[1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.
[2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2003), no. 2, 159-168.
[3] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on triangle with one curved side, Mediterr. J. Math., 10(2013), 10.1007/s00009-011-0156-2, in press.
[4] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on a square with one and two curved sides, Studia Univ. Babes–Bolyai Math., 55(2010), no. 3, 51-67.
[5] P. Blaga, T. Catinas, G. Coman, Bernstein-type operators on triangle with all curved sides, Appl. Math. Comput., 218(2011), 3072-3082.
[6] G. Coman, T. Catinas, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), no. 2, 243-267.
[7] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.
[8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), no. 12, 2068-2071.
[9] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), no. 9, 1076-1079.
[10] H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.
[11] H. Gonska, P. Pitul, I. Rasa, Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.
[12] H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), no. 1-2, 119-130.
[13] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.
[14] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
[15] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, 2001.
[16] I.A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babes-Bolyai Math., 47(2002), no. 4, 101-104.
[17] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
[18] I.A. Rus, Fixed point and interpolation point set of a positive linear operator on C(D), Studia Univ. Babes–Bolyai Math., 55(2010), no. 4, 243-248.