Integro-differential equation with two times modifications

Abstract

We consider an integro-differential equation with two times modifications. Existence, uniqueness and monotony results of solution for the Cauchy problem are obtained using weakly Picard operator theory.

In the last section we present a step method for this type of equation.

Authors

Veronica-Ana Ilea
Babes-Bolyai University Department of Applied Mathematics Cluj-Napoca, Romania

Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

?

Paper coordinates

V.A. Ilea, D. Otrocol, Integro-differential equation with two times modifications, Carpathian J. Math., 27 (2011) no. 2, pp. 209-216.

PDF

About this paper

Journal

Carpathian Journal Mathematics

Publisher Name

North University Centre at Baia Mare (Technical University of Cluj-Napoca), Romania

DOI
Print ISSN

1584-2851 

Online ISSN

1843-4401

google scholar link

??

Paper (preprint) in HTML form

2011-IleaOtrocol-CJM-Integro diff eq

INTEGRO-DIFFERENTIAL EQUATION WITH TWO TIME MODIFICATIONS

VERONICA-ANA ILEA, DIANA OTROCOL

Abstract

We consider an integro-differential equation with two time modifications. Existence, uniqueness and monotony results of solution for the Cauchy problem are obtained using weakly Picard operator theory. In the last section we present a step method for this type of equation.

