[1] R. P. Agarwal, D. O’Regan, M. A. Taoudi, Browder–Krasnoselskii type fixed point theorem in Banach space, Fixed Point Theory Appl. 2010, 243716, 20 pp. MR2684114; url
[2] O. Bolojan-Nica, G. Infante, R. Precup, Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 94(2014), 231–242. MR3120688
[3] O. Bolojan-Nica, G. Infante, R. Precup, Existence results for systems with coupled nonlocal nonlinear initial conditions, Math. Bohem., accepted.
[4] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory 4(2003), 205–212. MR2031390
[5] T. A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Lett. 11(1998), 85–88. MR1490385
[6] T. A. Burton, I. K. Purnaras, A unification theory of Krasnoselskii for differential equations, Nonlinear Anal. 89(2013), 121–133. MR3073318
[7] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179(1993), 630–637. MR1249842
[8] A. M. A. El-Sayed, E. M. Hamdallah, Kh. W. Elkadeky, Internal nonlocal and integral condition problems of the differential equation x 0 = f(t, x, x0), J. Nonlinear Sci. Appl. 4(2003), No. 3, 193–199.
[9] S. Fucik, Fixed point theorems for sum of nonlinear mappings, Comment. Math. Univ. Carolin. 9(1968), 133–143. MR0233245
[10] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. MR1987179
[11] G. Infante, Positive solutions of nonlocal boundary value problems with singularities, Discrete Contin. Dyn. Syst. 2009, Dynamical Systems, Differential Equations and Applications. 7th AIMS Conference, suppl., 377–384. MR2641414
[12] G. L. Karakostas, An extension of Krasnoselskii’s fixed point theorem for contractions and compact mappings, Topol. Methods Nonlinear Anal. 22(2003), 181–191. MR2037274
[13] G. L. Karakostas, P. Ch. Tsamatos, Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 19(2002), 109–121. MR1921888
[14] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10(1955), 123–127. MR0068119
[15] M. A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, New York, 1964. MR0159197
[16] H. Liu, D. Jiang, Two-point boundary value problem for first order implicit differential equations, Hiroshima Math. J. 30(2000), 21–27. MR1753382
[17] O. Nica, Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations 2012, No. 74, 1–15. MR2928611
[18] O. Nica, Nonlocal initial value problems for first order differential systems, Fixed Point Theory 13(2012), 603–612. MR3024343
[19] O. Nica, R. Precup, On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babes–Bolyai Math. 56(2011), No. 3, 125–137. MR2869720
[20] D. O’Regan, Fixed point theory for the sum of two operators, Appl. Math. Lett. 9(1996), No. 1, 1–8. MR1389589
[21] S. Park, Generalizations of the Krasnoselskii fixed point theorem, Nonlinear Anal. 67(2007), 3401–3410. MR2350896
[22] I.-R. Petre, A. Petrusel, Krasnoselskii’s theorem in generalized Banach spaces and applications, Electron. J. Qual. Theory Differ. Equ. 2012, No. 85, 1–20. MR2991441
[23] R. Precup, Methods in nonlinear integral equations, Kluwer, Dordrecht–Boston–London, 2002. MR2041579
[24] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comp. Modelling 49(2009), 703–708. MR2483674
[25] R. Precup, D. Trif, Multiple positive solutions of non-local initial value problems for first order differential systems, Nonlinear Anal. 75(2012), 5961–5970. MR2948310
[26] R. Precup, A. Viorel, Existence results for systems of nonlinear evolution equations, Int. J. Pure Appl. Math. 47(2008), 199–206. MR2457824 4(2003), No. 3, 193–199.
[27] S. P. Singh, Fixed point theorems for a sum of non linear operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54(1973), 558–561. MR0358467
[28] A. Štikonas, A survey on stationary problems, Green’s functions and spectrum of Sturm–Liouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. Control 19(2014), 301–334. MR3228776
[29] R. S. Varga, Matrix iterative analysis, Second edition, Springer, Berlin, 2000. MR1753713
[30] A. Viorel, Contributions to the study of nonlinear evolution equations, Ph.D thesis, Babes– Bolyai University of Cluj-Napoca, 2011.
[31] J. R. L. Webb, G. Infante, Positive solutions of nonlocal initial boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl. 15(2008), 45–67. MR2408344
[32] J. R. L. Webb, G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Commun. Pure Appl. Anal. 9(2010), 563–581. MR2600449