1. INTRODUCTION Report issue for preceding element
The aim of this paper is to study the following iterative system with delays
Report issue for preceding element
(1)
x i ′ ​ ( t ) = f i ​ ( t , x 1 ​ ( t ) , x 2 ​ ( t ) , x 1 ​ ( x 1 ​ ( t − τ 1 ) ) , x 2 ​ ( x 2 ​ ( t − τ 2 ) ) ) , t ∈ [ t 0 , b ] , i = 1 , 2 , x_{i}^{\prime}(t)=f_{i}(t,x_{1}(t),x_{2}(t),x_{1}(x_{1}(t-\tau_{1})),x_{2}(x_{2}(t-\tau_{2}))),\ t\in[t_{0},b],\ i=1,2,
with the initial conditions
Report issue for preceding element
(2)
x i ​ ( t ) = φ i ​ ( t ) , t ∈ [ t 0 − τ i , t 0 ] , i = 1 , 2 , x_{i}(t)=\varphi_{i}(t),\ t\in[t_{0}-\tau_{i},t_{0}],\ i=1,2,
where
Report issue for preceding element
(H1 )
t 0 < b , τ 1 , τ 2 > 0 , τ 1 < τ 2 ; t_{0}<b,\ \tau_{1},\tau_{2}>0,\ \tau_{1}<\tau_{2};
Report issue for preceding element
(H2 )
f i ∈ C ​ ( [ t 0 , b ] × ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , ℝ ) , i = 1 , 2 ; f_{i}\in C([t_{0},b]\times([t_{0}-\tau_{1},b]\times[t_{0}-\tau_{2},b])^{2},\mathbb{R}),\ i=1,2;
Report issue for preceding element
(H3 )
φ 1 ∈ C ​ ( [ t 0 − τ 1 , t 0 ] , [ t 0 − τ 1 , b ] ) , φ 2 ∈ C ​ ( [ t 0 − τ 2 , t 0 ] , [ t 0 − τ 2 , b ] ) ; \varphi_{1}\in C([t_{0}-\tau_{1},t_{0}],[t_{0}-\tau_{1},b]),\ \varphi_{2}\in C([t_{0}-\tau_{2},t_{0}],[t_{0}-\tau_{2},b]);
Report issue for preceding element
(H4 )
there exists L f i > 0 L_{f_{i}}>0 such that:
Report issue for preceding element
| f i ​ ( t , u 1 , u 2 , u 3 , u 4 ) − f i ​ ( t , v 1 , v 2 , v 3 , v 4 ) | ≤ L f i ​ ( ∑ k = 1 4 | u k − v k | ) , \left|f_{i}(t,u_{1},u_{2},u_{3},u_{4})-f_{i}(t,v_{1},v_{2},v_{3},v_{4})\right|\leq L_{f_{i}}(\sum_{k=1}^{4}\left|u_{k}-v_{k}\right|),
for all t ∈ [ t 0 , b ] , ( u 1 , u 2 , u 3 , u 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , i = 1 , 2 . t\!\in\![t_{0},b],\!(\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!),\!(\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4}\!)\!\in\!(\![t_{0}-\tau_{1},b]\!\times\![t_{0}-\tau_{2},b]\!)^{2},\\
i=1,2.
Report issue for preceding element
By a solution of (1 )–(2 ) we understand a function
( x 1 , x 2 ) (x_{1},x_{2}) with
Report issue for preceding element
x 1 ∈ C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) ∩ C 1 ​ ( [ t 0 , b ] , [ t 0 − τ 1 , b ] ) \displaystyle x_{1}\in C([t_{0}-\tau_{1},b],[t_{0}-\tau_{1},b])\cap C^{1}([t_{0},b],[t_{0}-\tau_{1},b])
x 2 ∈ C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) ∩ C 1 ​ ( [ t 0 , b ] , [ t 0 − τ 2 , b ] ) \displaystyle x_{2}\in C([t_{0}-\tau_{2},b],[t_{0}-\tau_{2},b])\cap C^{1}([t_{0},b],[t_{0}-\tau_{2},b])
which satisfies (1 )–(2 ).
Report issue for preceding element
The problem (1 )–(2 ) is equivalent with the
following fixed point equations:
Report issue for preceding element
(3a)
x 1 ​ ( t ) = { φ 1 ​ ( t ) , t ∈ [ t 0 − τ 1 , t 0 ] , φ 1 ​ ( t 0 ) + ∫ t 0 t f 1 ​ ( s , x 1 ​ ( s ) , x 2 ​ ( s ) , x 1 ​ ( x 1 ​ ( s − τ 1 ) ) , x 2 ​ ( x 2 ​ ( s − τ 2 ) ) ) ​ 𝑑 s , t ∈ [ t 0 , b ] , x_{1}\!(t)\!=\!\left\{\!\begin{array}[]{l}\!\varphi_{1}(t),\ t\in[t_{0}-\tau_{1},t_{0}],\\
\!\varphi_{1}(t_{0})\!+\!\int_{t_{0}}^{t}\!f_{1}(s,x_{1}(s),x_{2}(s),x_{1}\!(x_{1}(s\!-\!\tau_{1})),x_{2}\!(x_{2}(s\!-\!\tau_{2})))\!ds,\!t\!\in\![t_{0},b],\end{array}\right.
