Extending the collage theorem to contractive like operators

Abstract


We prove a “collage” theorem for weak contractive maps and we useit for inverse problems

Authors

Stefan M. Soltuz
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Weak contractive maps, inverse problems

Paper coordinates

Ş.M. Şoltuz, Extending the collage theorem to contractive like operators, Rev. Anal. Numer. Theor. Approx., 38 (2009) no. 2, pp. 177-181. 
https://ictp.acad.ro/jnaat/journal/article/view/2009-vol38-no2-art8

PDF

About this paper

Journal

Revue d’Analyse Numerique et de Theorie de l’Approximation

Publisher Name

Romanian Academy

DOI
Print ISSN

2457-6794

Online ISSN

 2501-059X

google scholar link

[1] Berinde, V.,Approximating fixed points of weak contractions using Picard iteratioon,Nonlinear Analysis Forum,9, pp. 43–53, 2004.
[2] Berinde, M.andBerinde, V.,On a general class of multi-valued weakly Picard map-pings,J. Math. Anal. Appl.,326, pp. 772–782, 2007.
[3] Kunze, H.E.andVrscay, E.R.,Solving inverse problems for ordinary differential equa-tions using the Picard contraction mapping, Inverse Problems,15, pp. 745–770, 1999.
[4] Kunze, H.E.andGomes, S.,Solving an inverse problem for Urison-type integral equa-tions using Banach’s fixed point theorem, Inverse Problems,19, pp. 411–418, 2003.
[5] Kunze, H.E., Hicken, J.E.andVrscay, E.R.,Inverse problems for ODEs using con-traction maps and suboptimality for the ‘collage method’, Inverse Problems,20, pp. 977–991, 2004

Paper (preprint) in HTML form

jnaat,+Journal+manager,+2009-2-Soltuz-15-10-28

EXTENDING THE COLLAGE THEOREM TO CONTRACTIVE LIKE OPERATORS

ŞTEFAN M. ŞOLTUZ

Abstract

We generalize the classical "collage" theorem, due to Barnsley, to contractive like operators.

MSC 2000. 65J22, 47N40, 47H10.
Keywords. contractive like operators.