1. Introduction

This paper is concerned with the following integro-differential equation
(1.1) x ( t ) = g ( t , x ( t ) , x ( t τ ) ) + t h t K ( s , x ( s ) ) d s , t I (1.1) x ( t ) = g ( t , x ( t ) , x ( t τ ) ) + t h t K ( s , x ( s ) ) d s , t I {:(1.1)x^(')(t)=g(t","x(t)","x(t-tau))+int_(t-h)^(t)K(s","x(s))ds","t in I:}\begin{equation*} x^{\prime}(t)=g(t, x(t), x(t-\tau))+\int_{t-h}^{t} K(s, x(s)) d s, t \in I \tag{1.1} \end{equation*}(1.1)x(t)=g(t,x(t),x(tτ))+thtK(s,x(s))ds,tI
The aim of this paper is to obtain existence and uniqueness theorems using contraction principle, step method and monotony results for the Cauchy problem, see [7] and [11]. Such kind of results have been proved for an integro delay equation in [17]. The approach proposed in the present paper is different to the ones in [4], [17] and [18] and it is based on the different time modifications.
In our paper we consider I = [ 0 , ) I = [ 0 , ) I=[0,oo)I=[0, \infty)I=[0,).
Regarding the two delays we have the following cases: h > 0 , τ > 0 , τ > h h > 0 , τ > 0 , τ > h h > 0,tau > 0,tau > hh>0, \tau>0, \tau>hh>0,τ>0,τ>h, discussed in [8], and here we take the case: τ < 0 , h > 0 , h = | τ | τ < 0 , h > 0 , h = | τ | tau < 0,h > 0,h=|tau|\tau<0, h>0, h=|\tau|τ<0,h>0,h=|τ|.
The equation becomes
(1.2) x ( t ) = g ( t , x ( t ) , x ( t + h ) ) + t h t K ( s , x ( s ) ) d s , t [ 0 , [ (1.2) x ( t ) = g ( t , x ( t ) , x ( t + h ) ) + t h t K ( s , x ( s ) ) d s , t [ 0 , [ {:(1.2)x^(')(t)=g(t","x(t)","x(t+h))+int_(t-h)^(t)K(s","x(s))ds","t in[0","oo[:}\begin{equation*} x^{\prime}(t)=g(t, x(t), x(t+h))+\int_{t-h}^{t} K(s, x(s)) d s, t \in[0, \infty[ \tag{1.2} \end{equation*}(1.2)x(t)=g(t,x(t),x(t+h))+thtK(s,x(s))ds,t[0,[
with the condition
(1.3) x ( t ) = φ ( t ) , t [ h , h ] . (1.3) x ( t ) = φ ( t ) , t [ h , h ] . {:(1.3)x(t)=varphi(t)","t in[-h","h].:}\begin{equation*} x(t)=\varphi(t), t \in[-h, h] . \tag{1.3} \end{equation*}(1.3)x(t)=φ(t),t[h,h].
Relative to (1.2)-(1.3) we consider the following conditions:
( C 1 ) ( B , | | ) C 1 ( B , | | ) (C_(1))(B,|*|)\left(C_{1}\right)(\mathbb{B},|\cdot|)(C1)(B,||) is a Banach space, g C ( [ 0 , [ × B 2 , B ) , K C ( [ 0 , [ × B , B ) g C 0 , × B 2 , B , K C ( [ 0 , [ × B , B ) g in C([0,oo[xxB^(2),B),K in C([0,oo[xxB,B):}g \in C\left(\left[0, \infty\left[\times \mathbb{B}^{2}, \mathbb{B}\right), K \in C([0, \infty[\times \mathbb{B}, \mathbb{B})\right.\right.gC([0,[×B2,B),KC([0,[×B,B), φ C ( [ h , h ] , B ) ; φ C ( [ h , h ] , B ) ; varphi in C([-h,h],B);\varphi \in C([-h, h], \mathbb{B}) ;φC([h,h],B);
( C 1 ) ( B , | | ) C 1 ( B , | | ) (C_(1)^('))(B,|*|)\left(C_{1}^{\prime}\right)(\mathbb{B},|\cdot|)(C1)(B,||) is a Banach space, g C ( [ 0 , [ × B 2 , B ) , K C ( [ 0 , [ × B , B ) g C 0 , × B 2 , B , K C ( [ 0 , [ × B , B ) g inC^(oo)([0,oo[xxB^(2),B),K inC^(oo)([0,oo[xxB,B):}g \in C^{\infty}\left(\left[0, \infty\left[\times \mathbb{B}^{2}, \mathbb{B}\right), K \in C^{\infty}([0, \infty[\times \mathbb{B}, \mathbb{B})\right.\right.gC([0,[×B2,B),KC([0,[×B,B), φ C ( [ h , h ] , B ) ; φ C ( [ h , h ] , B ) ; varphi inC^(oo)([-h,h],B);\varphi \in C^{\infty}([-h, h], \mathbb{B}) ;φC([h,h],B);
( C 2 ) C 2 (C_(2))\left(C_{2}\right)(C2) there exists L 1 , L 2 > 0 L 1 , L 2 > 0 L_(1),L_(2) > 0L_{1}, L_{2}>0L1,L2>0 such that
| g ( t , u 1 , v 1 ) g ( t , u 2 , v 2 ) | L 1 | u 1 u 2 | + L 2 | v 1 v 2 | , u i , v i B , t [ 0 , [ ; g t , u 1 , v 1 g t , u 2 , v 2 L 1 u 1 u 2 + L 2 v 1 v 2 , u i , v i B , t [ 0 , [ ; |g(t,u_(1),v_(1))-g(t,u_(2),v_(2))| <= L_(1)|u_(1)-u_(2)|+L_(2)|v_(1)-v_(2)|,u_(i),v_(i)inB,t in[0,oo[;\left|g\left(t, u_{1}, v_{1}\right)-g\left(t, u_{2}, v_{2}\right)\right| \leq L_{1}\left|u_{1}-u_{2}\right|+L_{2}\left|v_{1}-v_{2}\right|, u_{i}, v_{i} \in \mathbb{B}, t \in[0, \infty[;|g(t,u1,v1)g(t,u2,v2)|L1|u1u2|+L2|v1v2|,ui,viB,t[0,[;
( C 3 ) C 3 (C_(3))\left(C_{3}\right)(C3) there exists L 3 > 0 L 3 > 0 L_(3) > 0L_{3}>0L3>0 such that
| K ( s , u ) K ( s , v ) | L 3 | u v | , u , v B , t [ 0 , [ ; | K ( s , u ) K ( s , v ) | L 3 | u v | , u , v B , t [ 0 , [ ; |K(s,u)-K(s,v)| <= L_(3)|u-v|,u,v inB,t in[0,oo[;|K(s, u)-K(s, v)| \leq L_{3}|u-v|, u, v \in \mathbb{B}, t \in[0, \infty[;|K(s,u)K(s,v)|L3|uv|,u,vB,t[0,[;
( C 4 ) ( L 1 + L 2 + 2 L 3 h ) h < 1 ; C 4 L 1 + L 2 + 2 L 3 h h < 1 ; (C_(4))(L_(1)+L_(2)+2L_(3)h)h < 1;\left(C_{4}\right)\left(L_{1}+L_{2}+2 L_{3} h\right) h<1 ;(C4)(L1+L2+2L3h)h<1;
( C 5 ) φ ( 0 ) = g ( h , φ ( 0 ) , φ ( h ) ) + h 0 K ( s , φ ( s ) ) d s C 5 φ ( 0 ) = g ( h , φ ( 0 ) , φ ( h ) ) + h 0 K ( s , φ ( s ) ) d s (C_(5))varphi^(')(0)=g(h,varphi(0),varphi(h))+int_(-h)^(0)K(s,varphi(s))ds\left(C_{5}\right) \varphi^{\prime}(0)=g(h, \varphi(0), \varphi(h))+\int_{-h}^{0} K(s, \varphi(s)) d s(C5)φ(0)=g(h,φ(0),φ(h))+h0K(s,φ(s))ds.
In what follow we shall present some notions that will help us obtaining the results bellow.
Let X X XXX be a nonempty set,
s ( X ) := { ( x n ) n N x n X , n N } s ( X ) := x n n N x n X , n N s(X):={(x_(n))_(n inN^(**))∣x_(n)in X,n inN^(**)}s(X):=\left\{\left(x_{n}\right)_{n \in \mathbb{N}^{*}} \mid x_{n} \in X, n \in \mathbb{N}^{*}\right\}s(X):={(xn)nNxnX,nN}
and
M ( X ) := { ( x i j ) 1 x i j X , i , j N } M ( X ) := x i j 1 x i j X , i , j N M(X):={(x_(ij))_(1)^(oo)∣x_(ij)in X,i,j inN^(**)}M(X):=\left\{\left(x_{i j}\right)_{1}^{\infty} \mid x_{i j} \in X, i, j \in \mathbb{N}^{*}\right\}M(X):={(xij)1xijX,i,jN}
where
( x i j ) 1 := ( x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 ) x i j 1 := x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 (x_(ij))_(1)^(oo):=([x_(11),x_(12),x_(13),cdots],[x_(21),x_(22),x_(23),cdots],[x_(31),x_(32),x_(33),cdots],[cdots,cdots,cdots,cdots])\left(x_{i j}\right)_{1}^{\infty}:=\left(\begin{array}{cccc} x_{11} & x_{12} & x_{13} & \cdots \\ x_{21} & x_{22} & x_{23} & \cdots \\ x_{31} & x_{32} & x_{33} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{array}\right)(xij)1:=(x11x12x13x21x22x23x31x32x33)
is a infinite matrix.
For A M ( B ) A M ( B ) A in M(B)A \in M(\mathbb{B})AM(B) we denote
| A | := sup 1 i j N | a i j | . | A | := sup 1 i j N a i j . |A|:=s u p_(1 <= i <= oo)sum_(j inN^(**))|a_(ij)|.|A|:=\sup _{1 \leq i \leq \infty} \sum_{j \in \mathbb{N}^{*}}\left|a_{i j}\right| .|A|:=sup1ijN|aij|.
Let d : X × X s ( B ) d : X × X s ( B ) d:X xx X rarr s(B)d: X \times X \rightarrow s(\mathbb{B})d:X×Xs(B) be the generalized metric.
Remark 1.1. [13] A functional d : X × X s ( B ) , ( x , y ) ( d k ( x , y ) ) k N d : X × X s ( B ) , ( x , y ) d k ( x , y ) k N d:X xx X rarr s(B),(x,y)|->(d_(k)(x,y))_(k inN^(**))d: X \times X \rightarrow s(\mathbb{B}),(x, y) \mapsto\left(d_{k}(x, y)\right)_{k \in \mathbb{N}^{*}}d:X×Xs(B),(x,y)(dk(x,y))kN is a generalized metric of X X XXX iff
(a) d k d k d_(k)d_{k}dk is a pseudometric, k N k N AA k inN^(**)\forall k \in \mathbb{N}^{*}kN;
(b) x , y X , x y x , y X , x y AA x,y in X,x!=y\forall x, y \in X, x \neq yx,yX,xy, there exist k N k N k inN^(**)k \in \mathbb{N}^{*}kN such as d k ( x , y ) 0 d k ( x , y ) 0 d_(k)(x,y)!=0d_{k}(x, y) \neq 0dk(x,y)0.
Definition 1.2. [13] Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a complete generalized metric space, A : X X A : X X A:X rarr XA: X \rightarrow XA:XX and S M ( B ) S M ( B ) S in M(B)S \in M(\mathbb{B})SM(B). The operator A A AAA is a S S SSS-contraction iff:
(i) S S SSS is row and column finite (meaning that there are only a finite number of nonzero elements in each row and each column);
(ii) S S SSS is a Neumann matrix (meaning that if S n S n S^(n)S^{n}Sn is definite for all n N n N n inNn \in \mathbb{N}nN and
(..) n N S n n N S n sum_(n inN)S^(n)\sum_{n \in \mathbb{N}} S^{n}nNSn converges for all x , y X x , y X x,y in Xx, y \in Xx,yX );
(iii) n N S n d ( x , y ) n N S n d ( x , y ) sum_(n inN)S^(n)d(x,y)\sum_{n \in \mathbb{N}} S^{n} d(x, y)nNSnd(x,y) converges x , y X x , y X AA x,y in X\forall x, y \in Xx,yX;
(iv) d ( A ( x ) , A ( y ) ) S d ( x , y ) x , y X d ( A ( x ) , A ( y ) ) S d ( x , y ) x , y X d(A(x),A(y)) <= Sd(x,y)AA x,y in Xd(A(x), A(y)) \leq S d(x, y) \forall x, y \in Xd(A(x),A(y))Sd(x,y)x,yX.
We consider the space X = C ( [ h , [ , B ) X = C ( [ h , [ , B ) X=C([-h,oo[,B)X=C([-h, \infty[, \mathbb{B})X=C([h,[,B) endowed with the norm
: X s ( R + ) , x := ( x 0 x m ) : X s R + , x := x 0 x m ||*||:X rarr s(R_(+)),||x||:=([||x||_(0)],[vdots],[||x||_(m)],[vdots])\|\cdot\|: X \rightarrow s\left(\mathbb{R}_{+}\right),\|x\|:=\left(\begin{array}{c} \|x\|_{0} \\ \vdots \\ \|x\|_{m} \\ \vdots \end{array}\right):Xs(R+),x:=(x0xm)
where x 0 = max h t h | x ( t ) | x 0 = max h t h | x ( t ) | ||x||_(0)=max_(-h <= t <= h)|x(t)|\|x\|_{0}=\max _{-h \leq t \leq h}|x(t)|x0=maxhth|x(t)| and x m = max m h t ( m + 1 ) h | x ( t ) | , m 1 x m = max m h t ( m + 1 ) h | x ( t ) | , m 1 ||x||_(m)=max_(mh <= t <= (m+1)h)|x(t)|,m >= 1\|x\|_{m}=\max _{m h \leq t \leq(m+1) h}|x(t)|, m \geq 1xm=maxmht(m+1)h|x(t)|,m1.
This generalized norm induces a generalized metric, d ( x , y ) := x y d ( x , y ) := x y d(x,y):=||x-y||d(x, y):=\|x-y\|d(x,y):=xy.