(3b)
x 2 ​ ( t ) = { φ 2 ​ ( t ) , t ∈ [ t 0 − τ 2 , t 0 ] , φ 2 ​ ( t 0 ) + ∫ t 0 t f 2 ​ ( s , x 1 ​ ( s ) , x 2 ​ ( s ) , x 1 ​ ( x 1 ​ ( s − τ 1 ) ) , x 2 ​ ( x 2 ​ ( s − τ 2 ) ) ) ​ 𝑑 s , t ∈ [ t 0 , b ] , x_{2}\!(t)\!=\!\left\{\!\begin{array}[]{l}\!\varphi_{2}(t),\ t\in[t_{0}-\tau_{2},t_{0}],\\
\!\varphi_{2}(t_{0})\!+\!\int_{t_{0}}^{t}\!f_{2}(s,x_{1}(s),x_{2}(s),x_{1}\!(x_{1}(s\!-\!\tau_{1})),x_{2}\!(x_{2}(s\!-\!\tau_{2})))\!ds,\!t\!\in\![t_{0},b],\end{array}\right.
where x 1 ∈ C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) , x 2 ∈ C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) x_{1}\in C([t_{0}-\tau_{1},b],[t_{0}-\tau_{1},b]),x_{2}\in C([t_{0}-\tau_{2},b],[t_{0}-\tau_{2},b]) .
Report issue for preceding element
On the other hand, the system (1 ) is equivalent with
Report issue for preceding element
(4a)
x 1 ​ ( t ) = { x 1 ​ ( t ) , t ∈ [ t 0 − τ 1 , t 0 ] , x 1 ​ ( t 0 ) + ∫ t 0 t f 1 ​ ( s , x 1 ​ ( s ) , x 2 ​ ( s ) , x 1 ​ ( x 1 ​ ( s − τ 1 ) ) , x 2 ​ ( x 2 ​ ( s − τ 2 ) ) ) ​ 𝑑 s , t ∈ [ t 0 , b ] , x_{1}\!(t)\!=\!\left\{\!\begin{array}[]{l}\!x_{1}(t),\ t\in[t_{0}-\tau_{1},t_{0}],\\
\!x_{1}(t_{0})\!+\!\int_{t_{0}}^{t}\!f_{1}(s,x_{1}(s),x_{2}(s),x_{1}\!(x_{1}(s\!-\!\tau_{1})),x_{2}\!(x_{2}(s\!-\!\tau_{2})))\!ds,\!t\!\in\![t_{0},b],\end{array}\right.
(4b)
x 2 ​ ( t ) = { x 2 ​ ( t ) , t ∈ [ t 0 − τ 2 , t 0 ] , x 2 ​ ( t 0 ) + ∫ t 0 t f 2 ​ ( s , x 1 ​ ( s ) , x 2 ​ ( s ) , x 1 ​ ( x 1 ​ ( s − τ 1 ) ) , x 2 ​ ( x 2 ​ ( s − τ 2 ) ) ) ​ 𝑑 s , t ∈ [ t 0 , b ] , x_{2}\!(t)\!=\!\left\{\!\begin{array}[]{l}\!x_{2}(t),\ t\in[t_{0}-\tau_{2},t_{0}],\\
\!x_{2}(t_{0})\!+\!\int_{t_{0}}^{t}\!f_{2}(s,x_{1}(s),x_{2}(s),x_{1}\!(x_{1}(s\!-\!\tau_{1})),x_{2}\!(x_{2}(s\!-\!\tau_{2})))\!ds,\!t\!\in\![t_{0},b],\end{array}\right.
and x 1 ∈ C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) , x 2 ∈ C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) x_{1}\in C([t_{0}-\tau_{1},b],[t_{0}-\tau_{1},b]),\ x_{2}\in C([t_{0}-\tau_{2},b],[t_{0}-\tau_{2},b]) .
Report issue for preceding element
We shall use the weakly Picard operators technique to study the systems (3a )–(3b ) and (4a )–(4b ).
Report issue for preceding element
The literature in differential equations with modified arguments, especially
of retarded type, is now very extensive. We refer the reader to the
following monographs: J. Hale [3 ] , Y. Kuang [5 ] , V. Mureşan [4 ] , I.A. Rus [8 ] and to our papers [6 ] , [7 ] . The case of iterative system with retarded
arguments has been studied by many authors: I.A. Rus and E. Egri [11 ] , J. G. Si, W. R. Li and S. S. Cheng [12 ] , S. Stanek
[13 ] . So our paper complement in this respect the existing
literature.
Report issue for preceding element
Let us mention that the results from this paper are obtained as a
concequence of those from [11 ] where is considered the
case of boundary value problems.
Report issue for preceding element
3. Cauchy problem Report issue for preceding element
In what follows we consider the fixed point equations (3a ) and (3b ).
Report issue for preceding element
Let
Report issue for preceding element
A f : C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) → C ​ ( [ t 0 − τ 1 , b ] , ℝ ) × C ​ ( [ t 0 − τ 2 , b ] , ℝ ) , A_{f}\!:\!C(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\!\rightarrow\!C(\![t_{0}\!-\!\tau_{1},b]\!,\!\mathbb{R}\!)\!\times\!C(\![t_{0}\!-\!\tau_{2},b]\!,\!\mathbb{R}\!),
given by the relation
Report issue for preceding element
A f ​ ( x 1 , x 2 ) = ( A f 1 ​ ( x 1 , x 2 ) , A f 2 ​ ( x 1 , x 2 ) ) , A_{f}(x_{1},x_{2})=(A_{f_{1}}(x_{1},x_{2}),A_{f_{2}}(x_{1},x_{2})),
where A f 1 ​ ( x 1 , x 2 ) ​ ( t ) := A_{f_{1}}(x_{1},x_{2})(t):= the right hand side of (3a )
and A f 2 ​ ( x 1 , x 2 ) ​ ( t ) := A_{f_{2}}(x_{1},x_{2})(t):= the right hand side of (3b ).