1. INTRODUCTION

Let X X XXX be a real Banach space, T : X X T : X X T:X rarr XT: X \rightarrow XT:XX be an operator. The following result of Barnsley, see 1, becomes "a classic".
Theorem 1. (Collage Theorem) Let x X x X x in Xx \in XxX be given and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a contraction with contraction factor L ( 0 , 1 ) L ( 0 , 1 ) L in(0,1)L \in(0,1)L(0,1), (i.e. T x T y L x y T x T y L x y ||Tx-Ty|| <= L||x-y||\|T x-T y\| \leq L\|x-y\|TxTyLxy, x , y X x , y X AA x,y in X\forall x, y \in Xx,yX ), and fixed point x x x^(**)x^{*}x. Then
x x 1 1 L x T x x x 1 1 L x T x ||x-x^(**)|| <= (1)/(1-L)||x-Tx||\left\|x-x^{*}\right\| \leq \frac{1}{1-L}\|x-T x\|xx11LxTx
In fractal-based applications, T T TTT produces a union of shrunken copies of x x xxx, i.e. "a collage" of itself. The term x T x x T x ||x-Tx||\|x-T x\|xTx is referred as "collage distance". Such "collages" are sufficient to be taken in finite number, in order to have a good approximation of an denoised image; fact which is very useful in Image Compression (both Analysis and Synthesis of an image). Kunze et all., see [5], 6], 7), were able to apply the Collage Theorem to inverse problems in ODE, that is to reconstruct the field of an ODE, from a given "target" (trajectory). Our aim is to generalize the above Collage result for a larger operatorial class than contractions. Recently, similar results were introduced for other operatorial classes, see [11] and [12.
The following operatorial class, satisfying (1), was introduced in [4]. Since they failed to named it, we shall do so here. It is just a convention.
Definition 2. The operator T T TTT is contractive-like, or C L C L CLC LCL for short, if there exist a constant q ( 0 , 1 ) q ( 0 , 1 ) q in(0,1)q \in(0,1)q(0,1) and a monotone increasing and continuous function
ψ : [ 0 , ) [ 0 , ) ψ : [ 0 , ) [ 0 , ) psi:[0,oo)rarr[0,oo)\psi:[0, \infty) \rightarrow[0, \infty)ψ:[0,)[0,) with ψ ( 0 ) = 0 ψ ( 0 ) = 0 psi(0)=0\psi(0)=0ψ(0)=0 such that for each x , y X x , y X x,y in Xx, y \in Xx,yX,
(1) T x T y q x y + ψ ( x T x ) . (1) T x T y q x y + ψ ( x T x ) . {:(1)||Tx-Ty|| <= q||x-y||+psi(||x-Tx||).:}\begin{equation*} \|T x-T y\| \leq q\|x-y\|+\psi(\|x-T x\|) . \tag{1} \end{equation*}(1)TxTyqxy+ψ(xTx).
Let F ( T ) F ( T ) F(T)F(T)F(T) denote the fixed point set with respect to X X XXX for the map T T TTT. Suppose that x F ( T ) x F ( T ) x^(**)in F(T)x^{*} \in F(T)xF(T). The following operators are called Zamfirescu operators, see [13] or [10].
Definition 3. [13] The operator T : X X T : X X T:X rarr XT: X \rightarrow XT:XX satisfies condition Z Z ZZZ (or is a quasi-contraction) if and only if there exist the real numbers a , b , c a , b , c a,b,ca, b, ca,b,c satisfying 0 < a < 1 , 0 < b < 1 / 2 , 0 < c < 1 / 2 0 < a < 1 , 0 < b < 1 / 2 , 0 < c < 1 / 2 0 < a < 1,0 < b < 1//2,0 < c < 1//20<a<1,0<b<1 / 2,0<c<1 / 20<a<1,0<b<1/2,0<c<1/2 such that for each pair x , y x , y x,yx, yx,y in X X XXX, at least one condition is true
( z 1 ) T x T y a x y z 1 T x T y a x y (z_(1))||Tx-Ty|| <= a||x-y||\left(z_{1}\right)\|T x-T y\| \leq a\|x-y\|(z1)TxTyaxy,
( z 2 ) T x T y b ( x T x + y T y ) z 2 T x T y b ( x T x + y T y ) (z_(2))||Tx-Ty|| <= b(||x-Tx||+||y-Ty||)\left(z_{2}\right)\|T x-T y\| \leq b(\|x-T x\|+\|y-T y\|)(z2)TxTyb(xTx+yTy),
( z 3 ) T x T y c ( x T y + y T x ) z 3 T x T y c ( x T y + y T x ) (z_(3))||Tx-Ty|| <= c(||x-Ty||+||y-Tx||)\left(z_{3}\right)\|T x-T y\| \leq c(\|x-T y\|+\|y-T x\|)(z3)TxTyc(xTy+yTx).
It has been shown in 2 (see also [3]) that conditions ( z 1 ) ( z 3 ) z 1 z 3 (z_(1))-(z_(3))\left(z_{1}\right)-\left(z_{3}\right)(z1)(z3) lead to
(2) T x T y δ x y + 2 δ x T x , x , y D (2) T x T y δ x y + 2 δ x T x , x , y D {:(2)||Tx-Ty|| <= delta||x-y||+2delta||x-Tx||","AA x","y in D:}\begin{equation*} \|T x-T y\| \leq \delta\|x-y\|+2 \delta\|x-T x\|, \forall x, y \in D \tag{2} \end{equation*}(2)TxTyδxy+2δxTx,x,yD
where
δ := max { a , b 1 b , c 1 c } . δ := max a , b 1 b , c 1 c . delta:=max{a,(b)/(1-b),(c)/(1-c)}.\delta:=\max \left\{a, \frac{b}{1-b}, \frac{c}{1-c}\right\} .δ:=max{a,b1b,c1c}.
Set
q := δ , ψ ( a ) := 2 δ a q := δ , ψ ( a ) := 2 δ a q:=delta,psi(a):=2delta aq:=\delta, \psi(a):=2 \delta aq:=δ,ψ(a):=2δa
to obtain (1). Thus, relation (1) generalizes (2). In 4 was introduced this more general class of operators satisfying (1).
Remark 4. Set ψ ( t ) = 2 t ψ ( t ) = 2 t psi(t)=2t\psi(t)=2 tψ(t)=2t to see that a CL operators need not have a fixed point, as pointed in [8] or [9]. Therefore, we shall suppose implicitly throughout this paper that all CL operators involved have a fixed point.
A typical inverse problem is the following:
Problem 5. For given ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 and a "target" x ¯ x ¯ bar(x)\bar{x}x¯, find T ε C L T ε C L T_(epsi)in CLT_{\varepsilon} \in C LTεCL such that x ¯ x T ε < ε x ¯ x T ε < ε ||( bar(x))-x_(T_(epsi))^(**)|| < epsi\left\|\bar{x}-x_{T_{\varepsilon}}^{*}\right\|<\varepsilonx¯xTε<ε, where x T ε = T ε ( x T ε ) x T ε = T ε x T ε x_(T_(epsi))^(**)=T_(epsi)(x_(T_(epsi))^(**))x_{T_{\varepsilon}}^{*}=T_{\varepsilon}\left(x_{T_{\varepsilon}}^{*}\right)xTε=Tε(xTε) is the unique fixed point of the C L C L CLC LCL mapping T ε T ε T_(epsi)T_{\varepsilon}Tε.
Randomly selecting various maps in C L C L CLC LCL, finding their fixed points and computing the distance from our target is an extremely tedious procedure. Consider now the following problem which we shall fit in our framework and which is very useful for practitioners, see 5 .
Problem 6. Let x ¯ X x ¯ X bar(x)in X\bar{x} \in Xx¯X be a target and let δ > 0 δ > 0 delta > 0\delta>0δ>0 be given. Find T δ C L T δ C L T_(delta)in CLT_{\delta} \in C LTδCL, such that x ¯ T δ x ¯ < δ x ¯ T δ x ¯ < δ ||( bar(x))-T_(delta)( bar(x))|| < delta\left\|\bar{x}-T_{\delta} \bar{x}\right\|<\deltax¯Tδx¯<δ.
In other words, instead of searching for C L C L CLC LCL maps whose fixed points lie close to target x ¯ x ¯ bar(x)\bar{x}x¯, we search for C L C L CLC LCL maps that send x ¯ x ¯ bar(x)\bar{x}x¯ close to itself.