2. Preliminaries

Let ( X , d X , d X,dX, dX,d ) be a generalized metric space and A : X X A : X X A:X rarr XA: X \rightarrow XA:XX an operator. In this paper we shall use the terminologies and notations from [13]-[15]. For the convenience of the reader we shall recall some of them.
We denote by A 0 := 1 X , A 1 := A , A n + 1 := A A n , n N A 0 := 1 X , A 1 := A , A n + 1 := A A n , n N A_(0):=1_(X),A^(1):=A,A^(n+1):=A@A^(n),n inNA_{0}:=1_{X}, A^{1}:=A, A^{n+1}:=A \circ A^{n}, n \in \mathbb{N}A0:=1X,A1:=A,An+1:=AAn,nN, the iterate operators of the operator A A AAA. Also we shall use the following notations:
F A := { x X A ( x ) = x } F A := { x X A ( x ) = x } F_(A):={x in X∣A(x)=x}F_{A}:=\{x \in X \mid A(x)=x\}FA:={xXA(x)=x} - the fixed point set of A A AAA;
I ( A ) := { Y X A ( Y ) Y , Y } I ( A ) := { Y X A ( Y ) Y , Y } I(A):={Y sub X∣A(Y)sub Y,Y!=O/}I(A):=\{Y \subset X \mid A(Y) \subset Y, Y \neq \emptyset\}I(A):={YXA(Y)Y,Y} - the family of the nonempty invariant subset of A A AAA;
Definition 2.1. A : X X A : X X A:X rarr XA: X \rightarrow XA:XX is called a Picard operator (briefly PO) if:
(i) F A = { x } F A = x F_(A)={x^(**)}F_{A}=\left\{x^{*}\right\}FA={x};
(ii) A n ( x ) x A n ( x ) x A^(n)(x)rarrx^(**)A^{n}(x) \rightarrow x^{*}An(x)x as n , x X n , x X n rarr oo,AA x in Xn \rightarrow \infty, \forall x \in Xn,xX.
Definition 2.2. A : X X A : X X A:X rarr XA: X \rightarrow XA:XX is said to be a weakly Picard operator (briefly WPO) if the sequence ( A n ( x ) ) n N A n ( x ) n N (A^(n)(x))_(n inN)\left(A^{n}(x)\right)_{n \in \mathbb{N}}(An(x))nN converges for all x X x X x in Xx \in XxX and the limit (which may depend on x x xxx ) is a fixed point of A A AAA.
If A : X X A : X X A:X rarr XA: X \rightarrow XA:XX is a WPO, then we may define the operator
A : X X A : X X A^(oo):X rarr XA^{\infty}: X \rightarrow XA:XX by
A ( x ) := lim n A n ( x ) . A ( x ) := lim n A n ( x ) . A^(oo)(x):=lim_(n rarr oo)A^(n)(x).A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x) .A(x):=limnAn(x).
Obviously A ( X ) = F A A ( X ) = F A A^(oo)(X)=F_(A)A^{\infty}(X)=F_{A}A(X)=FA. Moreover, if A A AAA is a PO and we denote by x x x^(**)x^{*}x its unique fixed point, then A ( x ) = x A ( x ) = x A^(oo)(x)=x^(**)A^{\infty}(x)=x^{*}A(x)=x, for each x X x X x in Xx \in XxX.
Lemma 2.3. Let ( X , d , ) ( X , d , ) (X,d, <= )(X, d, \leq)(X,d,) be an ordered metric space and A : X X A : X X A:X rarr XA: X \rightarrow XA:XX an operator. We suppose that:
(i) A A AAA is WPO;
(ii) A A AAA is increasing.
Then, the operator A A A^(oo)A^{\infty}A is increasing.
Lemma 2.4. Let ( X , d , X , d , X,d, <=X, d, \leqX,d, ) an ordered metric space and A , B , C : X X A , B , C : X X A,B,C:X rarr XA, B, C: X \rightarrow XA,B,C:XX be such that:
(i) the operator A , B , C A , B , C A,B,CA, B, CA,B,C are WPOs;
(ii) A B C A B C A <= B <= CA \leq B \leq CABC;
(iii) the operator B B BBB is increasing.
Then x y z x y z x <= y <= zx \leq y \leq zxyz implies that A ( x ) B ( y ) C ( z ) A ( x ) B ( y ) C ( z ) A^(oo)(x) <= B^(oo)(y) <= C^(oo)(z)A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z)A(x)B(y)C(z).
Theorem 2.5. [13] Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a complete metric space and A : X X A : X X A:X rarr XA: X \rightarrow XA:XX a S S SSS-contraction. Then we have
(i) F A = { x } F A = x F_(A)={x^(**)}F_{A}=\left\{x^{*}\right\}FA={x};
(ii) A n ( x ) d x A n ( x ) d x A^(n)(x)rarr"d"x^(**)A^{n}(x) \xrightarrow{d} x^{*}An(x)dx, as n , x X n , x X n rarr oo,AA x in Xn \rightarrow \infty, \forall x \in Xn,xX;
(iii) d ( A n ( x ) , x ) ( E S ) 1 S n d ( x , A ( x ) ) d A n ( x ) , x ( E S ) 1 S n d ( x , A ( x ) ) d(A^(n)(x),x^(**)) <= (E-S)^(-1)S^(n)d(x,A(x))d\left(A^{n}(x), x^{*}\right) \leq(E-S)^{-1} S^{n} d(x, A(x))d(An(x),x)(ES)1Snd(x,A(x));
(iv) d ( x , x ) ( E S ) 1 d ( x , A ( x ) ) d x , x ( E S ) 1 d ( x , A ( x ) ) d(x,x^(**)) <= (E-S)^(-1)d(x,A(x))d\left(x, x^{*}\right) \leq(E-S)^{-1} d(x, A(x))d(x,x)(ES)1d(x,A(x)).
In what follow we shall apply the above results to the problem (1.2)-(1.3). For other applications of these abstract results, see [2], [3], [8], [9], [12], [16].