Report issue for preceding element
Let L 1 , L 2 > 0 L_{1},L_{2}>0 , L = max { L 1 , L 2 } L=\max\{L_{1},L_{2}\} and
Report issue for preceding element
C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) := \displaystyle C_{L}([t_{0}\!-\!\tau_{1},b],[t_{0}\!-\!\tau_{1},b])\times C_{L}([t_{0}\!-\!\tau_{2},b],[t_{0}\!-\!\tau_{2},b]):=
= { ( x 1 , x 2 ) ∈ C ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) : \displaystyle\ =\{\!(x_{1},x_{2})\!\in\!C([t_{0}\!-\!\tau_{1},b],[t_{0}\!-\!\tau_{1},b])\!\times\!C([t_{0}\!-\!\tau_{2},b],[t_{0}\!-\!\tau_{2},b])\!:
| x i ( t 1 ) − x i ( t 2 ) | ≤ L i | t 1 − t 2 | , ∀ ( t 1 , t 2 ) ∈ [ t 0 − τ 2 , b ] , i = 1 , 2 } . \displaystyle\left|x_{i}(t_{1})-x_{i}(t_{2})\right|\leq L_{i}\left|t_{1}-t_{2}\right|,\ \forall(t_{1},t_{2})\in[t_{0}-\tau_{2},b],\ i=1,2\}.
It is clear that C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) C_{L}([t_{0}\!-\!\tau_{1},b],[t_{0}\!-\!\tau_{1},b])\times C_{L}([t_{0}\!-\!\tau_{2},b],[t_{0}\!-\!\tau_{2},b]) is a
complete metric space with respect to the metric
Report issue for preceding element
d ​ ( x , x ¯ ) := max t 0 ≤ t ≤ b ​ | x ​ ( t ) − x ¯ ​ ( t ) | . d(x,\overline{x}):=\underset{t_{0}\leq t\leq b}{\max}\left|x(t)-\overline{x}(t)\right|.
We remark that C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) C_{L}([t_{0}\!-\!\tau_{1},b],[t_{0}\!-\!\tau_{1},b])\times C_{L}([t_{0}\!-\!\tau_{2},b],[t_{0}\!-\!\tau_{2},b]) is a closed subset
in C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) C([t_{0}\!-\!\tau_{1},b],[t_{0}\!-\!\tau_{1},b])\times C([t_{0}\!-\!\tau_{2},b],[t_{0}\!-\!\tau_{2},b]) .
Report issue for preceding element
We have
Report issue for preceding element
Theorem 3.1 .
Report issue for preceding element
We suppose that
Report issue for preceding element
(i)
the conditions (H 1 {}_{\text{1}} )–(H 4 {}_{\text{4}} ) are satisfied;
Report issue for preceding element
(ii)
φ 1 ∈ C L ​ ( [ t 0 − τ 1 , t 0 ] , [ t 0 − τ 1 , b ] ) , φ 2 ∈ C L ​ ( [ t 0 − τ 2 , t 0 ] , [ t 0 − τ 2 , b ] ) ; \varphi_{1}\in C_{L}([t_{0}-\tau_{1},t_{0}],[t_{0}-\tau_{1},b]),\ \varphi_{2}\in C_{L}([t_{0}-\tau_{2},t_{0}],[t_{0}-\tau_{2},b]);
Report issue for preceding element
(iii)
m f i m_{f_{i}} and M f i ∈ ℝ , i = 1 , 2 M_{f_{i}}\in\mathbb{R},\ i=1,2 are such that
Report issue for preceding element
(iiia)
m f i ≤ f i ​ ( t , u 1 , u 2 , u 3 , u 4 ) ≤ M f i , ∀ t ∈ [ t 0 , b ] , ( u 1 , u 2 , u 3 , u 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , m_{f_{i}}\!\leq f_{i}(\!t,u_{1},u_{2},u_{3},u_{4}\!)\!\leq M_{f_{i}},\forall t\in[t_{0},b],(\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!),\!(\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4}\!)\!\\
\in\!(\![t_{0}\!-\!\tau_{1},b]\!\times\![t_{0}\!-\!\tau_{2},b]\!)^{2},
Report issue for preceding element
(iiib)
t 0 − τ i ≤ φ i ​ ( t 0 ) + m f i ​ ( b − t 0 ) for ​ m f i < 0 , t 0 − τ i ≤ φ i ​ ( t 0 ) for ​ m f i ≥ 0 , b ≥ φ i ​ ( t 0 ) for ​ M f i ≤ 0 , b ≥ φ i ​ ( t 0 ) + M f i ​ ( b − t 0 ) for ​ M f i > 0 , \begin{array}[]{ll}t_{0}-\tau_{i}\leq\varphi_{i}(t_{0})+m_{f_{i}}(b-t_{0})&\text{for }m_{f_{i}}<0,\\
t_{0}-\tau_{i}\leq\varphi_{i}(t_{0})&\text{for }m_{f_{i}}\geq 0,\\
b\geq\varphi_{i}(t_{0})&\text{for }M_{f_{i}}\leq 0,\\
b\geq\varphi_{i}(t_{0})+M_{f_{i}}(b-t_{0})&\text{for }M_{f_{i}}>0,\end{array}
(iiic)
L + M f i < 1 ; L+M_{f_{i}}<1;
Report issue for preceding element
(iv)
( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) < 1 . (b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2)<1.
