Abstract
Using the weakly Picard operators technique, we study the convergence of the iterates of some hivariate and trivariate Cheney-Sharma operators. Also, we generalize the procedure for the multivariate case.
Authors
T. Catinas
(Babes Bolyai Univ.)
D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)
Keywords
Cite this paper as:
T. Catinas, D. Otrocol, Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., Vol. 15 (2013), no. 7, pp. 1240-1246
About this paper
Journal
Journal of Computational Analysis and Applications
Publisher Name
Eudoxus Press, Cordova, USA
DOI
Print ISSN
1521-1398
Online ISSN
MR
MR3075657
ZBL
Google Scholar
[1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.
[2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8(2)(2003), 159-168.
[3] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, 1994.
[4] A.M. Bica, On iterates of Cheney-Sharma operator, J. Comput. Anal. Appl., 11(2009), No. 2, 271-273.
[5] E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5(1964), 77-84.
[6] G. Coman, T. Catinas, Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), No. 2, 243-267.
[7] T. Catinas, D. Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, to appear.
[8] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.
[9] I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(2011), No. 12, 2068-2071.
[10] I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163(2011), No. 9, 1076-1079.
[11] H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.
[12] H. Gonska, P. Pitul, I. Rasa, Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.
[13] H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), No. 1-2, 119-130.
[14] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory 3(1970), 310-339.
[15] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
[16] I. Rasa, Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx., 1 (2009), no. 2, 195204.
[17] I.A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
[18] I.A. Rus, Iterates of Stancu operators, via contraction principle, Stud. Univ. Babes–Bolyai Math., 47(2002), No. 4, 101-104.
[19] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
[20] I.A. Rus, A. Petrusel, M.A. Serban, Weakly Picard operators: Weakly Picard operators, equivalent definitions, applications and open problems, Fixed Point Theory, 7 (2006), 3-22.
[21] D.D. Stancu, L.A. Cabulea, D. Pop, Approximation of bivariate functions by means of the operator S α,β;a,b m,n , Stud. Univ. Babes–Bolyai Math., 47(2002), No. 4, 105-113.
[22] I. Tascu, On the approximation of trivariate functions by means of some tensorproduct positive linear operators, Facta Universitatis (Nis), Ser. Math. Inform., 21 (2006), 23-28.