3. Existence and uniqueness

From Theorem 2.5 we have
Theorem 3.1. In the condition ( C 1 ) , ( C 2 ) ( C 3 ) C 1 , C 2 C 3 (C_(1)),(C_(2))(C_(3))\left(C_{1}\right),\left(C_{2}\right)\left(C_{3}\right)(C1),(C2)(C3), and ( C 4 ) C 4 (C_(4))\left(C_{4}\right)(C4) the problem (1.2)-(1.3) has in C ( [ h , [ , B ) C ( [ h , [ , B ) C([-h,oo[,B)C([-h, \infty[, \mathbb{B})C([h,[,B) a unique solution x x x^(**)\stackrel{*}{x}x which is the limit of the sequence of successive approximation.
Proof. We consider the operator A : X X A : X X A:X rarr XA: X \rightarrow XA:XX defined by
(3.1) A ( x ) ( t ) = { φ ( t ) , t [ h , h ] φ ( h ) + h t g ( ξ , x ( ξ ) , x ( ξ + h ) ) d ξ + + h t ξ h ξ K ( s , x ( s ) ) d s d ξ , t [ h , [ (3.1) A ( x ) ( t ) = φ ( t ) , t [ h , h ] φ ( h ) + h t g ( ξ , x ( ξ ) , x ( ξ + h ) ) d ξ + + h t ξ h ξ K ( s , x ( s ) ) d s d ξ , t [ h , [ {:(3.1)A(x)(t)={[varphi(t)","t in[-h","h]],[varphi(h)+int_(h)^(t)g(xi","x(xi)","x(xi+h))d xi+],[quad+int_(h)^(t)int_(xi-h)^(xi)K(s","x(s))dsd xi","t in[h","oo[]:}:}A(x)(t)=\left\{\begin{array}{l} \varphi(t), t \in[-h, h] \tag{3.1}\\ \varphi(h)+\int_{h}^{t} g(\xi, x(\xi), x(\xi+h)) d \xi+ \\ \quad+\int_{h}^{t} \int_{\xi-h}^{\xi} K(s, x(s)) d s d \xi, t \in[h, \infty[ \end{array}\right.(3.1)A(x)(t)={φ(t),t[h,h]φ(h)+htg(ξ,x(ξ),x(ξ+h))dξ++htξhξK(s,x(s))dsdξ,t[h,[
( X , d ) ( X , d ) (X,d)(X, d)(X,d) is a complete metric space with d = ( m ) m { 1 , 0 , 1 , } d = m m { 1 , 0 , 1 , } d=(||*||_(m))_(m in{-1,0,1,dots})d=\left(\|\cdot\|_{m}\right)_{m \in\{-1,0,1, \ldots\}}d=(m)m{1,0,1,} where
d ( x , y ) = ( d 0 ( x , y ) d m ( x , y ) ) . d ( x , y ) = d 0 ( x , y ) d m ( x , y ) . d(x,y)=([d_(0)(x","y)],[vdots],[d_(m)(x","y)],[vdots]).d(x, y)=\left(\begin{array}{c} d_{0}(x, y) \\ \vdots \\ d_{m}(x, y) \\ \vdots \end{array}\right) .d(x,y)=(d0(x,y)dm(x,y)).
For t [ h , h ] t [ h , h ] t in[-h,h]t \in[-h, h]t[h,h] we have
A ( x ) ( t ) A ( y ) ( t ) 0 = 0 , x , y X A ( x ) ( t ) A ( y ) ( t ) 0 = 0 , x , y X ||A(x)(t)-A(y)(t)||_(0)=0,AA x,y in X\|A(x)(t)-A(y)(t)\|_{0}=0, \forall x, y \in XA(x)(t)A(y)(t)0=0,x,yX
For t [ h , 2 h ] t [ h , 2 h ] t in[h,2h]t \in[h, 2 h]t[h,2h] we have
| A ( x ) ( t ) A ( y ) ( t ) | 1 L 1 h t | x ( ξ ) y ( ξ ) | d ξ + L 2 h t | x ( ξ + h ) y ( ξ + h ) | d ξ + + L 3 h t ξ h ξ | x ( s ) y ( s ) | d s d ξ L 1 h x y 1 + L 2 h x y 2 + L 3 h t ( h x y 0 + h x y 1 ) d ξ L 3 h 2 x y 0 + ( L 1 h + L 3 h 2 ) x y 1 + L 2 h x y 2 | A ( x ) ( t ) A ( y ) ( t ) | 1 L 1 h t | x ( ξ ) y ( ξ ) | d ξ + L 2 h t | x ( ξ + h ) y ( ξ + h ) | d ξ + + L 3 h t ξ h ξ | x ( s ) y ( s ) | d s d ξ L 1 h x y 1 + L 2 h x y 2 + L 3 h t h x y 0 + h x y 1 d ξ L 3 h 2 x y 0 + L 1 h + L 3 h 2 x y 1 + L 2 h x y 2 {:[|A(x)(t)-A(y)(t)|_(1) <= ],[ <= L_(1)int_(h)^(t)|x(xi)-y(xi)|d xi+L_(2)int_(h)^(t)|x(xi+h)-y(xi+h)|d xi+],[+L_(3)int_(h)^(t)int_(xi-h)^(xi)|x(s)-y(s)|dsd xi],[ <= L_(1)h||x-y||_(1)+L_(2)h||x-y||_(2)+L_(3)int_(h)^(t)(h||x-y||_(0)+h||x-y||_(1))d xi],[ <= L_(3)h^(2)||x-y||_(0)+(L_(1)h+L_(3)h^(2))||x-y||_(1)+L_(2)h||x-y||_(2)]:}\begin{aligned} &|A(x)(t)-A(y)(t)|_{1} \leq \\ & \leq L_{1} \int_{h}^{t}|x(\xi)-y(\xi)| d \xi+L_{2} \int_{h}^{t}|x(\xi+h)-y(\xi+h)| d \xi+ \\ &+L_{3} \int_{h}^{t} \int_{\xi-h}^{\xi}|x(s)-y(s)| d s d \xi \\ & \leq L_{1} h\|x-y\|_{1}+L_{2} h\|x-y\|_{2}+L_{3} \int_{h}^{t}\left(h\|x-y\|_{0}+h\|x-y\|_{1}\right) d \xi \\ & \leq L_{3} h^{2}\|x-y\|_{0}+\left(L_{1} h+L_{3} h^{2}\right)\|x-y\|_{1}+L_{2} h\|x-y\|_{2} \end{aligned}|A(x)(t)A(y)(t)|1L1ht|x(ξ)y(ξ)|dξ+L2ht|x(ξ+h)y(ξ+h)|dξ++L3htξhξ|x(s)y(s)|dsdξL1hxy1+L2hxy2+L3ht(hxy0+hxy1)dξL3h2xy0+(L1h+L3h2)xy1+L2hxy2
So, A ( x ) ( t ) A ( y ) ( t ) 1 L 3 h 2 x y 0 + ( L 1 h + L 3 h 2 ) x y 1 + L 2 h x y 2 A ( x ) ( t ) A ( y ) ( t ) 1 L 3 h 2 x y 0 + L 1 h + L 3 h 2 x y 1 + L 2 h x y 2 ||A(x)(t)-A(y)(t)||_(1) <= L_(3)h^(2)||x-y||_(0)+(L_(1)h+L_(3)h^(2))||x-y||_(1)+L_(2)h||x-y||_(2)\|A(x)(t)-A(y)(t)\|_{1} \leq L_{3} h^{2}\|x-y\|_{0}+\left(L_{1} h+L_{3} h^{2}\right)\|x-y\|_{1}+L_{2} h\|x-y\|_{2}A(x)(t)A(y)(t)1L3h2xy0+(L1h+L3h2)xy1+L2hxy2. For t [ 2 h , 3 h ] t [ 2 h , 3 h ] t in[2h,3h]t \in[2 h, 3 h]t[2h,3h] we have A ( x ) ( t ) A ( y ) ( t ) 2 L 3 h 2 x y 1 + ( L 1 h + L 3 h 2 ) x y 2 + L 2 h x y 3 A ( x ) ( t ) A ( y ) ( t ) 2 L 3 h 2 x y 1 + L 1 h + L 3 h 2 x y 2 + L 2 h x y 3 ||A(x)(t)-A(y)(t)||_(2) <= L_(3)h^(2)||x-y||_(1)+(L_(1)h+L_(3)h^(2))||x-y||_(2)+L_(2)h||x-y||_(3)\|A(x)(t)-A(y)(t)\|_{2} \leq L_{3} h^{2}\|x-y\|_{1}+\left(L_{1} h+L_{3} h^{2}\right)\|x-y\|_{2}+L_{2} h\|x-y\|_{3}A(x)(t)A(y)(t)2L3h2xy1+(L1h+L3h2)xy2+L2hxy3. By induction, for t [ m h , ( m + 1 ) h ] t [ m h , ( m + 1 ) h ] t in[mh,(m+1)h]t \in[m h,(m+1) h]t[mh,(m+1)h] we have that
A ( x ) ( t ) A ( y ) ( t ) m L 3 h 2 x y m 1 + ( L 1 h + L 3 h 2 ) x y m + L 2 h x y m + 1 A ( x ) ( t ) A ( y ) ( t ) m L 3 h 2 x y m 1 + L 1 h + L 3 h 2 x y m + L 2 h x y m + 1 {:[||A(x)(t)-A(y)(t)||_(m) <= ],[ <= L_(3)h^(2)||x-y||_(m-1)+(L_(1)h+L_(3)h^(2))||x-y||_(m)+L_(2)h||x-y||_(m+1)]:}\begin{aligned} & \|A(x)(t)-A(y)(t)\|_{m} \leq \\ & \leq L_{3} h^{2}\|x-y\|_{m-1}+\left(L_{1} h+L_{3} h^{2}\right)\|x-y\|_{m}+L_{2} h\|x-y\|_{m+1} \end{aligned}A(x)(t)A(y)(t)mL3h2xym1+(L1h+L3h2)xym+L2hxym+1
Then
( | A ( x ) ( t ) A ( y ) ( t ) | 0 | A ( x ) ( t ) A ( y ) ( t ) | 1 | A ( x ) ( t ) A ( y ) ( t ) | 2 | A ( x ) ( t ) A ( y ) ( t ) | m ) ( 0 0 0 0 0 L 3 h 2 L 1 h + L 3 h 2 L 2 h 0 0 0 L 3 h 2 L 1 h + L 3 h 2 0 0 0 0 0 L 1 h + L 3 h 2 L 2 h ) ( x y 0 x y 1 x y 2 x y m ) . | A ( x ) ( t ) A ( y ) ( t ) | 0 | A ( x ) ( t ) A ( y ) ( t ) | 1 | A ( x ) ( t ) A ( y ) ( t ) | 2 | A ( x ) ( t ) A ( y ) ( t ) | m 0 0 0 0 0 L 3 h 2 L 1 h + L 3 h 2 L 2 h 0 0 0 L 3 h 2 L 1 h + L 3 h 2 0 0 0 0 0 L 1 h + L 3 h 2 L 2 h x y 0 x y 1 x y 2 x y m . {:[([|A(x)(t)-A(y)(t)|_(0)],[|A(x)(t)-A(y)(t)|_(1)],[|A(x)(t)-A(y)(t)|_(2)],[vdots],[|A(x)(t)-A(y)(t)|_(m)],[vdots]) <= ],[([0,0,0,cdots,0,0,cdots],[L_(3)h^(2),L_(1)h+L_(3)h^(2),L_(2)h,cdots,0,0,cdots],[0,L_(3)h^(2),L_(1)h+L_(3)h^(2),cdots,0,0,cdots],[vdots,vdots,vdots,vdots,vdots,vdots,vdots],[0,0,0,cdots,L_(1)h+L_(3)h^(2),L_(2)h,cdots],[vdots,vdots,vdots,vdots,vdots,vdots,vdots])([||x-y||_(0)],[||x-y||_(1)],[||x-y||_(2)],[vdots],[||x-y||_(m)],[vdots]).]:}\begin{aligned} & \left(\begin{array}{c} |A(x)(t)-A(y)(t)|_{0} \\ |A(x)(t)-A(y)(t)|_{1} \\ |A(x)(t)-A(y)(t)|_{2} \\ \vdots \\ |A(x)(t)-A(y)(t)|_{m} \\ \vdots \end{array}\right) \leq \\ & \left(\begin{array}{ccccccc} 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\ L_{3} h^{2} & L_{1} h+L_{3} h^{2} & L_{2} h & \cdots & 0 & 0 & \cdots \\ 0 & L_{3} h^{2} & L_{1} h+L_{3} h^{2} & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & L_{1} h+L_{3} h^{2} & L_{2} h & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array}\right)\left(\begin{array}{c} \|x-y\|_{0} \\ \|x-y\|_{1} \\ \|x-y\|_{2} \\ \vdots \\ \|x-y\|_{m} \\ \vdots \end{array}\right) . \end{aligned}(|A(x)(t)A(y)(t)|0|A(x)(t)A(y)(t)|1|A(x)(t)A(y)(t)|2|A(x)(t)A(y)(t)|m)(00000L3h2L1h+L3h2L2h000L3h2L1h+L3h200000L1h+L3h2L2h)(xy0xy1xy2xym).
So d ( A ( x ) , A ( y ) ) S d ( x , y ) d ( A ( x ) , A ( y ) ) S d ( x , y ) d(A(x),A(y)) <= Sd(x,y)d(A(x), A(y)) \leq S d(x, y)d(A(x),A(y))Sd(x,y), where S : s ( R ) s ( R ) , S := sup i N j = 0 | L i j | = ( L 1 + L 2 + 2 L 3 h ) h S : s ( R ) s ( R ) , S := sup i N j = 0 L i j = L 1 + L 2 + 2 L 3 h h S:s(R)rarr s(R),||S||:=s u p_(i inN)sum_(j=0)^(oo)|L_(ij)|=(L_(1)+L_(2)+2L_(3)h)hS: s(\mathbb{R}) \rightarrow s(\mathbb{R}),\|S\|:=\sup _{i \in \mathbb{N}} \sum_{j=0}^{\infty}\left|L_{i j}\right|= \left(L_{1}+L_{2}+2 L_{3} h\right) hS:s(R)s(R),S:=supiNj=0|Lij|=(L1+L2+2L3h)h, which proves that A A AAA is Lipschitz with
S = ( 0 0 0 0 0 L 3 h 2 L 1 h + L 3 h 2 L 2 h 0 0 0 L 3 h 2 L 1 h + L 3 h 2 0 0 0 0 0 L 1 h + L 3 h 2 L 2 h ) . S = 0 0 0 0 0 L 3 h 2 L 1 h + L 3 h 2 L 2 h 0 0 0 L 3 h 2 L 1 h + L 3 h 2 0 0 0 0 0 L 1 h + L 3 h 2 L 2 h . S=([0,0,0,cdots,0,0,cdots],[L_(3)h^(2),L_(1)h+L_(3)h^(2),L_(2)h,cdots,0,0,cdots],[0,L_(3)h^(2),L_(1)h+L_(3)h^(2),cdots,0,0,cdots],[vdots,vdots,vdots,vdots,vdots,vdots,vdots],[0,0,0,cdots,L_(1)h+L_(3)h^(2),L_(2)h,cdots],[vdots,vdots,vdots,vdots,vdots,vdots,vdots]).S=\left(\begin{array}{ccccccc} 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\ L_{3} h^{2} & L_{1} h+L_{3} h^{2} & L_{2} h & \cdots & 0 & 0 & \cdots \\ 0 & L_{3} h^{2} & L_{1} h+L_{3} h^{2} & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & L_{1} h+L_{3} h^{2} & L_{2} h & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array}\right) .S=(00000L3h2L1h+L3h2L2h000L3h2L1h+L3h200000L1h+L3h2L2h).
From condition ( C 4 ) C 4 (C_(4))\left(C_{4}\right)(C4) we have that A A AAA is S S SSS-contraction. Applying Theorem 2.5 we have the conclusion.
Remark 3.2. From the proof of Theorem 3.1, it follows that the operator A A AAA is P O P O POP OPO in ( ( C [ h , ] , B ) , d ) ( ( C [ h , ] , B ) , d ) ((C[-h,oo],B),d)((C[-h, \infty], \mathbb{B}), d)((C[h,],B),d).

