History-dependent contact models for viscoplastic materials

Abstract

We consider two mathematical models which describe the frictionless process of contact between a rate-type viscoplastic body and a foundation. The contact is modelled with normal compliance and memory term such that penetration is not restricted in the first problem, but is restricted with unilateral constraint in the second one.

For each problem, we derive a variational formulation in terms of displacements, which is in a form of a history-dependent variational equation and a history-dependent variational inequality. Then we prove the unique weak solvability of each model. Next, we prove the convergence of the weak solution of the first problem and the weak solution of the second problem, as the stiffness coefficient of the foundation converges to infinity.

Finally, we provide numerical simulations which illustrate this convergence result.

Authors

Mikael Barboteu
Laboratoire de Mathématiques et Physique, Université de Perpignan

Flavius Patrulescu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Ahmad Ramadan
Laboratoire de Mathématiques et Physique, Université de Perpignan

Mircea Sofonea
Laboratoire de Mathématiques et Physique, Université de Perpignan

Keywords

Cite this paper as:

M. Barboteu, F. Pătrulescu, A. Ramadan, M. Sofonea, History-dependent contact models for viscoplastic materials, IMA J. Appl. Math., 79 (2014) no. 6, pp. 1180-1200.

PDF

Not available yet.

About this paper

Publisher Name

Oxford University Press, Oxford

Print ISSN

0272-4960

Online ISSN

1464-3634

MR

3286321

ZBL

1307.74055

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.

Menu