[1] Baras, P., Hassan, J.C., Veron, L., Compacite de l’operateur definissant la solution d’une equation d’´evolution non homogene, C.R. Acad. Sci. Paris 284(1977), 779-802.
[2] Bolojan-Nica, O., Infante, G., Precup, R., Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal., 94(2014), 231-242.
[3] Bolojan, O., Infante, G., Precup, R., Existence results for systems with coupled nonlocal nonlinear initial conditions, Math. Bohem., 140(2015), 371-384.
[4] Bolojan, O., Precup, R., Semilinear evolution systems with nonlinear constraints, Fixed Point Theory, 17(2016), 275-288.
[5] Bolojan, O., Precup, R., Hybrid delay evolution systems with nonlinear constraints, Dynam. Systems Appl., 27(2018), 773-790.
[6] Boucherif, A., Akca, H., Nonlocal Cauchy problems for semilinear evolution equations, Dynam. Systems Appl., 11(2002), 415-420.
[7] Boucherif, A., Precup, R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.
[8] Boucherif, A., Precup, R., Semilinear evolution equations with nonlocal initial conditions,
Dynam. Systems Appl., 16(2007), 507-516.
[9] Burlica, M.D., Necula, M., Ro¸su, D., Vrabie, I.I., Delay Differential Evolutions Subjected to Nonlocal Initial Conditions, Chapman and Hall/CRC Press, 2016.
[10] Burlica, M., Ro¸su, D., Vrabie, I.I., Abstract reaction-diffusion systems with nonlocal initial conditions, Nonlinear Anal., 94(2014), 107-119.
[11] Byszewski, L., Theorems about the existence and uniqueness of solutions of semilinear
evolution nonlocal Cauchy problems, J. Math. Anal. Appl., 162(1991), 494-505.
[12] Cardinali, T., Precup, R., Rubbioni, P., A unified existence theory for evolution equations and systems under nonlocal conditions, J. Math. Anal. Appl., 432(2015), 1039-1057.
[13] Cazenave, T., Haraux, A., An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998.
[14] Chabrowski, J., On nonlocal problems for parabolic equations, Nagoya Math. J., 93(1984), 109-131.
[15] Cioranescu, N., Sur les conditions lin´eaires dans l’int´egration des equations differentielles ordinaires, Math. Z., 35(1932), 601-608.
[16] Conti, R., Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Un. Mat. Ital., 22(1967), 135-178.
[17] Garcıa-Falset, J., Reich, S., Integral solutions to a class of nonlocal evolution equations, Commun. Contemp. Math., 12(2010), 1032-1054.
[18] Goldstein, J.A., Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
[19] Infante, G., Maciejewski, M., Multiple positive solutions of parabolic systems with nonlinear, nonlocal initial conditions, J. London Math. Soc., 94(2016), 859-882.
[20] Jackson, D., Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl., 172(1993), 256-265.
[21] Karakostas, G.L., Tsamatos, P.Ch., Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal., 19(2002), 109-121.
[22] Kerefov, A.A., Nonlocal boundary value problems for parabolic equations, (Russian), Differ. Uravn., 15(1979), 74-78.
[23] Kolmanovskii, V., Myshkis, A., Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992.
[24] Lin, Y., Liu, J.H., Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal., 26(1996), 1023-1033.
[25] Liu, J.H., A remark on the mild solutions of non-local evolution equations, Semigroup Forum, 66(2003), 63-67.
[26] McKibben, M., Discovering Evolution Equations with Applications, Vol. I, Chapman & Hall/CRC, 2011.
[27] Necula, M., Vrabie, I.I., Nonlinear delay evolution inclusions with general nonlocal initial conditions, Ann. Acad. Rom. Sci. Ser. Math., 7(2015), 67-97.
[28] Nica, O., Initial-value problems for first-order differential systems with general nonlocal, Electron. J. Differential Equations, 2012(2012), no. 74, 1-15.
[29] Nica, O., Precup, R., On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babe¸s-Bolyai Math., 56(2011), no. 3, 125-137.
[30] Ntouyas, S.K., Tsamatos, P.Ch., Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210(1997), 679-687.
[31] Olmstead, W.E., Roberts, C.A., The one-dimensional heat equation with a nonlocal initial condition, Appl. Math. Lett., 10(1997), 89-94.
[32] Paicu, A., Vrabie, I.I., A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear Anal., 72(2010), 4091-4100.
[33] Pao, C.V., Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195(1995), 702-718.
[34] Precup, R., The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comp. Modelling, 49(2009), 703-708.
[35] Stikonas, A., A survey on stationary problems, Green’s functions and spectrum of SturmLiouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. Control, 19(2014), 301-334.
[36] Vabishchevich, P.N., Non-local parabolic problems and the inverse heat-conduction problem, (Russian), Differ. Uravn., 17(1981), 761-765.
[37] Viorel, A., Contributions to the Study of Nonlinear Evolution Equations, Ph.D. Thesis, Cluj-Napoca, 2011.
[38] Vrabie, I.I., C0-Semigroups and Applications, Elsevier, Amsterdam, 2003.
[39] Vrabie, I.I., Global solutions for nonlinear delay evolution inclusions with nonlocal initial conditions, Set-Valued Var. Anal., 20(2012), 477-497.
[40] Webb, G.F., An abstract semilinear Volterra integrodifferential equation, Proc. Amer. Math. Soc., 69(1978), 255-260.
[41] Webb, J.R.L., Infante, G., Positive solutions of nonlocal initial boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl., 15(2008), 45-67.
[42] Whyburn, W.M., Differential equations with general boundary conditions, Bull. Amer. Math. Soc., 48(1942), 692-704.