Iterates of multivariate Cheney-Sharma operators

Abstract

Using the weakly Picard operators technique, we study the convergence of the iterates of some hivariate and trivariate Cheney-Sharma operators. Also, we generalize the procedure for the multivariate case.

Authors

T. Catinas
(Babes Bolyai Univ.)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

Cheney-Sharma operators; contraction principle; weakly Picard operators

Cite this paper as:

T. Catinas, D.  Otrocol,  Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., Vol. 15 (2013), no. 7, pp. 1240-1246

PDF

About this paper

Journal

Journal of Computational Analysis and Applications

Publisher Name

Eudoxus Press, Cordova, USA

DOI
Print ISSN

1521-1398

Online ISSN
MR

MR3075657

ZBL

Google Scholar

[1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.

[2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2)(2003), 159-168.

[3] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, 1994.

[4] A.M. Bica, On iterates of Cheney-Sharma operator, J. Comput. Anal. Appl., 11(2009), No. 2, 271-273.

[5] E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5(1964), 77-84.

[6] G. Coman, T. Catinas, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), No. 2, 243-267.

[7] T. Catinas, D. Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, to appear.

[8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.

[9] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), No. 12, 2068-2071.

[10] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), No. 9, 1076-1079.

[11] H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.

[12] H. Gonska, P. Pitul, I. Rasa, Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.

[13] H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), No. 1-2, 119-130.

[14] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.

[15] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.

[16] I. Rasa, Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx., 1 (2009), no. 2, 195204.

[17] I.A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.

[18] I.A. Rus, Iterates of Stancu operators, via contraction principle, Stud. Univ. Babes–Bolyai Math., 47(2002), No. 4, 101-104.

[19] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.

[20] I.A. Rus, A. Petrusel, M.A. Serban, Weakly Picard operators: Weakly Picard operators, equivalent definitions, applications and open problems, Fixed Point Theory, 7 (2006), 3-22.

[21] D.D. Stancu, L.A. Cabulea, D. Pop, Approximation of bivariate functions by means of the operator S α,β;a,b m,n , Stud. Univ. Babes–Bolyai Math., 47(2002), No. 4, 105-113.

[22] I. Tascu, On the approximation of trivariate functions by means of some tensorproduct positive linear operators, Facta Universitatis (Nis), Ser. Math. Inform., 21 (2006), 23-28.

Iterates of multivariate Cheney-Sharma operators

Teodora Cătinaş and Diana Otrocol

Abstract. Using the weakly Picard operators technique, we study the convergence of the iterates of some bivariate and trivariate Cheney-Sharma operators. Also, we generalize the procedure for the multivariate case.

Keywords: Cheney-Sharma operators, contraction principle, weakly Picard operators.

2000 Mathematics Subject Classification: 41A36, 41A05, 41A25, 39B12, 47H10.

1. Preliminaries

We recall some results regarding weakly Picard operators that will be used in the sequel (see, e.g., [17], [20]).

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We denote by

FA\displaystyle F_{A} :={xX|A(x)=x}-the fixed point set of A;\displaystyle:=\{x\in X~|~A(x)=x\}\text{-the fixed point set of }A\text{;}
I(A)\displaystyle I(A) :={YX|A(Y)Y,Y}-the family of the nonempty invariant\displaystyle:=\{Y\subset X~|~A(Y)\subset Y,\ Y\neq\emptyset\}\text{-the family of the nonempty invariant }
subset of A\displaystyle\text{subset of }A
A0\displaystyle A^{0} :=1X,A1:=A,,An+1:=AAn,n.\displaystyle:=1_{X},\ A^{1}:=A,\ ...,\ A^{n+1}:=A\circ A^{n},\ \ n\in\mathbb{N}\text{.}
Definition 1.1.

The operator A:XXA:X\rightarrow X is a Picard operator if there exists xXx^{\ast}\in X such that:

(i) FA={x};F_{A}=\{x^{*}\};

(ii) the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{*} for all x0Xx_{0}\in X.

Definition 1.2.

The operator AA is a weakly Picard operator if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges, for all xXx\in X, and the limit (which may depend on xx) is a fixed point of AA.

Definition 1.3.

