On a generalization of the Steffensen method

Abstract

We extend the Steffensen method for solving the equation \(f\left( x\right)=0\) to the setting of the Banach spaces, \(f:X\rightarrow X,\ X\) a Banach space. Considering another equation \(x-g\left( x\right) =0\), equivalent to the above one and assuming certain conditions on the first and second order divided differences of \(f\) we obtain a semilocal convergence result for the method \[x_{n+1}=x_{n}-\left[ x_{n},g\left( x_{n}\right) ;f\right]^{-1}f\left( x_{n}\right) ,~x_{0}\in X.\]

Authors

Ion Păvăloiu

Keywords

Steffensen method in Banach spaces; semilocal convergence

References

[1] Balasz M. si Goldner G., Diferente divizate in spatii Banach si unele aplicatii ale lor. St. cerc. mat. 21, 7, (1969), pp. 985–995.

[2] Diaconu A., Interpolation dans les espaces arbitraits. Methodes iteratives pour la resolution des equations operationnelles obtenus par l’interpolations inverse. III. Research Seminar of Functional Analysis and Numerical Methodes, Preprint Nr.1 1985, pp. 21–70.

[3] Lica Dionis, Analiza functionala si rezolvarea aproximativa a ecuatiilor neliniare. Editura Stiintifica, Kisinau, 1975.

[4] Pavaloiu I. Sur la methode de Steffensen pour la resolution des equations operationnelles non lineaires, Revue Roumaine de Mathematiques pures et appliquees. XIII, 1, (1968), pp. 149 158.

[5] Pavaloiu I., Introducere in teoria aproximarii solutiilor ecuatiilor. Ed. Dacia, Cluj-Napoca, 1976.

[6] Ul’m, S., Ob obobscennih razdelennih raznostiah I, Izv. Acad. Nauk. Estonskoi S.S.R. 16, 1, (1967), pp. 13–26.

[7] Ul’m, S. Ob obobscennih razdelennih raznostiah II, Izv. Acad. Nauk. Estonskoi S. S.R. 16, 2, (1967), pp. 146–155

PDF

About this paper

Cite this paper as:

I. Păvăloiu, Sur une généralisation de la méthode de Steffensen, Rev. Anal. Numér. Théor. Approx., 21 (1992) no. 1, pp. 59-67 (in French).

Journal

Revue d’Analyse Numérique et de Théorie de l’Approximation

Print ISSN

1222-9024

Online ISSN

2457-8126

Google Scholar Profile

Related Posts

Menu