Abstract
Authors
Crăciun Iancu
Tiberiu Popoviciu Institute of Numerical Analysis Romania Academy, Cluj-Napoca, Romania
Tiberiu Oproiu
Romanian Academy Astronomical Observatory
Ion Păvăloiu
Tiberiu Popoviciu Institute of Numerical Analysis Romania Academy, Cluj-Napoca, Romania
Keywords
?
Paper coordinates
C. Iancu, T. Oproiu, I. Păvăloiu, Inverse interpolating splines with applications to the equation solving, Seminar of Functional Analysis and Numerical Method, Babes-Bolyai University, Faculty of Mathematics, Preprint nr. 1, 1986, pp. 67-82.
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
[1] Anselone, P.M., Laurent, P.J., A General Method for the Construction of Interpolating or Smoothing Spline Functions, Numerische Mathematik 12 (1968), 66-82.
[2] Carasso, C., Methods numeriques pour l’obtention de fonctions spline, These, Grenoble (1966)
[3] Creville, T.N.E. (ed), Theory and Applications of Spline Functions, Academic Press, New York, London (1969)
[4] Cuzek, J.A., Kemper, C.A., A New Error Analysis for a Cubic Spline Approximate Solution of a Class of Volterra Integro-Differential Equations, Mathematics of Computation, Vol. 27, nr. 123 (1973), 563-570.
[5] Iancu, C., On the Cubic Spline of Interpolation, Seminar of Functional Analysis and Numerical Methods, Babsc-Bolyai University, Preprint 4 (1981), 52-71
[6] Iancu, C., P[v[loiu, I., La resolution des equations par interpolation inverse de type Hermite, Seminar of Functional analysis and Numerical Methods, Babs-Bolyai University, Preprint 4 (1981), 72-84
[7] Iancu, C., Păvăloiu, I., Resolution des equations a l’aide des fonctions epline d’interpolation inverse, Seminar Functional Analysis and Numerical Methods, Babeș-Bolyai University, Preprint 1 (1984), 97-104
[8] Imamov, A., Reshenie nelinejnykh uravnenii metodom obratnogo splajn interpolirovanie, Metody splajnfunktsii, Akad. Nauk. SSSR, Novosibirsk, 81 (1979), 74-80
[9] Păvăloiu, I., Rezolvarea ecuațiilor prin interpolare, Ed. Dacia, Cluj, 1981.
[10] Seatzu, S., Un metodo per construzione di smoothing splines naturali mono e bidimensionali, Calcolo, 12 fasc. III (1975), 259-173.
[11] Stancu, D.D., Curs și culegere de probleme de analiză numerică, vol. I, Cluj-Napoca, 1977
[12] Zavyalov, I.S., Kvasov, B.I., Miroshnichenko, V.L., Metody splajn-funktsii, Moskva, 1980.
[13] Marsden, M., Cubic Spline Interpolation of Continuous Fuctions, J. of App. Th. 10(1974), 103-111
[14] Turovicz, B., A., Sur les derives d’ordre superieur d’une function inverse, Colloq. Math., 83-87 (1959).