We define the operator A,A:XXA^{\infty},\;A^{\infty}:X\rightarrow X, by

A(x):=limnAn(x).A^{\infty}(x):=\underset{n\rightarrow\infty}A^{n}(x).
Theorem 1.4.

[17] An operator AA is a weakly Picard operator if and only if there exists a partition of X,X, X=λΛXλ,X={\textstyle\bigcup\limits_{\lambda\in\Lambda}}X_{\lambda}, such that

  • (a)

    XλI(A),X_{\lambda}\in I(A), λΛ;\forall\lambda\in\Lambda;

  • (b)

    A|Xλ:XλXλ\left.A\right|_{X_{\lambda}}:X_{\lambda}\rightarrow X_{\lambda} is a Picard operator, λΛ.\forall\lambda\in\Lambda.

2. Cheney-Sharma operator

In [21] there was given an extension to two variables of the second univariate operator of Cheney-Sharma introduced in [5].

Let ff be a real-valued function defined on D=[0,1]×[0,1].D=[0,1]\times[0,1]. The bivariate Cheney-Sharma operator is defined by

(Sm,nf)(x,y;β,b)=i=0mj=0npm,i(x;β)qn,j(y;b)f(im,jn),\left(S_{m,n}f\right)\left(x,y;\beta,b\right)=\sum_{i=0}^{m}\sum_{j=0}^{n}p_{m,i}\left(x;\beta\right)q_{n,j}(y;b)f\left(\tfrac{i}{m},\tfrac{j}{n}\right), (1)

with

pm,i(x;β)=(mi)x(x+iβ)i1(1x)[1x+(mi)β]mi1(1+mβ)m1,p_{m,i}\left(x;\beta\right)=\frac{\binom{m}{i}x(x+i\beta)^{i-1}(1-x)\left[1-x+(m-i)\beta\right]^{m-i-1}}{(1+m\beta)^{m-1}},

and

qn,j(y;b)=(nj)y(y+jb)j1(1y)[1y+(nj)b]nj1(1+nb)n1,q_{n,j}\left(y;b\right)=\frac{\binom{n}{j}y(y+jb)^{j-1}(1-y)\left[1-y+(n-j)b\right]^{n-j-1}}{(1+nb)^{n-1}},

where β\beta and bb are nonnegative parameters.

For a function ff defined on D1=[0,1]×[0,1]×[0,1],D_{1}=[0,1]\times[0,1]\times[0,1], the trivariate operator Cheney-Sharma is defined by [22]

(Sm,n,lf)(x,y,z;β,γ,δ)=i=0mj=0nk=0lpm,i(x;β)qn,j(y;γ)rl,k(z;δ)f(im,jn,kr),\left(S_{m,n,l}f\right)\left(x,y,z;\beta,\gamma,\delta\right)=\sum_{i=0}^{m}\sum_{j=0}^{n}\sum_{k=0}^{l}p_{m,i}\left(x;\beta\right)q_{n,j}(y;\gamma)r_{l,k}(z;\delta)f\left(\tfrac{i}{m},\tfrac{j}{n},\tfrac{k}{r}\right), (2)

with

pm,i(x;β)=(mi)x(x+iβ)i1(1x)[1x+(mi)β]mi1(1+mβ)m1,p_{m,i}\left(x;\beta\right)=\frac{\binom{m}{i}x(x+i\beta)^{i-1}(1-x)\left[1-x+(m-i)\beta\right]^{m-i-1}}{(1+m\beta)^{m-1}},
qn,j(y;γ)=(nj)y(y+jγ)j1(1y)[1y+(nj)γ]nj1(1+nγ)n1,q_{n,j}\left(y;\gamma\right)=\frac{\binom{n}{j}y(y+j\gamma)^{j-1}(1-y)\left[1-y+(n-j)\gamma\right]^{n-j-1}}{(1+n\gamma)^{n-1}},

and

rl,k(z;δ)=(lk)z(z+kδ)k1(1z)[1z+(lk)δ]lk1(1+lδ)l1r_{l,k}\left(z;\delta\right)=\frac{\binom{l}{k}z(z+k\delta)^{k-1}(1-z)\left[1-z+(l-k)\delta\right]^{l-k-1}}{(1+l\delta)^{l-1}}

where β,γ\beta,\gamma and δ\delta are nonnegative parameters. This operator represents an extension to three variables of the second univariate operator of Cheney-Sharma [5].