2. MAIN RESULTS

We shall give a lower bound to approximation error in terms of the collage error.
Proposition 7. Let X X XXX be a real Banach space and T T TTT a C L C L CLC LCL map with contraction factor q ( 0 , 1 ) q ( 0 , 1 ) q in(0,1)q \in(0,1)q(0,1) and fixed point x X x X x^(**)in Xx^{*} \in XxX. Then for any x X x X x in Xx \in XxX,
1 1 + q x T x x x . 1 1 + q x T x x x . (1)/(1+q)||x-Tx|| <= ||x^(**)-x||.\frac{1}{1+q}\|x-T x\| \leq\left\|x^{*}-x\right\| .11+qxTxxx.
Proof. For any x X x X x in Xx \in XxX satisfying x = x x = x x=x^(**)x=x^{*}x=x, the above inequality holds. If x x , x X x x , x X x!=x^(**),AA x in Xx \neq x^{*}, \forall x \in Xxx,xX, then one obtains
T x x x x + x T x = x x + T x T x x x + q x x + ψ ( x T x ) ( 1 + q ) x x T x x x x + x T x = x x + T x T x x x + q x x + ψ x T x ( 1 + q ) x x {:[||Tx-x|| <= ||x^(**)-x||+||x^(**)-Tx||],[=||x^(**)-x||+||Tx^(**)-Tx||],[ <= ||x^(**)-x||+q||x^(**)-x||+psi(||x^(**)-Tx^(**)||)],[ <= (1+q)||x^(**)-x||]:}\begin{aligned} \|T x-x\| & \leq\left\|x^{*}-x\right\|+\left\|x^{*}-T x\right\| \\ & =\left\|x^{*}-x\right\|+\left\|T x^{*}-T x\right\| \\ & \leq\left\|x^{*}-x\right\|+q\left\|x^{*}-x\right\|+\psi\left(\left\|x^{*}-T x^{*}\right\|\right) \\ & \leq(1+q)\left\|x^{*}-x\right\| \end{aligned}Txxxx+xTx=xx+TxTxxx+qxx+ψ(xTx)(1+q)xx
From which one gets the conclusion.
Theorem 8. (Collage theorem for contractive-like maps) Let X X XXX be a real Banach space and T T TTT a C L C L CLC LCL map with contraction factor q ( 0 , 1 ) q ( 0 , 1 ) q in(0,1)q \in(0,1)q(0,1) and fixed point x X x X x^(**)in Xx^{*} \in XxX. Then for any x X x X x in Xx \in XxX,
x x 1 1 q x T x x x 1 1 q x T x ||x^(**)-x|| <= (1)/(1-q)||x-Tx||\left\|x^{*}-x\right\| \leq \frac{1}{1-q}\|x-T x\|xx11qxTx
Proof. The C L C L CLC LCL condition assures that the fixed point x x x^(**)x^{*}x is unique. If x = x x = x x=x^(**)x=x^{*}x=x, the above inequality holds. If x x , x X x x , x X x!=x^(**),AA x in Xx \neq x^{*}, \forall x \in Xxx,xX, then one obtains
x x T x T x + T x x q x x + ψ ( x T x ) + T x x = q x x + T x x x x T x T x + T x x q x x + ψ x T x + T x x = q x x + T x x {:[||x^(**)-x|| <= ||Tx^(**)-Tx||+||Tx-x||],[ <= q||x^(**)-x||+psi(||x^(**)-Tx^(**)||)+||Tx-x||],[=q||x^(**)-x||+||Tx-x||]:}\begin{aligned} \left\|x^{*}-x\right\| & \leq\left\|T x^{*}-T x\right\|+\|T x-x\| \\ & \leq q\left\|x^{*}-x\right\|+\psi\left(\left\|x^{*}-T x^{*}\right\|\right)+\|T x-x\| \\ & =q\left\|x^{*}-x\right\|+\|T x-x\| \end{aligned}xxTxTx+Txxqxx+ψ(xTx)+Txx=qxx+Txx
From which one gets the conclusion.
Remark 9. To summarize, we have the following bounds
