Global random walk solvers for reactive transport and biodegradation processes in heterogeneous porous media

Abstract

Flow and multicomponent reactive transport in saturated/unsaturated porous media are modeled by ensembles of computational particles moving on regular lattices according to specific random walk rules. The occupation number of the lattice sites is updated with a global random walk (GRW) procedure which simulates the evolution of the ensemble with computational costs comparable to those for a single random walk simulation in sequential procedures. To cope with the nonlinearity and the degeneracy of the Richards equation the GRW flow solver uses linearization techniques similar to the L-scheme developed in finite element/volume approaches. Numerical schemes for reactive transport, coupled with the flow solver via numerical solutions for saturation and water flux, are implemented in splitting procedures. Diffusion-advection steps are solved by GRW algorithms using either biased or unbiased random walk probabilities. Since the number of particles in GRW simulations can be as large as the number of molecules involved in chemical reactions, one avoids the cumbersome problem of rescaling particle densities to approximate concentrations. Reaction steps are therefore formulated in terms of concentrations, as in deterministic approaches. The numerical convergence of the new schemes is demonstrated by comparisons with manufactured analytical solutions. Coupled flow and reactive transport problems of contaminant biodegradation described by the Monod model are further solved and the influence of flow nonlinearity/degeneracy and of the spatial heterogeneity of the medium is investigated numerically.

Authors

Nicolae Suciu
Mathematics Department, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Florin A. Radu
Department of Mathematics, University of Bergen, Bergen, Norway

Keywords

Richards equation; Coupled flow and transport; Iterative schemes; Global random walk; Reactive flow; Monod model.

PDF

https://arxiv.org/pdf/2107.08745.pdf

Cite this paper as:

N. Suciu, F.A. Radu, Global random walk solvers for reactive transport and biodegradation processes in heterogeneous porous media, Adv. Water Res., 166 (2022), art. id. 104268, https://doi.org/10.1016/j.advwatres.2022.104268