Theorem 2.1.

[21] If ff is a real-valued function defined on DD\ then we have

(Sm,neij)(x,y)=xiyj,i,j=0,1,\left(S_{m,n}e_{ij}\right)\left(x,y\right)=x^{i}y^{j},\ \ i,j=0,1,

and therefore, span{e00,e10,e01,e11}FSm,n,\operatorname*{span}\{e_{00},e_{10},e_{01},e_{11}\}\subset F_{S_{m,n}}, where FSm,nF_{S_{m,n}} denotes the fixed points set of Sm,n.S_{m,n}.

Theorem 2.2.

[22] If ff is a real-valued function defined on D1D_{1}\ then we have

(Sm,n,leijk)(x,y,z)=xiyjzk,i,j,k{0,1},\left(S_{m,n,l}e_{ijk}\right)\left(x,y,z\right)=x^{i}y^{j}z^{k},\ \ i,j,k\in\{0,1\},

and therefore, span{e000,e100,e001,e001,e110,e011,e101,e111}FSm,n,l,\operatorname*{span}\{e_{000},e_{100},e_{001},e_{001},e_{110},e_{011},e_{101},e_{111}\}\subset F_{S_{m,n,l}}, where FSm,n,lF_{S_{m,n,l}} denotes the fixed points set of Sm,n,l.S_{m,n,l}.

3. Iterates of Cheney-Sharma operator

Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of the bivariate Cheney-Sharma operator given in (1).

A similar approach for the univariate case was given in [4]. Some other linear and positive operators lead to similar results in [1], [2], [7], [18] and [19]. The limit behavior for the iterates of some classes of positive linear operators were also studied, for example, in [3], [8]-[16].

Let ff be a real-valued function defined on D.D.

Theorem 3.1.

The operator Sm,nS_{m,n} is a weakly Picard operator and

(Sm,nf)(x,y;β,b)=\displaystyle\left(\mathit{S_{m,n}^{\infty}}f\right)\left(x,y;\beta,b\right)= (1x)(1y)f(0,0)+(1x)yf(1,0)\displaystyle(1-x)(1-y)f\left(0,0\right)+(1-x)yf(1,0) (3)
+x(1y)f(0,1)+xyf(1,1).\displaystyle+x(1-y)f(0,1)+xyf(1,1).
Proof.

Taking into account the interpolation properties (Theorem 2.1), of Sm,nS_{m,n}, consider

Xα1,α2,α3,α4={fC(D)|f(0,0)=α1,f(1,0)=α2,f(0,1)=α3,f(1,1)=α4},X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}=\{f\in C(D)\ |\ f\left(0,0\right)=\alpha_{1},f(1,0)=\alpha_{2},f(0,1)=\alpha_{3},f(1,1)=\alpha_{4}\},\ (4)

 and denote by

fα1,α2,α3,α4(x,y):=(1x)(1y)α1+(1x)yα2+x(1y)α3+xyα4,f_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}^{\ast}(x,y):=(1-x)(1-y)\alpha_{1}+(1-x)y\alpha_{2}+x(1-y)\alpha_{3}+xy\alpha_{4},

with α1,α2,α3,α4.\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{R}.

We have the following properties:

  • (i)

    Xα1,α2,α3,α4X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}} is closed subset of C(D)C(D);

  • (ii)

    Xα1,α2,α3,α4X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}} is an invariant subset of Sm,n\mathit{S_{m,n}}, for α1,α2,α3,α4,m,n+;\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{R},\ m,n\in\mathbb{N}_{+};

  • (iii)

    C(D)=α1,α2,α3,α4Xα1,α2,α3,α4C(D)=\underset{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{R}}{\cup}X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}} is a partition of C(D)C(D);

  • (iv)

    Xα1,α2,α3,α4FSm,n={fα1,α2,α3,α4}.X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}\cap F_{S_{m,n}}=\{f_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}^{\ast}\}.

The statements (i)(i) and (iii)(iii) are obvious.