4. Inequalities of Čaplygin type

In this section we shall study the relation between the solution of the problem (1.2)-(1.3) and the subsolution of the same problem.
Let x x x^(**)\stackrel{*}{x}x be the unique solution of the problem (1.2)-(1.3) and y y yyy a subsolution of the same problem, i.e.
(4.1) y ( t ) g ( t , y ( t ) , y ( t + h ) ) + t h t K ( s , y ( s ) ) d s , t [ 0 , [ (4.1) y ( t ) g ( t , y ( t ) , y ( t + h ) ) + t h t K ( s , y ( s ) ) d s , t [ 0 , [ {:(4.1)y^(')(t) <= g(t","y(t)","y(t+h))+int_(t-h)^(t)K(s","y(s))ds","t in[0","oo[:}\begin{equation*} y^{\prime}(t) \leq g(t, y(t), y(t+h))+\int_{t-h}^{t} K(s, y(s)) d s, t \in[0, \infty[ \tag{4.1} \end{equation*}(4.1)y(t)g(t,y(t),y(t+h))+thtK(s,y(s))ds,t[0,[
where g g ggg and K K KKK satisfy the conditions ( C 1 ) ( C 3 ) C 1 C 3 (C_(1))-(C_(3))\left(C_{1}\right)-\left(C_{3}\right)(C1)(C3) and
(4.2) y ( t ) = φ ( t ) , t [ h , h ] . (4.2) y ( t ) = φ ( t ) , t [ h , h ] . {:(4.2)y(t)=varphi(t)","t in[-h","h].:}\begin{equation*} y(t)=\varphi(t), t \in[-h, h] . \tag{4.2} \end{equation*}(4.2)y(t)=φ(t),t[h,h].
In this section we consider an ordered Banach space ( B , | | , B , | | , B,|*|, <=\mathbb{B},|\cdot|, \leqB,||, ) and the operator A A AAA defined by (3.1) on the ordered Banach space X = ( ( C [ a , b ] , B ) , , ) X = ( ( C [ a , b ] , B ) , , ) X=((C[a,b],B),||*||, <= )X=((C[a, b], \mathbb{B}),\|\cdot\|, \leq)X=((C[a,b],B),,). We have the following theorem
Theorem 4.1. We suppose that:
(a) the conditions ( C 1 ) ( C 4 ) C 1 C 4 (C_(1))-(C_(4))\left(C_{1}\right)-\left(C_{4}\right)(C1)(C4) are satisfied;
(b) g ( t , , ) : B 2 B g ( t , , ) : B 2 B g(t,*,*):B^(2)rarrBg(t, \cdot, \cdot): \mathbb{B}^{2} \rightarrow \mathbb{B}g(t,,):B2B and K ( t , ) : B B K ( t , ) : B B K(t,*):BrarrBK(t, \cdot): \mathbb{B} \rightarrow \mathbb{B}K(t,):BB are increasing, t [ 0 , [ t [ 0 , [ AA t in[0,oo[\forall t \in[0, \infty[t[0,[.
Then y x y x y <= x^(**)y \leq \stackrel{*}{x}yx for all t [ 0 , [ t [ 0 , [ t in[0,oo[t \in[0, \infty[t[0,[.
Proof. In terms of the operator A A AAA defined by the relation (3.1), we have x = A ( x ) x = A ( x ) x^(**)=A(x^(**))\stackrel{*}{x}= A(\stackrel{*}{x})x=A(x) and y A ( y ) y A ( y ) y <= A(y)y \leq A(y)yA(y). On the other hand from condition (b) and Lemma 2.3, we have that the operator A A A^(oo)A^{\infty}A is increasing. Hence y A ( y ) A 2 ( y ) A ( y ) A ( x ) = x y A ( y ) A 2 ( y ) A ( y ) A ( x ) = x y <= A(y) <= A^(2)(y) <= cdots <= A^(oo)(y) <= A^(oo)(x^(**))=x^(**)y \leq A(y) \leq A^{2}(y) \leq \cdots \leq A^{\infty}(y) \leq A^{\infty}(\stackrel{*}{x})=\stackrel{*}{x}yA(y)A2(y)A(y)A(x)=x. So, y x y x y <= x^(**)y \leq \stackrel{*}{x}yx.

