Abstract
We prove a “collage” theorem for weak contractive maps and we useit for inverse problems
Authors
Stefan M. Soltuz
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Keywords
Weak contractive maps, inverse problems
Paper coordinates
Ş.M. Şoltuz, Inverse problems for quasicontractive maps, Rev. Anal. Numer. Theor. Approx., 38 (2009) no. 2, pp. 79-83.
https://ictp.acad.ro/jnaat/journal/article/view/2009-vol38-no2-art6
???articol Mustata
About this paper
Journal
Revue d’Analyse Numerique et de Theorie de l’Approximation
Publisher Name
Romanian Academy
DOI
Print ISSN
2457-6794
Online ISSN
2501-059X
google scholar link
[1] Berinde, V.,Approximating fixed points of weak contractions using Picard iteratioon,Nonlinear Analysis Forum,9, pp. 43–53, 2004.
[2] Berinde, M.andBerinde, V.,On a general class of multi-valued weakly Picard map-pings,J. Math. Anal. Appl.,326, pp. 772–782, 2007.
[3] Kunze, H.E.andVrscay, E.R.,Solving inverse problems for ordinary differential equa-tions using the Picard contraction mapping, Inverse Problems,15, pp. 745–770, 1999.
[4] Kunze, H.E.andGomes, S.,Solving an inverse problem for Urison-type integral equa-tions using Banach’s fixed point theorem, Inverse Problems,19, pp. 411–418, 2003.
[5] Kunze, H.E., Hicken, J.E.andVrscay, E.R.,Inverse problems for ODEs using con-traction maps and suboptimality for the ‘collage method’, Inverse Problems,20, pp. 977–991, 2004