Report issue for preceding element
Then the Cauchy problem (1 )–(2 ) has, in C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) C_{L}([t_{0}\!-\!\tau_{1},b],[t_{0}\!-\!\tau_{1},b])\times C_{L}([t_{0}\!-\!\tau_{2},b],[t_{0}\!-\!\tau_{2},b]) a unique solution.
Moreover the operator
Report issue for preceding element
A f : C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) → \displaystyle A_{f}\!:\!C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\!\rightarrow
C L ​ ( [ t 0 − τ 1 , b ] , C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) ) × C L ​ ( [ t 0 − τ 2 , b ] , C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) ) \displaystyle\!C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\!C_{L}\!(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!)\!\times\!C_{L}\!(\![t_{0}\!-\!\tau_{2},b]\!,\!C_{L}\!(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\!)
is a c c -Picard operator with c = 1 ( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) . c=\dfrac{1}{(b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2)}.
Report issue for preceding element
(a) C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!) is an invariant subset for A f . A_{f}.
Report issue for preceding element
Indeed,
Report issue for preceding element
t 0 − τ i ≤ A f i ​ ( x 1 , x 2 ) ​ ( t ) ≤ b , t_{0}-\tau_{i}\leq A_{f_{i}}(x_{1},x_{2})(t)\leq b,
( x 1 , x 2 ) ​ ( t ) ∈ [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] , t ∈ [ t 0 , b ] , i = 1 , 2 . (x_{1},x_{2})(t)\in[t_{0}-\tau_{1},b]\times[t_{0}-\tau_{2},b],\ t\in[t_{0},b],\ i=1,2.
Report issue for preceding element
From (iiia) we have m f i m_{f_{i}} and M f i ∈ ℝ M_{f_{i}}\in\mathbb{R} such that
Report issue for preceding element
m f i ≤ f i ​ ( t , u 1 , u 2 , u 3 , u 4 ) ≤ M f i , m_{f_{i}}\leq f_{i}(t,u_{1},u_{2},u_{3},u_{4})\leq M_{f_{i}},
∀ t ∈ [ t 0 , b ] , ( u 1 , u 2 , u 3 , u 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , i = 1 , 2 . \forall t\in[t_{0},b],\ (\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!),\!(\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4}\!)\!\in\!(\![t_{0}-\tau_{1},b]\!\times\![t_{0}-\tau_{2},b]\!)^{2},\ i=1,2.
Report issue for preceding element
This implies that
Report issue for preceding element
∫ t 0 t m f i ​ 𝑑 s ≤ ∫ t 0 t f i ​ ( s , x 1 ​ ( s ) , x 2 ​ ( s ) , x 1 ​ ( x 1 ​ ( s − τ 1 ) ) , x 2 ​ ( x 2 ​ ( s − τ 2 ) ) ) ​ 𝑑 s ≤ ∫ t 0 t M f i ​ 𝑑 s \int_{t_{0}}^{t}m_{f_{i}}ds\leq\int_{t_{0}}^{t}f_{i}(s,x_{1}(s),x_{2}(s),x_{1}(x_{1}(s\!-\!\tau_{1})),x_{2}(x_{2}(s\!-\!\tau_{2})))ds\leq\int_{t_{0}}^{t}M_{f_{i}}ds , ∀ t ∈ [ t 0 , b ] , \forall t\in[t_{0},b], that is
Report issue for preceding element
φ i ​ ( t 0 ) + m f i ​ ( b − t 0 ) ≤ A f i ​ ( x 1 , x 2 ) ​ ( t ) ≤ φ i ​ ( t 0 ) + M f i ​ ( b − t 0 ) , t ∈ [ t 0 , b ] . \varphi_{i}(t_{0})+m_{f_{i}}(b-t_{0})\leq A_{f_{i}}(x_{1},x_{2})(t)\leq\varphi_{i}(t_{0})+M_{f_{i}}(b-t_{0}),t\in[t_{0},b].
Therefor if condition (iii) holds, we have satisfied the invariance property
for the operator A f A_{f} in C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) . C\!(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C\!(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!).
Report issue for preceding element
Now, consider t 1 , t 2 ∈ [ t 0 − τ 1 , t 0 ] : t_{1},t_{2}\in[t_{0}-\tau_{1},t_{0}]:
Report issue for preceding element
| A f 1 ​ ( x 1 , x 2 ) ​ ( t 1 ) − A f 1 ​ ( x 1 , x 2 ) ​ ( t 2 ) | = | φ 1 ​ ( t 1 ) − φ 1 ​ ( t 2 ) | ≤ L 1 ​ | t 1 − t 2 | , \left|A_{f_{1}}(x_{1},x_{2})(t_{1})-A_{f_{1}}(x_{1},x_{2})(t_{2})\right|=\left|\varphi_{1}(t_{1})-\varphi_{1}(t_{2})\right|\leq L_{1}\left|t_{1}-t_{2}\right|,
because φ 1 ∈ C L ​ ( [ t 0 − τ 1 , t 0 ] , [ t 0 − τ 1 , b ] ) \varphi_{1}\in C_{L}(\![t_{0}\!-\!\tau_{1},t_{0}],[t_{0}\!-\!\tau_{1},b]\!) .