5. Data dependence: monotony

In this section we study the monotony of the system (1.2)-(1.3) with respect to g g ggg and K K KKK. For this we use the abstract comparison Lemma from Section 2.
Consider the following equations
(5.1) x i ( t ) = g i ( t , x i ( t ) , x i ( t + h ) ) + t h t K i ( s , x i ( s ) ) d s , t [ 0 , [ , i = 1 , 3 (5.1) x i ( t ) = g i t , x i ( t ) , x i ( t + h ) + t h t K i s , x i ( s ) d s , t [ 0 , [ , i = 1 , 3 ¯ {:(5.1)x_(i)^(')(t)=g_(i)(t,x_(i)(t),x_(i)(t+h))+int_(t-h)^(t)K_(i)(s,x_(i)(s))ds","t in[0","oo[","i= bar(1,3):}\begin{equation*} x_{i}^{\prime}(t)=g_{i}\left(t, x_{i}(t), x_{i}(t+h)\right)+\int_{t-h}^{t} K_{i}\left(s, x_{i}(s)\right) d s, t \in[0, \infty[, i=\overline{1,3} \tag{5.1} \end{equation*}(5.1)xi(t)=gi(t,xi(t),xi(t+h))+thtKi(s,xi(s))ds,t[0,[,i=1,3
with the conditions (1.3) for each problem and let x i , i = 1 , 3 x i , i = 1 , 3 ¯ x^(**)_(i),i= bar(1,3)\stackrel{*}{x}_{i}, i=\overline{1,3}xi,i=1,3 the unique solutions of these problems. Then we need the operators A i : X X A i : X X A_(i):X rarr XA_{i}: X \rightarrow XAi:XX defined by
A i ( x ) ( t ) = { φ ( t ) , t [ h , h ] φ ( h ) + h t g ( ξ , x i ( ξ ) , x i ( ξ + h ) ) d ξ + + h t ξ h ξ K ( s , x i ( s ) ) d s d ξ , t [ h , [ A i ( x ) ( t ) = φ ( t ) , t [ h , h ] φ ( h ) + h t g ξ , x i ( ξ ) , x i ( ξ + h ) d ξ + + h t ξ h ξ K s , x i ( s ) d s d ξ , t [ h , [ A_(i)(x)(t)={[varphi(t)","t in[-h","h]],[varphi(h)+int_(h)^(t)g(xi,x_(i)(xi),x_(i)(xi+h))d xi+],[quadquad+int_(h)^(t)int_(xi-h)^(xi)K(s,x_(i)(s))dsd xi","t in[h","oo[]:}A_{i}(x)(t)=\left\{\begin{array}{l} \varphi(t), t \in[-h, h] \\ \varphi(h)+\int_{h}^{t} g\left(\xi, x_{i}(\xi), x_{i}(\xi+h)\right) d \xi+ \\ \quad \quad+\int_{h}^{t} \int_{\xi-h}^{\xi} K\left(s, x_{i}(s)\right) d s d \xi, t \in[h, \infty[ \end{array}\right.Ai(x)(t)={φ(t),t[h,h]φ(h)+htg(ξ,xi(ξ),xi(ξ+h))dξ++htξhξK(s,xi(s))dsdξ,t[h,[
Theorem 5.1. Let g i , K i , i = 1 , 3 g i , K i , i = 1 , 3 ¯ g_(i),K_(i),i= bar(1,3)g_{i}, K_{i}, i=\overline{1,3}gi,Ki,i=1,3, that satisfy the conditions ( C 1 ) ( C 4 ) C 1 C 4 (C_(1))-(C_(4))\left(C_{1}\right)-\left(C_{4}\right)(C1)(C4).
We suppose that we have
(i) g 1 g 2 g 3 g 1 g 2 g 3 g_(1) <= g_(2) <= g_(3)g_{1} \leq g_{2} \leq g_{3}g1g2g3;
(ii) g ( t , , ) : B 2 B g ( t , , ) : B 2 B g(t,*,*):B^(2)rarrBg(t, \cdot, \cdot): \mathbb{B}^{2} \rightarrow \mathbb{B}g(t,,):B2B and K ( t , ) : B B K ( t , ) : B B K(t,*):BrarrBK(t, \cdot): \mathbb{B} \rightarrow \mathbb{B}K(t,):BB are increasing.
Let x i x i x^(**)_(i)\stackrel{*}{x}_{i}xi the solutions of the equations (5.1), i = 1 , 3 i = 1 , 3 ¯ i= bar(1,3)i=\overline{1,3}i=1,3.
Then x 1 ( t ) x 2 ( t ) x 3 ( t ) , t [ 0 , [ x 1 ( t ) x 2 ( t ) x 3 ( t ) , t [ 0 , [ x_(1)^(**)(t) <= x_(2)^(**)(t) <= x_(3)^(**)(t),AA t in[0,oo[\stackrel{*}{x_{1}}(t) \leq \stackrel{*}{x_{2}}(t) \leq \stackrel{*}{x_{3}}(t), \forall t \in[0, \infty[x1(t)x2(t)x3(t),t[0,[.
Proof. From Theorem 3.1 the operators A i A i A_(i)A_{i}Ai are POs. From the condition (ii) it follows that the operator A 2 A 2 A_(2)A_{2}A2 is monotone increasing and from condition (i) we have A 1 A 2 A 3 A 1 A 2 A 3 A_(1) <= A_(2) <= A_(3)A_{1} \leq A_{2} \leq A_{3}A1A2A3. But x 1 = A 1 ( x 1 ) , x 2 = A 2 ( x 2 ) x 1 = A 1 x 1 , x 2 = A 2 x 2 {:x^(**)_(1)=A_(1)oo((x_(1)^(**))),(x_(2)^(**))=A_(2)((x_(2):}^(oo)))\left.\stackrel{*}{x}_{1}=A_{1} \infty\left(\stackrel{*}{x_{1}}\right), \stackrel{*}{x_{2}}=A_{2} \stackrel{\infty}{\left(x_{2}\right.}\right)x1=A1(x1),x2=A2(x2) and x 3 = A 3 ( x 3 ) x 3 = A 3 x 3 {:(x_(3)^(**))=A_(3)((x_(3):}^(oo)))\left.\stackrel{*}{x_{3}}=A_{3} \stackrel{\infty}{\left(x_{3}\right.}\right)x3=A3(x3).
By applying the abstract comparison Lemma 2.4 follows that the unique solution of the problem (1.2)-(1.3) is increasing with respect to A A AAA.
Remark 5.2. The conclusion of the Theorem 5.1. means that the unique solution of (1.2)-(1.3) is increasing with respect to the right hand.