About this paper

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

[1] Alecsa, C.D., Boros, I., Frank, F., Knabner, P., Nechita, M., Prechtel, A., Rupp, A., Suciu, N., 2019. Numerical benchmark study for fow in heterogeneous aquifers. Adv. Water Resour., 138, 103558. https://doi.org/10.1016/j.advwatres.2020.103558
[2] Bause, M., Knabner, P., 2004. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput. Visual. Sci., 7(2), 61–78. https://doi.org/10.1007/s00791-004-0139-y
[3] Benson, D.A., Meerschaert, M.M., 2008. Simulation of chemical reaction via particle tracking: Diffusion-limited versus thermodynamic rate-limited regimes. Water Resour. Res. 44(12):W12201. http://dx.doi.org/10.1029/2008WR007111
[4] Brunner, F., Radu, F.A., Bause, M., Knabner, P., 2012. Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media. Adv. Water Resour. 35, 163–171. http://dx.doi.org/10.1016/j.advwatres.2011.10.001
[5] Cirpka, O.A., Frind, E.O., Helmig, R., 1999. Numerical simulation of biodegradation controlled by transverse mixing. J. Contam. Hydrol., 40(2), 159-182. https://doi.org/10.1016/S0169-7722(99)00044-3
[6] Cui, Z., Welty, C., Maxwell, R.M., 2014. Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach. Comput. Geosci., 70, 1–14. https://doi.org/10.1016/j.cageo.2014.05.005
[7] Ding, D., Benson, D.A., 2015. Simulating biodegradation under mixing-limited conditions using Michaelis-Menten (Monod) kinetic expressions in a particle tracking model. Adv. Water Resour., 76, 109–119. https://doi.org/10.1016/j.advwatres.2014.12.007
[8] Ding, D., Benson, D.A., Fern`andez-Garcia, D., Henri, C.V., Hyndman, D.W., Phanikumar, M.S., Bolster, D. (2017). Elimination of the reaction rate “scale effect”: Application of the Lagrangian reactive particle-tracking method to simulate mixing-limited, field-scale biodegradation at the Schoolcraft (MI, USA) Site. Water Resour. Res., 53(12), 10411–10432. https://doi.org/10.1002/2017WR021103
[9] Eberhard, J.P., Suciu, N., Vamo¸s, C., 2007. On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. Math. Theor., 40(4), 597–610. https://doi.org/10.1088/1751-8113/40/4/002, https://doi.org/10.1016/S0169-7722(99)00044-3
[10] Edery Y., Scher, H., Berkowitz, B., 2010. Particle tracking model of bimolecular reactive transport in porous media. Water Resour. Res. 46(7):W07524. http://dx.doi.org/10.1029/2009WR009017
[11] Fernandez-Garcia, D., Sanchez-Vila, X., 2011. Optimal reconstruction of concentrations, gradients and reaction rates from particle distributions. J. Contam. Hydrol., 120, 99–114. https://doi.org/10.1016/j.jconhyd.2010.05.001
[12] Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P. J., Vachaud, G., 1977. A comparison of numerical simulation models for one-dimensional infiltration 1. Soil. Sci. Soc. Am. J., 41(2), 285– 294. https://doi.org/10.2136/sssaj1977.03615995004100020024x
[13] Henri, C.V., Fernandez-Garcia, D., 2015. A random walk solution for modeling solute transport with network reactions and multi-rate mass transfer in heterogeneous systems: Impact of biofilms. Adv. Water Resour., 86, 119–132. https://doi.org/10.1016/j.advwatres.2015.09.028
[14] Illiano, D., Pop, I.S., Radu, F.A., 2020. Iterative schemes for surfactant transport in porous media. Comput. Geosci. https://doi.org/10.1007/s10596-020-09949-2
[15] Izsak, F., Lagzi, I., 2010. Models of Liesegang pattern formation. In: Precipitation Patterns in Reaction-Diffusion Systems. Kerala, India: Research Signpost, p. 207–217. http://bolyai.cs.elte.hu/ izsakf/english/proof marc26.pdf
[16] Karapiperis, T., Blankleider, B., 1994. Cellular automaton model of reaction-transport processes. Physica D 78, 30–64. http://dx.doi.org/10.1016/0167- 2789(94)00093-X
[17] Karapiperis, T., 1995. Cellular automaton model of precipitation/dissolution coupled with solute transport. J. Stat. Phys. 81(1-2), 165–180. http://dx.doi.org/10.1007/BF02179974
[18] Klofkorn, R., Kroner, D., Ohlberger, M., 2002. Local adaptive methods for convection dominated problems. Int. J. Numer. Meth. Fluid., 40(1-2), 79–91. https://doi.org/10.1002/fld.268
[19] Knabner P., Bitterlich S., Iza Teran R., Prechtel A., Schneid E., 2003. Influence of Surfactants on Spreading of Contaminants and Soil Remediation. In: J¨ager W., Krebs H.J. (eds) Mathematics – Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8 12
[20] Krautle, S., Knabner, P., 2005. A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water resources research. 41(9), W09414. http://dx.doi.org/10.1029/2004WR003624