Report issue for preceding element
Similarly, for t 1 , t 2 ∈ [ t 0 − τ 2 , t 0 ] : t_{1},t_{2}\in[t_{0}-\tau_{2},t_{0}]:
Report issue for preceding element
| A f 2 ​ ( x 1 , x 2 ) ​ ( t 1 ) − A f 2 ​ ( x 1 , x 2 ) ​ ( t 2 ) | = | φ 2 ​ ( t 1 ) − φ 2 ​ ( t 2 ) | ≤ L 2 ​ | t 1 − t 2 | , \left|A_{f_{2}}(x_{1},x_{2})(t_{1})-A_{f_{2}}(x_{1},x_{2})(t_{2})\right|=\left|\varphi_{2}(t_{1})-\varphi_{2}(t_{2})\right|\leq L_{2}\left|t_{1}-t_{2}\right|,
that follows from (ii), too.
Report issue for preceding element
On the other hand, if t 1 , t 2 ∈ [ t 0 , b ] t_{1},t_{2}\in[t_{0},b] , we have
Report issue for preceding element
| A f i ​ ( x 1 , x 2 ) ​ ( t 1 ) − A f i ​ ( x 1 , x 2 ) ​ ( t 2 ) | = \displaystyle\left|A_{f_{i}}(x_{1},x_{2})(t_{1})-A_{f_{i}}(x_{1},x_{2})(t_{2})\right|=
= \displaystyle=
| φ i ( t 1 ) − φ i ( t 2 ) + ∫ t 0 t 1 f i ( s , x 1 ( s ) , x 2 ( s ) , x 1 ( x 1 ( s − τ 1 ) ) , x 2 ( x 2 ( s − τ 2 ) ) ) d s − \displaystyle\left|\varphi_{i}(t_{1})\!-\!\varphi_{i}(t_{2})\!+\!\int_{t_{0}}^{t_{1}}\!f_{i}\!(s,x_{1}(s),x_{2}(s),x_{1}\!(x_{1}(s\!-\!\tau_{1})),x_{2}\!(x_{2}(s\!-\!\tau_{2})))ds\right.\!-
− ∫ t 0 t 2 f i ​ ( s , x 1 ​ ( s ) , x 2 ​ ( s ) , x 1 ​ ( x 1 ​ ( s − τ 1 ) ) , x 2 ​ ( x 2 ​ ( s − τ 2 ) ) ) ​ 𝑑 s | ≤ \displaystyle-\left.\int_{t_{0}}^{t_{2}}f_{i}(s,x_{1}(s),x_{2}(s),x_{1}\!(x_{1}(s\!-\!\tau_{1})),x_{2}\!(x_{2}(s\!-\!\tau_{2})))ds\right|\leq
≤ \displaystyle\leq
L i ​ | t 1 − t 2 | + M f i ​ | t 1 − t 2 | ≤ ( L + M f i ) ​ | t 1 − t 2 | , i = 1 , 2 . \displaystyle L_{i}\left|t_{1}-t_{2}\right|+M_{f_{i}}\left|t_{1}-t_{2}\right|\leq(L+M_{f_{i}})\left|t_{1}-t_{2}\right|,\ i=1,2.
So we can affirm that ∀ t 1 , t 2 ∈ [ t 0 , b ] , t 1 ≤ t 2 , \forall t_{1},t_{2}\in[t_{0},b],\ t_{1}\leq t_{2}, and doe to (iii), A f A_{f} is L L -Lipshitz.
Report issue for preceding element
Thus, according to the above, we have C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) ∈ I ​ ( A f ) . C_{L}\!(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}\!(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\in I(A_{f}).
Report issue for preceding element
(b) A f A_{f} is a L A f L_{A_{f}} -contraction with L A f = ( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) L_{A_{f}}=(b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2) .
Report issue for preceding element
For t ∈ [ t 0 − τ 1 , t 0 ] , t\in[t_{0}-\tau_{1},t_{0}], we have | A f 1 ​ ( x 1 , x 2 ) ​ ( t ) − A f 1 ​ ( x ¯ 1 , x ¯ 2 ) ​ ( t ) | = 0 . \left|A_{f_{1}}(x_{1},x_{2})(t)-A_{f_{1}}(\overline{x}_{1},\overline{x}_{2})(t)\right|=0.
Report issue for preceding element
For t ∈ [ t 0 − τ 2 , t 0 ] , t\in[t_{0}-\tau_{2},t_{0}], we have | A f 2 ​ ( x 1 , x 2 ) ​ ( t ) − A f 2 ​ ( x ¯ 1 , x ¯ 2 ) ​ ( t ) | = 0 . \left|A_{f_{2}}(x_{1},x_{2})(t)-A_{f_{2}}(\overline{x}_{1},\overline{x}_{2})(t)\right|=0.
