On the Heron’s method for approximating the cubic root of a real number

Abstract

(soon)

Authors

Dan Luca
Tiberiu Popoviciu Institute of Numerical Analysis

Ion Păvăloiu
Tiberiu Popoviciu Institute of Numerical Analysis

Keywords

PDF

Scanned paper: on the journal website.

PDF-LaTeX version of the paper.

Cite this paper as:

D. Luca, I. Păvăloiu, On the Heron’s method for approximating the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 103-108.

About this paper

Print ISSN

1222-9024

Online ISSN

2457-8126

References

[1] G. Deslauries and S. ubuc, Le calcul de la racine cubique selon Heron, Elemente der 51, I (1996), pp. 28-34.

[2] M. Ostrowski, A Solution of Equations and Systems of Equation, Academic Press, New York-London, 1960.

[3] I. Păvăloiu I., On the monotonicity of the sequences of approximations obtained by Steffensen,s method, Mathematica (Cluj) 35 (58),1 (1993), pp. 71-76.

[4] T. Popoviciu, Sur la delimiation de l’erreur dans l’approximation des racines d’une equation par interpolation lineaire ou quadratique, Rev. Roumaine Math. Pures Appl. XIII, 1 (1968), pp. 75-78.

1997

Related Posts