## Abstract

Using a different method, the balance equations of mass, momentum, and kinetic energy are derived for an arbitrary one-dimensional system of inelastic particles from its kinematic description. The failure of the hydrodynamic equations for such dissipative systems must be attributed to the inconsistency of constitutive relations with the microscopic structure of the system. Among the constitutive relations, the Fourier law of heat conduction is the most inappropriate.

## Authors

C. **Vamos
**Tiberiu Popoviciu, Institutue of Numerical analysis, Romanian Academy

N. **Suciu
**Tiberiu Popoviciu, Institutue of Numerical analysis, Romanian Academy

A. **Georgescu**

## Keywords

?

## Cite this paper as

C. Vamoş, N. Suciu, A. Georgescu (1997), *Hydrodynamic equations for one-dimensional systems of inelastic particles*, Phys. Rev. E, 55(5), 6277-6280, doi: 10.1103/PhysRevE.55.6277

## References

see the expanding block below

soon

## About this paper

##### Print ISSN

2470-0045

##### Online ISSN

2470-0053

##### Google Scholar Profile

soon

[1] Y. Du, H. Li and L.P. Kadanoff, Breakdown of Hydrodynamics in a One-Dimensional System of Inelastic Particles, Phys. Rev. Lett. 74, 1268 (1995).

CrossRef (DOI)

[2] I. Goldhirsch and G. Zanetti, Clustering instability in dissipative gases, Phys. Rev. Lett. 70, 1619 (1993).

CrossRef (DOI)

[3] S. McNamara and W.R. Young, Kinetics of a one‐dimensional granular medium in the quasielastic limit, Phys. Fluids A 5, 34 (1993).

CrossRef (DOI)

[4] S. McNamara and W.R. Young, Inelastic collapse in two dimensions, Phys. Rev. E 50, R28 (1994).

CrossRef (DOI)

[5] L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959).

[6] C. Truesdell and R.A. Toupin, The Classical Field Theories in Handbuch der Physik, Vol III, Part 1, edited by S. Flugge (Springer, Berlin, 1960).

[7] D.J. Evans and G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

[8] I. Muller, Thermodynamics (Pitman, Boston, 1985).

[9] P.K. Haff, Grain flow as a **fluid**-mechanical phenomenon, J. Fluid Mech. 134, 401, (1983).

CrossRef (DOI)

[10] J.T. Jenkins and S.B. Savage, A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech. 130, 187 (1983).

CrossRef (DOI)

[11] C. Vamos, A. Georgescu, and N. Suciu, St. Cerc. Mat. 48, 115 (1996); C. Vamos, A. Georgescu, N. Suciu, and I. Turcu, *Balance equations for physical systems with corpuscular structure*, Physica A 227, 81 (1996).

CrossRef (DOI)