6. Step method

Next we apply the step method for (1.2)-(1.3). Let the conditions ( C 1 ) , ( C 2 ) , ( C 3 ) C 1 , C 2 , C 3 (C_(1)^(')),(C_(2)),(C_(3))\left(C_{1}^{\prime}\right),\left(C_{2}\right),\left(C_{3}\right)(C1),(C2),(C3) and ( C 5 C 5 C_(5)C_{5}C5 ) and we suppose also the condition
( C 6 ) C 6 (C_(6))\left(C_{6}\right)(C6) For all t [ h , ) , u 1 , u 2 , u 3 B t [ h , ) , u 1 , u 2 , u 3 B t in[-h,oo),u_(1),u_(2),u_(3)inBt \in[-h, \infty), u_{1}, u_{2}, u_{3} \in \mathbb{B}t[h,),u1,u2,u3B there exists a unique u 2 B , u 2 = f ( t , u 1 , u 3 ) u 2 B , u 2 = f t , u 1 , u 3 u_(2)inB,u_(2)=f(t,u_(1),u_(3))u_{2} \in \mathbb{B}, u_{2}= f\left(t, u_{1}, u_{3}\right)u2B,u2=f(t,u1,u3) such as u 3 = g ( t , u 1 , u 2 ) + t h t K ( s , u 1 ) d s u 3 = g t , u 1 , u 2 + t h t K s , u 1 d s u_(3)=g(t,u_(1),u_(2))+int_(t-h)^(t)K(s,u_(1))dsu_{3}=g\left(t, u_{1}, u_{2}\right)+\int_{t-h}^{t} K\left(s, u_{1}\right) d su3=g(t,u1,u2)+thtK(s,u1)ds.
Note that if x C 1 ( B ) x C 1 ( B ) x inC^(1)(B)x \in C^{1}(\mathbb{B})xC1(B) is a solution for (1.2)-(1.3) then, by mathematical induction, follows that x C ( B ) x C ( B ) x inC^(oo)(B)x \in C^{\infty}(\mathbb{B})xC(B).
Theorem 6.1. Suppose that we have ( C 1 ) , ( C 2 ) , ( C 3 ) , ( C 5 ) C 1 , C 2 , C 3 , C 5 (C_(1)^(')),(C_(2)),(C_(3)),(C_(5))\left(C_{1}^{\prime}\right),\left(C_{2}\right),\left(C_{3}\right),\left(C_{5}\right)(C1),(C2),(C3),(C5) and ( C 6 ) C 6 (C_(6))\left(C_{6}\right)(C6). Then the problem (1.2)-(1.3) has a solution if and only if
φ ( n + 1 ) ( 0 ) = g ( n ) ( 0 , φ ( 0 ) , φ ( h ) ) + [ t h t K ( s , φ ( s ) ) d s ] ( n ) | t = 0 , n N φ ( n + 1 ) ( 0 ) = g ( n ) ( 0 , φ ( 0 ) , φ ( h ) ) + t h t K ( s , φ ( s ) ) d s ( n ) t = 0 , n N varphi^((n+1))(0)=g^((n))(0,varphi(0),varphi(h))+[int_(t-h)^(t)K(s,varphi(s))ds]^((n))|_(t=0),n inN\varphi^{(n+1)}(0)=g^{(n)}(0, \varphi(0), \varphi(h))+\left.\left[\int_{t-h}^{t} K(s, \varphi(s)) d s\right]^{(n)}\right|_{t=0}, n \in \mathbb{N}φ(n+1)(0)=g(n)(0,φ(0),φ(h))+[thtK(s,φ(s))ds](n)|t=0,nN
More, the solution is unique.
Proof. By the step method we have
( p 0 ) x 0 ( t ) = φ ( t ) , t [ 0 , h ] p 0 x 0 ( t ) = φ ( t ) , t [ 0 , h ] (p_(0))x_(0)(t)=varphi(t),t in[0,h]\left(\mathrm{p}_{0}\right) x_{0}(t)=\varphi(t), t \in[0, h](p0)x0(t)=φ(t),t[0,h].
Also we have
x 0 ( t ) = g ( t , x 0 ( t ) , x ( t + h ) ) + t h t K ( s , x 0 ( s ) ) d s x 0 ( t ) = g t , x 0 ( t ) , x ( t + h ) + t h t K s , x 0 ( s ) d s x_(0)^(')(t)=g(t,x_(0)(t),x(t+h))+int_(t-h)^(t)K(s,x_(0)(s))dsx_{0}^{\prime}(t)=g\left(t, x_{0}(t), x(t+h)\right)+\int_{t-h}^{t} K\left(s, x_{0}(s)\right) d sx0(t)=g(t,x0(t),x(t+h))+thtK(s,x0(s))ds
or
φ ( t ) = g ( t , φ ( t ) , x ( t + h ) ) + t h t K ( s , φ ( s ) ) d s φ ( t ) = g ( t , φ ( t ) , x ( t + h ) ) + t h t K ( s , φ ( s ) ) d s varphi^(')(t)=g(t,varphi(t),x(t+h))+int_(t-h)^(t)K(s,varphi(s))ds\varphi^{\prime}(t)=g(t, \varphi(t), x(t+h))+\int_{t-h}^{t} K(s, \varphi(s)) d sφ(t)=g(t,φ(t),x(t+h))+thtK(s,φ(s))ds
From condition ( C 6 C 6 C_(6)C_{6}C6 ) we have that
x ( t ) := x 1 ( t ) = f ( t h , φ ( t h ) , φ ( t h ) ) , t [ h , 2 h ] . x ( t ) := x 1 ( t ) = f t h , φ ( t h ) , φ ( t h ) , t [ h , 2 h ] . x(t):=x_(1)(t)=f(t-h,varphi(t-h),varphi^(')(t-h)),AA t in[h,2h].x(t):=x_{1}(t)=f\left(t-h, \varphi(t-h), \varphi^{\prime}(t-h)\right), \forall t \in[h, 2 h] .x(t):=x1(t)=f(th,φ(th),φ(th)),t[h,2h].
From the regularity condition we have that x ( t ) C [ h , 2 h ] x ( t ) C [ h , 2 h ] x(t)inC^(oo)[-h,2h]x(t) \in C^{\infty}[-h, 2 h]x(t)C[h,2h] where
(6.1) x ( t ) = { φ ( t ) , t [ h , h ] f ( t h , φ ( t h ) , φ ( t h ) ) , t [ h , 2 h ] (6.1) x ( t ) = φ ( t ) , t [ h , h ] f t h , φ ( t h ) , φ ( t h ) , t [ h , 2 h ] {:(6.1)x(t)={[varphi(t)","t in[-h","h]],[f(t-h,varphi(t-h),varphi^(')(t-h))","t in[h","2h]]:}:}x(t)=\left\{\begin{array}{l} \varphi(t), t \in[-h, h] \tag{6.1}\\ f\left(t-h, \varphi(t-h), \varphi^{\prime}(t-h)\right), t \in[h, 2 h] \end{array}\right.(6.1)x(t)={φ(t),t[h,h]f(th,φ(th),φ(th)),t[h,2h]
The next step is
( p 1 ) x 1 ( t ) = g ( t , x 1 ( t ) , x ( t + h ) ) + t h t K ( s , x 1 ( s ) ) d s p 1 x 1 ( t ) = g t , x 1 ( t ) , x ( t + h ) + t h t K s , x 1 ( s ) d s {:p_(1))x_(1)^(')(t)=g(t,x_(1)(t),x(t+h))+int_(t-h)^(t)K(s,x_(1)(s))ds\left.\mathrm{p}_{1}\right) x_{1}^{\prime}(t)=g\left(t, x_{1}(t), x(t+h)\right)+\int_{t-h}^{t} K\left(s, x_{1}(s)\right) d sp1)x1(t)=g(t,x1(t),x(t+h))+thtK(s,x1(s))ds.
From condition ( C 5 C 5 C5C 5C5 ) we have that
x ( t ) := x 2 ( t ) = f ( t h , x 1 ( t h ) , x 1 ( t h ) ) , t [ 2 h , 3 h ] . x ( t ) := x 2 ( t ) = f t h , x 1 ( t h ) , x 1 ( t h ) , t [ 2 h , 3 h ] . x(t):=x_(2)(t)=f(t-h,x_(1)(t-h),x_(1)^(')(t-h)),AA t in[2h,3h].x(t):=x_{2}(t)=f\left(t-h, x_{1}(t-h), x_{1}^{\prime}(t-h)\right), \forall t \in[2 h, 3 h] .x(t):=x2(t)=f(th,x1(th),x1(th)),t[2h,3h].
From the regularity condition we have that x ( t ) C [ h , 3 h ] x ( t ) C [ h , 3 h ] x(t)inC^(oo)[-h,3h]x(t) \in C^{\infty}[-h, 3 h]x(t)C[h,3h] where
(6.2) x ( t ) = { φ ( t ) , t [ h , h ] f ( t h , φ ( t h ) , φ ( t h ) ) , t [ h , 2 h ] f ( t h , x 1 ( t h ) , x 1 ( t h ) ) , t [ 2 h , 3 h ] (6.2) x ( t ) = φ ( t ) , t [ h , h ] f t h , φ ( t h ) , φ ( t h ) , t [ h , 2 h ] f t h , x 1 ( t h ) , x 1 ( t h ) , t [ 2 h , 3 h ] {:(6.2)x(t)={[varphi(t)","t in[-h","h]],[f(t-h,varphi(t-h),varphi^(')(t-h))","t in[h","2h]],[f(t-h,x_(1)(t-h),x_(1)^(')(t-h))","t in[2h","3h]]:}:}x(t)=\left\{\begin{array}{l} \varphi(t), t \in[-h, h] \tag{6.2}\\ f\left(t-h, \varphi(t-h), \varphi^{\prime}(t-h)\right), t \in[h, 2 h] \\ f\left(t-h, x_{1}(t-h), x_{1}^{\prime}(t-h)\right), t \in[2 h, 3 h] \end{array}\right.(6.2)x(t)={φ(t),t[h,h]f(th,φ(th),φ(th)),t[h,2h]f(th,x1(th),x1(th)),t[2h,3h]
By induction we can obtain the solution on [ h , [ [ h , [ [-h,oo[[-h, \infty[[h,[ of the form
(6.3) x ( t ) = { φ ( t ) , t [ h , h ] x 1 , t [ h , 2 h ] x 2 , t [ 2 h , 3 h ] x n , t [ n h , ( n + 1 ) h ] (6.3) x ( t ) = φ ( t ) , t [ h , h ] x 1 , t [ h , 2 h ] x 2 , t [ 2 h , 3 h ] x n , t [ n h , ( n + 1 ) h ] {:(6.3)x(t)={[varphi(t)","t in[-h","h]],[x_(1)","t in[h","2h]],[x_(2)","t in[2h","3h]],[cdots],[x_(n)","t in[nh","(n+1)h]]:}:}x(t)=\left\{\begin{array}{l} \varphi(t), t \in[-h, h] \tag{6.3}\\ x_{1}, t \in[h, 2 h] \\ x_{2}, t \in[2 h, 3 h] \\ \cdots \\ x_{n}, t \in[n h,(n+1) h] \end{array}\right.(6.3)x(t)={φ(t),t[h,h]x1,t[h,2h]x2,t[2h,3h]xn,t[nh,(n+1)h]
In order to prove the necessity of the regularity condition we have x C [ h , [ x C [ h , [ x inC^(oo)[-h,oo[x \in C^{\infty}[-h, \infty[xC[h,[ a solution of the problem (1.2)-(1.3). By successive derivations we have
x ( n + 1 ) ( t ) = g ( n ) ( t , φ ( t ) , φ ( t + h ) ) + [ t h t K ( s , φ ( s ) ) d s ] ( n ) , n N x ( n + 1 ) ( t ) = g ( n ) ( t , φ ( t ) , φ ( t + h ) ) + t h t K ( s , φ ( s ) ) d s ( n ) , n N x^((n+1))(t)=g^((n))(t,varphi(t),varphi(t+h))+[int_(t-h)^(t)K(s,varphi(s))ds]^((n)),n inNx^{(n+1)}(t)=g^{(n)}(t, \varphi(t), \varphi(t+h))+\left[\int_{t-h}^{t} K(s, \varphi(s)) d s\right]^{(n)}, n \in \mathbb{N}x(n+1)(t)=g(n)(t,φ(t),φ(t+h))+[thtK(s,φ(s))ds](n),nN
For t = 0 t = 0 t=0t=0t=0 follows that
φ ( n + 1 ) ( 0 ) = g ( n ) ( 0 , φ ( 0 ) , φ ( h ) ) + [ h 0 K ( s , φ ( s ) ) d s ] ( n ) φ ( n + 1 ) ( 0 ) = g ( n ) ( 0 , φ ( 0 ) , φ ( h ) ) + h 0 K ( s , φ ( s ) ) d s ( n ) varphi^((n+1))(0)=g^((n))(0,varphi(0),varphi(h))+[int_(-h)^(0)K(s,varphi(s))ds]^((n))\varphi^{(n+1)}(0)=g^{(n)}(0, \varphi(0), \varphi(h))+\left[\int_{-h}^{0} K(s, \varphi(s)) d s\right]^{(n)}φ(n+1)(0)=g(n)(0,φ(0),φ(h))+[h0K(s,φ(s))ds](n)
Remark 6.2. If B = R n B = R n B=R^(n)\mathbb{B}=\mathbb{R}^{n}B=Rn, then (1.2) is a finite system of equations, see [6], [10].
Remark 6.3. If B = l p B = l p B=l^(p)\mathbb{B}=l^{p}B=lp, then (1.2) is a infinite system of equations, see [1], [5], [19].