(ii)(ii) By interpolation properties of Sm,nS_{m,n} we have that Xα1,α2,α3,α4X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}} is an invariant subset of Sm,n,S_{m,n},\ for any α1,α2,α3,α4,m,n+;\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{R},\ m,n\in\mathbb{N}_{+};

(iv)(iv) We prove that

Sm,n|Xα1,α2,α3,α4:Xα1,α2,α3,α4Xα1,α2,α3,α4\left.S_{m,n}\right|_{X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}}\!:\!X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}\!\rightarrow X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}

is a contraction for α1,α2,α3,α4,m,n+.\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{R},\ m,n\in\mathbb{N}_{+}.

Let f,gXα1,α2,α3,α4f,g\in X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}. From (1) and (4) we obtain

|Sm,n(f)(x,y)Sm,n(g)(x,y)|=\displaystyle\left|S_{m,n}(f)(x,y)-S_{m,n}(g)(x,y)\right|=
=|Sm,n(fg)(x,y)|\displaystyle=\left|S_{m,n}(f-g)(x,y)\right|\leq
|pm,0(x;β)qn,0(y;b)[f(0,0)g(0,0)]|\displaystyle\leq\left|p_{m,0}\left(x;\beta\right)q_{n,0}(y;b)\left[f\left(0,0\right)-g(0,0)\right]\right|
+|i=1mj=1npm,i(x;β)qn,j(y;b)[f(im,jn)g(im,jn)]|\displaystyle\quad+\left|\sum_{i=1}^{m}\sum_{j=1}^{n}p_{m,i}\left(x;\beta\right)q_{n,j}(y;b)\left[f\left(\tfrac{i}{m},\tfrac{j}{n}\right)-g\left(\tfrac{i}{m},\tfrac{j}{n}\right)\right]\right|
=i=1mj=1npm,i(x;β)qn,j(y;b)|f(im,jn)g(im,jn)|\displaystyle=\sum_{i=1}^{m}\sum_{j=1}^{n}p_{m,i}\left(x;\beta\right)q_{n,j}(y;b)\left|f\left(\tfrac{i}{m},\tfrac{j}{n}\right)-g\left(\tfrac{i}{m},\tfrac{j}{n}\right)\right|
i=1mpm,i(x;β)j=1nqn,j(y;b)fg\displaystyle\leq\sum_{i=1}^{m}p_{m,i}\left(x;\beta\right)\sum_{j=1}^{n}q_{n,j}(y;b)\left\|f-g\right\|_{\infty}
=[i=0mpm,i(x;β)pm,0(x;β)][j=0nqn,j(y;b)qn,0(y;b)]fg\displaystyle=\left[\sum_{i=0}^{m}p_{m,i}\left(x;\beta\right)-p_{m,0}\left(x;\beta\right)\right]\left[\sum_{j=0}^{n}q_{n,j}(y;b)-q_{n,0}(y;b)\right]\left\|f-g\right\|_{\infty}
=[1(1x1+mβ)m1][1(1y1+nb)n1]fg\displaystyle=\left[1-\left(1-\tfrac{x}{1+m\beta}\right)^{m-1}\right]\left[1-\left(1-\tfrac{y}{1+nb}\right)^{n-1}\right]\left\|f-g\right\|_{\infty}
[1(111+mβ)m1][1(111+nb)n1]fg.\displaystyle\leq\left[1-\left(1-\tfrac{1}{1+m\beta}\right)^{m-1}\right]\left[1-\left(1-\tfrac{1}{1+nb}\right)^{n-1}\right]\left\|f-g\right\|_{\infty}.

where \left\|\cdot\right\|_{\infty} denotes the Chebyshev norm.

From [2, Lemma 8] it follows that

|Sm,n(f)(x,y)Sm,n(g)(x,y)|=\displaystyle\left|S_{m,n}(f)(x,y)-S_{m,n}(g)(x,y)\right|=
[1(111+mβ)m1(111+nb)n1]fg.\displaystyle\leq\left[1-\left(1-\tfrac{1}{1+m\beta}\right)^{m-1}\left(1-\tfrac{1}{1+nb}\right)^{n-1}\right]\left\|f-g\right\|_{\infty}.