Report issue for preceding element
For t ∈ [ t 0 , b ] : t\in[t_{0},b]:
Report issue for preceding element
| A f 1 ​ ( x 1 , x 2 ) ​ ( t ) − A f 1 ​ ( x ¯ 1 , x ¯ 2 ) ​ ( t ) | = \displaystyle\left|A_{f_{1}}(x_{1},x_{2})(t)-A_{f_{1}}(\overline{x}_{1},\overline{x}_{2})(t)\right|=
= \displaystyle=
| ∫ t 0 t [ f 1 ( s , x 1 ( s ) , x 2 ( s ) , x 1 ( x 1 ( s − τ 1 ) ) , x 2 ( x 2 ( s − τ 2 ) ) ) − \displaystyle\!\left|\int_{t_{0}}^{t}\![\!f_{1}\!(\!s,x_{1}(s),x_{2}(s),x_{1}(x_{1}(s\!-\!\tau_{1})),x_{2}(x_{2}(s\!-\!\tau_{2}))\!)\!\right.-
− f 1 ( s , x ¯ 1 ( s ) , x ¯ 2 ( s ) , x ¯ 1 ( x ¯ 1 ( s − τ 1 ) ) , x ¯ 2 ( x ¯ 2 ( s − τ 2 ) ) ) ] d s | ≤ \displaystyle-\left.\!f_{1}(\!s,\overline{x}_{1}(s),\overline{x}_{2}(s),\overline{x}_{1}(\overline{x}_{1}(s\!-\!\tau_{1})),\overline{x}_{2}(\overline{x}_{2}(s\!-\!\tau_{2}))\!)\!]ds\!\right|\leq
≤ \displaystyle\leq
L f 1 ( | x 1 ( s ) − x ¯ 1 ( s ) | + | x 2 ( s ) − x ¯ 2 ( s ) | + | x 1 ( x 1 ( s − τ 1 ) ) − x ¯ 1 ( x ¯ 1 ( s − τ 1 ) ) | + \displaystyle L_{f_{1}}\!(\left|x_{1}(s)\!-\!\overline{x}_{1}(s)\right|+\left|x_{2}(s)\!-\!\overline{x}_{2}(s)\right|+\left|x_{1}(x_{1}(s\!-\!\tau_{1}))\!-\!\overline{x}_{1}(\overline{x}_{1}(s\!-\!\tau_{1}))\right|\!+
+ | x 2 ( x 2 ( s − τ 2 ) ) − x ¯ 2 ( x ¯ 2 ( s − τ 2 ) ) | ) ( b − t 0 ) ≤ \displaystyle+\left|x_{2}(x_{2}(s\!-\!\tau_{2}))-\overline{x}_{2}(\overline{x}_{2}(s\!-\!\tau_{2}))\right|\!)(b-t_{0})\leq
≤ \displaystyle\leq
( b − t 0 ) L f 1 [ ∥ x 1 − x ¯ 1 ∥ C + ∥ x 2 − x ¯ 2 ∥ C + | x 1 ( x 1 ( s − τ 1 ) ) − x 1 ( x ¯ 1 ( s − τ 1 ) ) | + \displaystyle(b\!-\!t_{0})L_{f_{1}}[\left\|x_{1}\!-\!\overline{x}_{1}\right\|_{C}+\left\|x_{2}\!-\!\overline{x}_{2}\right\|_{C}+\left|x_{1}(x_{1}(s\!-\!\tau_{1}))\!-\!x_{1}(\overline{x}_{1}(s\!-\!\tau_{1}))\right|\!+
+ | x 1 ​ ( x ¯ 1 ​ ( s − τ 1 ) ) − x ¯ 1 ​ ( x ¯ 1 ​ ( s − τ 1 ) ) | + | x 2 ​ ( x 2 ​ ( s − τ 2 ) ) − x 2 ​ ( x ¯ 2 ​ ( s − τ 2 ) ) | + \displaystyle+\left|x_{1}(\overline{x}_{1}(s\!-\!\tau_{1}))\!-\!\overline{x}_{1}(\overline{x}_{1}(s\!-\!\tau_{1}))\right|+\left|x_{2}(x_{2}(s\!-\!\tau_{2}))\!-\!x_{2}(\overline{x}_{2}(s\!-\!\tau_{2}))\right|+
+ | x 2 ( x ¯ 2 ( s − τ 2 ) ) − x ¯ 2 ( x ¯ 2 ( s − τ 2 ) ) | ] ≤ ( b − t 0 ) L f 1 [ ∥ x 1 − x ¯ 1 ∥ C + ∥ x 2 − x ¯ 2 ∥ C + \displaystyle+\!\left|x_{2}\!(\overline{x}_{2}(s\!-\!\tau_{2}))\!-\!\overline{x}_{2}(\overline{x}_{2}\!(s\!-\!\tau_{2}))\right|]\!\leq\!(b\!-\!t_{0})L_{f_{1}}[\left\|x_{1}\!-\!\overline{x}_{1}\right\|_{C}\!+\!\left\|x_{2}\!-\!\overline{x}_{2}\right\|_{C}\!+
+ L 1 ∥ x 1 − x ¯ 1 ∥ C + ∥ x 1 − x ¯ 1 ∥ C + L 2 ∥ x 2 − x ¯ 2 ∥ C + ∥ x 2 − x ¯ 2 ∥ C ] ≤ \displaystyle+L_{1}\left\|x_{1}-\overline{x}_{1}\right\|_{C}+\left\|x_{1}-\overline{x}_{1}\right\|_{C}+L_{2}\left\|x_{2}-\overline{x}_{2}\right\|_{C}+\left\|x_{2}-\overline{x}_{2}\right\|_{C}]\leq
≤ \displaystyle\leq
( b − t 0 ) ​ L f 1 ​ ( L + 2 ) ​ ( ‖ x 1 − x ¯ 1 ‖ C + ‖ x 2 − x ¯ 2 ‖ C ) . \displaystyle(b-t_{0})L_{f_{1}}(L+2)(\left\|x_{1}-\overline{x}_{1}\right\|_{C}+\left\|x_{2}-\overline{x}_{2}\right\|_{C}).