[21] Krautle S, Knabner P., 2007. A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 41(9), W09414. https://doi.org/10.1029/2005WR004465.
[22] Lie, K.-A., 2019. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press. https://doi.org/10.1017/9781108591416
[23] List, F. and Radu, F.A., 2016. A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20 (2), 341–353. https://doi.org/10.1007/s10596-016-9566-3
[24] Nagy, N., Izsak, F., 2011. Stability of reaction fronts in random walk simulations. Applied Mathematics Research eXpress 2011:abr016. http://dx.doi.org/10.1093/amrx/abr016.
[25] Natarajan, H., Popov, P.P., Jacobs, G.B., 2021. A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method. Comput. Meth. Appl. Mech. Eng., 384, 114001. https://doi.org/10.1016/j.cma.2021.114001
[26] Pop, I.S., Radu, F.A., Knabner, P., 2004. Mixed finite elements for the Richards’ equation: linearization procedure. Journal of computational and applied mathematics 168 (1-2), 365–373. https://doi.org/10.1016/j.cam.2003.04.008
[27] Radu, F.A., 2004. Mixed finite element discretization of Richards’ equation: error analysis and application to realistic infiltration problems. PhD Thesis, University of Erlangen-Nurnberg (2004)
[28] Radu, F.A., Bause, M., Prechtel, A., Attinger, S., 2008. A mixed hybrid finite element discretization scheme for reactive transport in porous media. In Numerical mathematics and advanced applications (pp. 513-520). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69777-0 61
[29] Radu, F.A., Pop, I.S., Attinger, S., 2010. Analysis of an Euler implicit-mixed finite element scheme for reactive solute transport in porous media. Numer. Meth. Part. Differ. Equat. 26(2), 320–344. https://doi.org/10.1002/num.20436
[30] Radu, F.A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O, Park, C.H., Attinger, S., 2011. Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34 (1), 47–61. https://doi.org/10.1016/j.advwatres.2010.09.012
[31] Sanchez-Vila, X., Fernandez-Garcia, D., 2016. Debates-Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners?. Water Resour. Res., 52(12), 9246–9258. https://doi.org/10.1002/2016WR019302
[32] Schwarze, H., Jaekel, U., Vereecken, H., 2001. Estimation of macrodispersion by different approximation methods for flow and transport in randomly heterogeneous media. Transport Porous Media, 43(2), 265-287. https://doi.org/10.1023/A:1010771123844
[33] Sole-Mari, G., Fernandez-Garcia, D., 2018, Lagrangian modeling of reactive transport in heterogeneous porous media with an automatic locally adaptive particle support volume, Water Resour. Res. 54(10), 8309–8331, http://dx.doi.org/10.1029/2018WR023033
[34] Sole-Mari, G., Bolster, D., Fernandez-Garcia, D., Sanchez-Vila, X., 2019. Particle density estimation with grid-projected and boundary-corrected adaptive kernels. Adv. Water Resour. 131, 103382. https://doi.org/10.1016/j.advwatres.2019.103382
[35] Sole-Mari, G., Schmidt, M.J., Bolster, Fern`andez-Garcia, D., 2021. Random-walk modeling of reactive transport in porous media with a reduced-order chemical basis of conservative components. Water Resour. Res., 57, e2020WR028679. https://doi.org/10.1029/2020WR028679
[36] Suciu, N., 2019. Diffusion in Random Fields. Applications to Transport in Groundwater. Birkhauser, Cham. https://doi.org/10.1007/978-3-030-15081-5
[37] Suciu, N., 2020. Global Random Walk Solutions for Flow and Transport in Porous Media, in F.J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139. Springer Nature, Switzerland. https://doi.org/10.1007/978-3-030-55874-1 93
[38] Suciu, N., Illiano, D., Prechtel, A., Radu, F.A., 2020. Global random walk solvers for fully coupled flow and transport in saturated/unsaturated porous media (extended version). arXiv: 2011.12889
[39] Suciu, N., Illiano, D., Prechtel, A., Radu, F.A., 2021. Global random walk solvers for fully coupled flow and transport in saturated/unsaturated porous media. Adv. Water Resour., 152, 103935. https://doi.org/10.1016/j.advwatres.2021.103935
[40] Suciu, N., Radu, F.A., 2021. https://github.com/PMFlow/MonodReactions. Git repository. https://doi.org/10.5281/zenodo.5104076
[41] Vamos, C., Suciu, N., Vereecken, H., 2003. Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys., 186, 527–544. https://doi.org/10.1016/S0021-9991(03)00073-1.
[42] Wiedemeier, T.H., Rifai, H.S., Newell, C.J., Wilson, J.T., 1999. Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons.

2022

Related Posts