So,

Sm,n(f)(x,y)Sm,n(g)(x,y)\displaystyle\left\|S_{m,n}(f)(x,y)-S_{m,n}(g)(x,y)\right\|_{\infty}
[1(111+mβ)m1(111+nb)n1]fg,f,gXα1,α2,α3,α4,\displaystyle\leq\left[1-\left(1-\tfrac{1}{1+m\beta}\right)^{m-1}\left(1-\tfrac{1}{1+nb}\right)^{n-1}\right]\left\|f-g\right\|_{\infty},\ \forall f,g\in X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}},

i.e., Smn|Xα1,α2,α3,α4\left.S_{mn}\right|_{X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}} is a contraction for α1,α2,α3,α4\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{R}.

On the other hand, we have that

fα1,α2,α3,α4(x,y):=(1x)(1y)α1+(1x)yα2+x(1y)α3+xyα4f_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}^{\ast}(x,y):=(1-x)(1-y)\alpha_{1}+(1-x)y\alpha_{2}+x(1-y)\alpha_{3}+xy\alpha_{4}

and

Sm,n\displaystyle S_{m,n} ((1x)(1y)α1+(1x)yα2+x(1y)α3+xyα4)=\displaystyle\left((1-x)(1-y)\alpha_{1}+(1-x)y\alpha_{2}+x(1-y)\alpha_{3}+xy\alpha_{4}\right)=
=(1x)(1y)α1+(1x)yα2+x(1y)α3+xyα4.\displaystyle=(1-x)(1-y)\alpha_{1}+(1-x)y\alpha_{2}+x(1-y)\alpha_{3}+xy\alpha_{4}.

From the contraction principle we have that fα1,α2,α3,α4f_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}^{\ast} is the unique fixed point of Sm,nS_{m,n} in Xα1,α2,α3,α4X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}} and Sm,n|Xα1,α2,α3,α4\left.S_{m,n}\right|_{X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}} is a Picard operator, so (3) holds. Consequently, taking into account (ii)(ii), by Theorem 1.4 it follows that the operator Sm,nS_{m,n} is a weakly Picard operator. We remark that FSm,n=span{e00,e10,e01,e11}.F_{S_{m,n}}=\operatorname*{span}\{e_{00},e_{10},e_{01},e_{11}\}.

Next, we study the convergence of the iterates of the trivariate Cheney-Sharma operator given in (2).

Let ff be a real-valued function defined on D1.D_{1}.

Theorem 3.2.

The operator Sm,n,lS_{m,n,l} is a weakly Picard operator and

(Sm,n,lf)(x,y,z;β,γ,δ)=\displaystyle\left(\mathit{S_{m,n,l}^{\infty}}f\right)\left(x,y,z;\beta,\gamma,\delta\right)= (5)
=(1x)(1y)(1z)f(0,0,0)+x(1y)(1z)f(1,0,0)\displaystyle=(1-x)(1-y)(1-z)f\left(0,0,0\right)+x(1-y)(1-z)f(1,0,0)
+(1x)y(1z)f(0,1,0)+(1x)(1y)zf(0,0,1)+xy(1z)f(1,1,0)\displaystyle\quad+(1-x)y(1-z)f(0,1,0)+(1-x)(1-y)zf(0,0,1)+xy(1-z)f(1,1,0)
+x(1y)zf(1,0,1)+(1x)yzf(0,1,1)+xyzf(1,1,1).\displaystyle\quad+x(1-y)zf(1,0,1)+(1-x)yzf(0,1,1)+xyzf(1,1,1).
Proof.

The proof follows the same steps as in Theorem 3.1. Using the following inequality

|Sm,n,l(f)(x,y,z)Sm,n,l(g)(x,y,z)|\displaystyle\left|S_{m,n,l}(f)(x,y,z)-S_{m,n,l}(g)(x,y,z)\right|\leq
[1(111+mβ)m1][1(111+nγ)n1][1(111+lδ)l1]fg,\displaystyle\leq\left[1-\left(1-\tfrac{1}{1+m\beta}\right)^{m-1}\right]\left[1-\left(1-\tfrac{1}{1+n\gamma}\right)^{n-1}\right]\left[1-\left(1-\tfrac{1}{1+l\delta}\right)^{l-1}\right]\left\|f-g\right\|_{\infty},

and further [2, Lemma 8]