1 1 + q x T x x x 1 1 q x T x . 1 1 + q x T x x x 1 1 q x T x . (1)/(1+q)||x-Tx|| <= ||x^(**)-x|| <= (1)/(1-q)||x-Tx||.\frac{1}{1+q}\|x-T x\| \leq\left\|x^{*}-x\right\| \leq \frac{1}{1-q}\|x-T x\| .11+qxTxxx11qxTx.
The above "Collage Theorem" allows us to reformulate the inverse Problem 5 in the particular and more convenient Problem 6.
Theorem 10. If Problem 6 has a solution, then Problem 5 has a solution too.
Proof. Let ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 and x ¯ X x ¯ X bar(x)in X\bar{x} \in Xx¯X be given. For δ := ( 1 q ) ε δ := ( 1 q ) ε delta:=(1-q)epsi\delta:=(1-q) \varepsilonδ:=(1q)ε, let T δ C L T δ C L T_(delta)in CLT_{\delta} \in C LTδCL be such that x ¯ T δ x ¯ < δ x ¯ T δ x ¯ < δ ||( bar(x))-T_(delta)( bar(x))|| < delta\left\|\bar{x}-T_{\delta} \bar{x}\right\|<\deltax¯Tδx¯<δ. If x T δ x T δ x_(T_(delta))^(**)x_{T_{\delta}}^{*}xTδ is the unique fixed point of the C L C L CLC LCL mapping T δ T δ T_(delta)T_{\delta}Tδ, then, by Theorem 8,
x ¯ x T δ 1 1 q x ¯ T δ x ¯ 1 1 q δ = ε x ¯ x T δ 1 1 q x ¯ T δ x ¯ 1 1 q δ = ε ||( bar(x))-x_(T_(delta))^(**)|| <= (1)/(1-q)||( bar(x))-T_(delta)( bar(x))|| <= (1)/(1-q)delta=epsi\left\|\bar{x}-x_{T_{\delta}}^{*}\right\| \leq \frac{1}{1-q}\left\|\bar{x}-T_{\delta} \bar{x}\right\| \leq \frac{1}{1-q} \delta=\varepsilonx¯xTδ11qx¯Tδx¯11qδ=ε
Note that shrinking the distance between two operators, one of them from C L C L CLC LCL, reduces the distance between their fixed points.
Proposition 11. Let X X XXX be a real Banach space and T 1 C L T 1 C L T_(1)in CLT_{1} \in C LT1CL with contraction factor q 1 ( 0 , 1 ) q 1 ( 0 , 1 ) q_(1)in(0,1)q_{1} \in(0,1)q1(0,1) and T 2 : X X T 2 : X X T_(2):X rarr XT_{2}: X \rightarrow XT2:XX a map such that x 1 , x 2 X x 1 , x 2 X x_(1)^(**),x_(2)^(**)in Xx_{1}^{*}, x_{2}^{*} \in Xx1,x2X are distinct fixed points for T 1 T 1 T_(1)T_{1}T1 and T 2 T 2 T_(2)T_{2}T2. Then,
x 1 x 2 1 1 q 1 sup x X T 1 x T 2 x x 1 x 2 1 1 q 1 sup x X T 1 x T 2 x ||x_(1)^(**)-x_(2)^(**)|| <= (1)/(1-q_(1))s u p_(x in X)||T_(1)x-T_(2)x||\left\|x_{1}^{*}-x_{2}^{*}\right\| \leq \frac{1}{1-q_{1}} \sup _{x \in X}\left\|T_{1} x-T_{2} x\right\|x1x211q1supxXT1xT2x
Proof. Using (1) one obtains
x 1 x 2 = T 1 x 1 T 2 x 2 T 1 x 1 T 1 x 2 + T 1 x 2 T 2 x 2 q 1 x 1 x 2 + ψ ( x 1 T 1 x 1 ) + sup x X T 1 x T 2 x , x 1 x 2 = T 1 x 1 T 2 x 2 T 1 x 1 T 1 x 2 + T 1 x 2 T 2 x 2 q 1 x 1 x 2 + ψ x 1 T 1 x 1 + sup x X T 1 x T 2 x , {:[||x_(1)^(**)-x_(2)^(**)||=||T_(1)x_(1)^(**)-T_(2)x_(2)^(**)|| <= ||T_(1)x_(1)^(**)-T_(1)x_(2)^(**)||+||T_(1)x_(2)^(**)-T_(2)x_(2)^(**)||],[ <= q_(1)||x_(1)^(**)-x_(2)^(**)||+psi(||x_(1)^(**)-T_(1)x_(1)^(**)||)+s u p_(x in