In the same way
Report issue for preceding element
| A f 2 ​ ( x 1 , x 2 ) ​ ( t ) − A f 2 ​ ( x ¯ 1 , x ¯ 2 ) ​ ( t ) | ≤ ( b − t 0 ) ​ L f 2 ​ ( L + 2 ) ​ ( ‖ x 1 − x ¯ 1 ‖ + ‖ x 2 − x ¯ 2 ‖ ) . \left|A_{f_{2}}(x_{1},x_{2})(t)-A_{f_{2}}(\overline{x}_{1},\overline{x}_{2})(t)\right|\leq(b-t_{0})L_{f_{2}}(L+2)(\left\|x_{1}-\overline{x}_{1}\right\|+\left\|x_{2}-\overline{x}_{2}\right\|).
Then we have the following relation
Report issue for preceding element
‖ A f ​ ( x 1 , x 2 ) − A f ​ ( x ¯ 1 , x ¯ 2 ) ‖ C ≤ ( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) ​ ‖ ( x 1 , x 2 ) − ( x ¯ 1 , x ¯ 2 ) ‖ C \left\|A_{f}(x_{1},x_{2})-A_{f}(\overline{x}_{1},\overline{x}_{2})\right\|_{C}\leq(b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2)\left\|(x_{1},x_{2})-(\overline{x}_{1},\overline{x}_{2})\right\|_{C}
So A f A_{f} is a c c -Picard operator with c = 1 1 − L A f . c=\dfrac{1}{1-L_{A_{f}}}.
∎
Report issue for preceding element
In what follows, consider the following operator
Report issue for preceding element
B f : \displaystyle B_{f}\!:\!\!
C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) → \displaystyle C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\!\rightarrow
C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) , \displaystyle C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!),
given by the relation
Report issue for preceding element
B f ​ ( x 1 , x 2 ) = ( B f 1 ​ ( x 1 , x 2 ) , B f 2 ​ ( x 1 , x 2 ) ) , B_{f}(x_{1},x_{2})=(B_{f_{1}}(x_{1},x_{2}),B_{f_{2}}(x_{1},x_{2})),
where B f 1 ​ ( x 1 , x 2 ) := B_{f_{1}}(x_{1},x_{2}):= the right hand side of (4a )
and B f 2 ​ ( x 1 , x 2 ) := B_{f_{2}}(x_{1},x_{2}):= the right hand side of (4b ).
Report issue for preceding element
Theorem 3.2 .
Report issue for preceding element
In the conditions of Theorem 3.1 , the operator B f : C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) → C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) B_{f}:C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\rightarrow C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!) is WPO.
Report issue for preceding element
The operator B f B_{f} is a continuous operator but it is not a contraction
operator. Let take the following notation:
Report issue for preceding element
X φ 1 := { x 1 ∈ C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) | x 1 | [ t 0 − τ 1 , t 0 ] = φ 1 } , \displaystyle X_{\varphi_{1}}:=\{x_{1}\in C(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)|\ x_{1}|_{[t_{0}-\tau_{1},t_{0}]}=\varphi_{1}\},
X φ 2 := { x 2 ∈ C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) | x 2 | [ t 0 − τ 2 , t 0 ] = φ 2 } . \displaystyle X_{\varphi_{2}}:=\{x_{2}\in C(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)|\ x_{2}|_{[t_{0}-\tau_{2},t_{0}]}=\varphi_{2}\}.
Then we can write
Report issue for preceding element
(5)
C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) = ⋃ φ i ∈ C L ​ ( [ t 0 − τ i , t 0 ] , [ t 0 − τ i , b ] ) ​ X φ 1 × X φ 2 . C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)\!=\!\underset{\varphi_{i}\in\!C_{L}\!(\![t_{0}\!-\!\tau_{i},t_{0}]\!,\![t_{0}\!-\!\tau_{i},b]\!)}{\bigcup\!}X_{\varphi_{1}}\!\times\!X_{\varphi_{2}}.
We have that X φ 1 × X φ 2 ∈ I ​ ( B f ) X_{\varphi_{1}}\!\times\!X_{\varphi_{2}}\in I(B_{f}) and B f | X φ 1 × X φ 2 B_{f}|_{X_{\varphi_{1}}\!\times\!X_{\varphi_{2}}} is a Picard operator
because is the operator which appears in the proof of Theorem 3.1 . By applying Theorem 2.5 , we obtain that B f B_{f} is WPO.
∎
Report issue for preceding element
5. DATA DEPENDENCE: CONTINUITY Report issue for preceding element
Consider the Cauchy problem (1 )–(2 ) and suppose
the conditions of Theorem 3.1 are satisfied. Denote by ( x 1 , x 2 ) ​ ( ⋅ ; φ 1 , φ 2 , f 1 , f 2 ) , i = 1 , 2 (x_{1},x_{2})(\cdot;\varphi_{1},\varphi_{2},f_{1},f_{2}),i=1,2 the
solution of this problem. We can state the following result:
Report issue for preceding element
Theorem 5.1 .