References

[1] R.G. Cooke, Infinite matrices and sequence spaces, London, Macmillan, 1950
[2] A. Chiş-Novac, Data dependence of fixed points in gauge spaces, Fixed Point Theory, 12 (2011), No. 1, 49-56
[3] C. Crăciun, M.-A. Şerban, A nonlinear integral equation via picard operators, Fixed Point Theory, 12 (2011), No. 1, 57-70
[4] M. Dobriţoiu, I.A. Rus, M.A. Şerban, An integral equation arising from infectious diseases, via Picard operator, Studia Univ. "Babeş-Bolyai", Mathematica, Vol. LII, No. 3, 2007, 81-83
[5] I. Gohberg, S. Goldberg, M.A. Kaashoek, Basic classes of linear operators, Birkhuser, Basel, 2003
[6] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kuwer Academic Publishers, Dordrecht, Boston, London, 1996
[7] V.A. Ilea, Functional differential equations of first order with advanced and retarded arguments, Presa Universitară Clujeană, 2006 (in Romanian)
[8] V.A. Ilea, D. Otrocol, M.A. Şerban, D. Trif, Integro-differential equation with two time lags, to appear
[9] V.A. Ilea, D. Otrocol, On a D.V. Ionescu problem for functional-differential equations, Fixed Point Theory, 10 (2009), No. 1, 125-140
[10] V. Kolmanovskii, A. Mishkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publisers, 1992
[11] D. Otrocol, Lotka-Volterra systems with retarded argument, Presa Universitară Clujeană, 2007 (in Romanian)
[12] D. Otrocol, V.A. Ilea, C. Revnic, An iterative method for a functional-differential equation with mixed type argument, Fixed Point Theory, 11 (2010), No. 2, 327-336
[13] I.A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9 (2008), No. 2, 541-559
[14] I.A. Rus, Picard operators and applications, Sciantiae Mathematicae Japonicae, 58 (2003), No. 1, 191-219
[15] I.A. Rus, Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2 (2001), 41-58
[16] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26 (2010), no. 2, 230-258
[17] I.A. Rus, M.A. Şerban, D. Trif, Step method for some integral equations from biomathematics, to appear
[18] S. Sakata, T. Hara, Stability regions for linear differential equations with two kinds of time lags, Funkcialaj Ekvacioj, 47 (2004), 129-144
[19] Sze-Bi Hsu, Ordinary differential equations with applications, Series on Applied Mathematics, vol. 16, Word Scientific, 2006
Babeş-Bolyai University
Department of Applied Mathematics
Kogălniceanu Str., No. 1, Cluj-Napoca, Romania
E-mail address: vdarzu@math.ubbcluj.ro
T. Popoviciu Institute of Numerical Analysis
Romanian Academy
Cluj-Napoca, Romania
E-mail address: dotrocol@ictp.acad.ro

  1. 2010 Mathematics Subject Classification. 47H10, 47N20.
    Key words and phrases. Integro-differential equation, two time modifications, step method, Picard operators.
2011

Related Posts