X)||T_(1)x-T_(2)x||","]:}\begin{aligned} \left\|x_{1}^{*}-x_{2}^{*}\right\| & =\left\|T_{1} x_{1}^{*}-T_{2} x_{2}^{*}\right\| \leq\left\|T_{1} x_{1}^{*}-T_{1} x_{2}^{*}\right\|+\left\|T_{1} x_{2}^{*}-T_{2} x_{2}^{*}\right\| \\ & \leq q_{1}\left\|x_{1}^{*}-x_{2}^{*}\right\|+\psi\left(\left\|x_{1}^{*}-T_{1} x_{1}^{*}\right\|\right)+\sup _{x \in X}\left\|T_{1} x-T_{2} x\right\|, \end{aligned}x1x2=T1x1T2x2T1x1T1x2+T1x2T2x2q1x1x2+ψ(x1T1x1)+supxXT1xT2x,
from which we get the conclusion.
Theorem 12. Let X X XXX be a real Banach space, T : X X , x ¯ = T x ¯ T : X X , x ¯ = T x ¯ T:X rarr X, bar(x)=T bar(x)T: X \rightarrow X, \bar{x}=T \bar{x}T:XX,x¯=Tx¯ and suppose there exists T 1 C L T 1 C L T_(1)in CLT_{1} \in C LT1CL with contraction factor q q qqq, such that
sup x X T 1 x T x ε sup x X T 1 x T x ε s u p_(x in X)||T_(1)x-Tx|| <= epsi\sup _{x \in X}\left\|T_{1} x-T x\right\| \leq \varepsilonsupxXT1xTxε
Then
x ¯ T 1 x ¯ 1 + q 1 q ε x ¯ T 1 x ¯ 1 + q 1 q ε ||( bar(x))-T_(1)( bar(x))|| <= (1+q)/(1-q)epsi\left\|\bar{x}-T_{1} \bar{x}\right\| \leq \frac{1+q}{1-q} \varepsilonx¯T1x¯1+q1qε
Proof. Let x = T 1 x x = T 1 x x^(**)=T_(1)x^(**)x^{*}=T_{1} x^{*}x=T1x, and by use of Proposition 11 we obtain
x ¯ x 1 1 q ( sup x X T 1 x T x ) x ¯ x 1 1 q sup x X T 1 x T x ||( bar(x))-x^(**)|| <= (1)/(1-q)(s u p_(x in X)||T_(1)x-Tx||)\left\|\bar{x}-x^{*}\right\| \leq \frac{1}{1-q}\left(\sup _{x \in X}\left\|T_{1} x-T x\right\|\right)x¯x11q(supxXT1xTx)
Thus,
x ¯ T 1 x ¯ x ¯ x + x T 1 x ¯ x ¯ x + T 1 x T 1 x ¯ x ¯ x + q x ¯ x + ψ ( x T 1 x ) = ( 1 + q ) x ¯ x 1 + q 1 q ( sup x X T 1 x T x ) 1 + q 1 q ε . x ¯ T 1 x ¯ x ¯ x + x T 1 x ¯ x ¯ x + T 1 x T 1 x ¯ x ¯ x + q x ¯ x + ψ x T 1 x = ( 1 + q ) x ¯ x 1 + q 1 q sup x X T 1 x T x 1 + q 1 q ε . {:[||( bar(x))-T_(1)( bar(x))|| <= ||( bar(x))-x^(**)||+||x^(**)-T_(1)( bar(x))||],[ <= ||( bar(x))-x^(**)||+||T_(1)x^(**)-T_(1)( bar(x))||],[ <= ||( bar(x))-x^(**)||+q||( bar(x))-x^(**)||+psi(||x^(**)-T_(1)x^(**)||)],[=(1+q)||( bar(x))-x^(**)||],[ <= (1+q)/(1-q)(s u p_(x in X)||T_(1)x-Tx||) <= (1+q)/(1-q)epsi.]:}\begin{aligned} \left\|\bar{x}-T_{1} \bar{x}\right\| & \leq\left\|\bar{x}-x^{*}\right\|+\left\|x^{*}-T_{1} \bar{x}\right\| \\ & \leq\left\|\bar{x}-x^{*}\right\|+\left\|T_{1} x^{*}-T_{1} \bar{x}\right\| \\ & \leq\left\|\bar{x}-x^{*}\right\|+q\left\|\bar{x}-x^{*}\right\|+\psi\left(\left\|x^{*}-T_{1} x^{*}\right\|\right) \\ & =(1+q)\left\|\bar{x}-x^{*}\right\| \\ & \leq \frac{1+q}{1-q}\left(\sup _{x \in X}\left\|T_{1} x-T x\right\|\right) \leq \frac{1+q}{1-q} \varepsilon . \end{aligned}x¯T1x¯x¯x+xT1x¯x¯x+T1xT1x¯x¯x+qx¯x+ψ(xT1x)=(1+q)x¯x1+q1q(supxXT1xTx)1+q1qε.

