Infante: Non-local boundary value problems of arbitrary order. J. Lond. Math. Soc., II. Ser. 79 (2009), 238–258.
[51] J. R. L. Webb, G. Infante: Positive solutions of nonlocal boundary value problems involving integral conditions. NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45–67.
[52] J. R. L. Webb, K. Q. Lan: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27 (2006), 91–115.
[53] X. Xue: Existence of semilinear differential equations with nonlocal initial conditions. Acta Math. Sin., Engl. Ser. 23 (2007), 983–988.
[54] X. Xue: Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces. Electron. J. Differ. Equ. (electronic only) 2005 (2005), Article No. 64, 7 pages.
[7] A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.