Sm,n,l(f)(x,y,z)Sm,n,l(g)(x,y,z)\displaystyle\left\|S_{m,n,l}(f)(x,y,z)-S_{m,n,l}(g)(x,y,z)\right\|_{\infty}\leq
[1(111+mβ)m1(111+nγ)n1(111+lδ)l1]fg,\displaystyle\leq\left[1-\left(1-\tfrac{1}{1+m\beta}\right)^{m-1}\left(1-\tfrac{1}{1+n\gamma}\right)^{n-1}\left(1-\tfrac{1}{1+l\delta}\right)^{l-1}\right]\left\|f-g\right\|_{\infty},\

f,gXα1,α2,α3,α4,\forall f,g\in X_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}}, we prove that Sm,n,l S_{m,n,l\text{ }}is a contraction. ∎

We generalize these results to multivariate case.

Theorem 3.3.

Consider a function fC(Dp),f\in C(D_{p}), with Dp=[0,1]×ptimes×[0,1].D_{p}=[0,1]\times\underset{p\ times}{...}\times[0,1]. The pp-variate Cheney-Sharma operator, denoted by Si1,,ip,S_{i_{1},...,i_{p}}, is a weakly Picard operator and

(Si1,,ipf)(x1,,xp)=αi{0,1},i=1,p¯si1,,ip(x1,,xp)f(α1,,αp),\left(S_{i_{1},...,i_{p}}^{\infty}f\right)\left(x_{1},...,x_{p}\right)=\sum_{\alpha_{i}\in\{0,1\},i=\overline{1,p}}s_{i_{1},...,i_{p}}^{\infty}\left(x_{1},...,x_{p}\right)f(\alpha_{1},...,\alpha_{p}), (6)

where αi{0,1},\alpha_{i}\in\{0,1\}, i=1,,pi=1,...,p and

si1,,ip(x1,,xp)=x1α1xpαp(1x1)(1α1)...(1xp)(1αp).s_{i_{1},...,i_{p}}^{\infty}\left(x_{1},...,x_{p}\right)=x_{1}^{\alpha_{1}}\cdot...\cdot x_{p}^{\alpha_{p}}(1-x_{1})^{(1-\alpha_{1})}\cdot...\cdot(1-x_{p})^{(1-\alpha_{p})}.
Proof.

The proof follows the same steps as in Theorem 3.1. ∎

References

  • [1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.
  • [2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2)(2003), 159-168.
  • [3] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, 1994.
  • [4] A.M. Bica, On iterates of Cheney-Sharma operator, J. Comput. Anal. Appl., 11(2009), No. 2, 271-273.
  • [5] E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5(1964), 77-84.
  • [6] G. Coman, T. Cătinaş, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), No. 2, 243-267.
  • [7] T. Cătinaş, D. Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, to appear.
  • [8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.
  • [9] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), No. 12, 2068-2071.
  • [10] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), No. 9, 1076-1079.
  • [11] H. Gonska, D. Kacsó, P. Piţul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.
  • [12] H. Gonska, P. Piţul, I. Raşa Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.
  • [13] H. Gonska, I. Raşa The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), No. 1-2, 119-130.
  • [14] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.
  • [15] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
  • [16] I. Raşa, Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx., 1 (2009), no. 2, 195-204.
  • [17] I.A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
  • [18] I.A. Rus, Iterates of Stancu operators, via contraction principle, Stud. Univ. Babeş–Bolyai Math., 47(2002), No. 4, 101-104.
  • [19] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
  • [20] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: Weakly Picard operators, equivalent definitions, applications and open problems, Fixed Point Theory, 7 (2006), 3-22.
  • [21] D.D. Stancu, L.A. Căbulea, D. Pop, Approximation of bivariate functions by means of the operator Sm,nα,β;a,b,\mathit{S}_{m,n}^{\alpha,\beta;a,b}, Stud. Univ. Babeş–Bolyai Math., 47(2002), No. 4, 105-113.
  • [22] I. Taşcu, On the approximation of trivariate functions by means of some tensor-product positive linear operators, Facta Universitatis (Nis), Ser. Math. Inform., 21 (2006), 23-28.
2013

Related Posts