REFERENCES

[1] Barnsley, M. F., Fractals everywhere, New York: Academic Press, 1988.
[2] Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comenianae, Vol. LXXIII, no. 1, pp. 119-126, 2004.
[3] Berinde, V., Iterative approximation of fixed points, Springer-Verlag Berlin Heidelberg, 2007.
[4] Imoru C.O. and Olatiwo, M.O., On the stability of Picard and Mann iteration processes, Carpathian J. Math., 19, pp. 155-160, 2003.
[5] Kunze H.E. and Vrscay, E.R. Solving inverse problems for ordinary differential equations using the Picard contraction mapping, Inverse Problems, 15, pp. 745-770, 1999.
[6] Kunze, H.E. and Gomes, S., Solving an inverse problem for Urison-type integral equations using Banach's fixed point theorem, Inverse Problems, 19, pp. 411-418, 2003.
[7] Kunze, H.E., Hicken, J.E and Vrscay, E.R., Inverse problems for ODEs using contraction maps and suboptimality for the 'collage method', Inverse Problems, 20, pp. 977-991, 2004.
[8] Osilike, M.O., Stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14/15, pp. 17-29, 1995/96.
[9] Osilike, M.O., Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math., 28, no. 9, pp. 1251-1265, 1997.
[10] Rhoades, B.E., Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc., 196, pp. 161-176, 1974.
[11] Şoltuz, Ş. M., Solving inverse problems via hemicontractive maps, Nonlinear Analysis, 71, pp. 2387-2390, 2009.
[12] Şoltuz, S. M., Solving inverse problems via weak-contractive maps, Rev. Anal. Numer. Theor. Approx., 37, No. 2, pp. 217-220, 2008. 뜸
[13] Zamfirescu, T., Fix Point Theorems in metric spaces, Arch. Math., 23, pp. 292-298, 1972.
Received by the editors: September 17, 2008.

    • "Tiberiu Popoviciu" Institute of Numerical Analysis, Cluj-Napoca, Romania, P.O. Box 68-1, e-mail: smsoltuz@gmail.com.
2009

Related Posts