Report issue for preceding element
Let φ 1 j , φ 2 j , f 1 j , f 2 j , j = 1 , 2 \varphi_{1}^{j},\varphi_{2}^{j},f_{1}^{j},f_{2}^{j},\ j=1,2 be as in Theorem 3.1 . We
suppose that there exists η 1 , η 2 , η i 3 , i = 1 , 2 \eta^{1},\eta^{2},\eta_{i}^{3},i=1,2 such that
Report issue for preceding element
(i)
| φ 1 1 ​ ( t ) − φ 1 2 ​ ( t ) | ≤ η 1 , ∀ t ∈ [ t 0 − τ 1 , t 0 ] \left|\varphi_{1}^{1}(t)-\varphi_{1}^{2}(t)\right|\leq\eta^{1},\ \forall t\in[t_{0}-\tau_{1},t_{0}] and | φ 2 1 ​ ( t ) − φ 2 2 ​ ( t ) | ≤ η 2 , ∀ t ∈ [ t 0 − τ 2 , t 0 ] ; \left|\varphi_{2}^{1}(t)-\varphi_{2}^{2}(t)\right|\leq\eta^{2},\ \forall t\in[t_{0}-\tau_{2},t_{0}];
Report issue for preceding element
(ii)
| f i 1 ​ ( t , u 1 , u 2 , u 3 , u 4 ) − f i 2 ​ ( t , v 1 , v 2 , v 3 , v 4 ) | ≤ η i 3 , i = 1 , 2 , ( u 1 , u 2 , u 3 , u 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 . \left|f_{i}^{1}(t,u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4})-f_{i}^{2}(t,v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4})\right|\leq\eta_{i}^{3},i=1,2,(\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!),\\
\!(\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4}\!)\!\in\!(\![t_{0}-\tau_{1},b]\!\times\![t_{0}-\tau_{2},b]\!)^{2}.
Report issue for preceding element
Then
Report issue for preceding element
| ( x 1 , x 2 ) ​ ( t ; φ 1 1 , φ 2 1 , f 1 1 , f 2 1 ) − ( x 1 , x 2 ) ​ ( t ; φ 1 2 , φ 2 2 ​ f 1 2 , f 2 2 ) | ≤ η 1 + η 2 + ( η 1 3 + η 2 3 ) ​ ( b − t 0 ) ( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) , \left|(\!x_{1},x_{2}\!)(\!t;\varphi_{1}^{1}\!,\!\varphi_{2}^{1}\!,\!f_{1}^{1}\!,\!f_{2}^{1}\!)\!-\!(\!x_{1},x_{2}\!)(\!t;\varphi_{1}^{2}\!,\!\varphi_{2}^{2}\!\,\!f_{1}^{2}\!,\!f_{2}^{2}\!)\right|\!\leq\!\frac{\eta^{1}\!+\!\eta^{2}\!+\!(\eta_{1}^{3}\!+\!\eta_{2}^{3})(b\!-\!t_{0})}{(b\!-\!t_{0})(L_{f_{1}}\!+\!L_{f_{2}})(L\!+\!2)},
where L f i = max ( L f i 1 , L f i 2 ) , i = 1 , 2 . L_{f_{i}}=\max(L_{f_{i}^{1}},L_{f_{i}^{2}}),i=1,2.
Report issue for preceding element
Consider the operators A φ 1 j , φ 2 j , f 1 j , f 2 j , j = 1 , 2 . A_{\varphi_{1}^{j},\varphi_{2}^{j},f_{1}^{j},f_{2}^{j}},j=1,2. From Theorem 3.1 these
operators are contractions.
Report issue for preceding element
Then
Report issue for preceding element
‖ A φ 1 1 , φ 2 1 , f 1 1 , f 2 1 ​ ( x 1 , x 2 ) − A φ 1 2 , φ 2 2 , f 1 2 , f 2 2 ​ ( x 1 , x 2 ) ‖ C ≤ η 1 + η 2 + ( η 1 3 + η 2 3 ) ​ ( b − t 0 ) , \left\|A_{\varphi_{1}^{1},\varphi_{2}^{1},f_{1}^{1},f_{2}^{1}}(x_{1},x_{2})-A_{\varphi_{1}^{2},\varphi_{2}^{2},f_{1}^{2},f_{2}^{2}}(x_{1},x_{2})\right\|_{C}\leq\eta^{1}+\eta^{2}+(\eta_{1}^{3}+\eta_{2}^{3})(b-t_{0}),
∀ ( x 1 , x 2 ) ∈ C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) . \forall(x_{1},x_{2})\in C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!).
Report issue for preceding element
Now the proof follows from Theorem 2.3 , with A := A φ 1 1 , φ 2 1 , f 1 1 , f 2 1 , B = A φ 1 2 , φ 2 2 , f 1 2 , f 2 2 , η = η 1 + η 2 + ( η 1 3 + η 2 3 ) ​ ( b − t 0 ) A:=A_{\varphi_{1}^{1},\varphi_{2}^{1},f_{1}^{1},f_{2}^{1}},\ B=A_{\varphi_{1}^{2},\varphi_{2}^{2},f_{1}^{2},f_{2}^{2}},\ \eta=\eta^{1}+\eta^{2}+(\eta_{1}^{3}+\eta_{2}^{3})(b-t_{0}) and α := L A f = ( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) \alpha:=L_{A_{f}}=(b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2) where L f i = max ( L f i 1 , L f i 2 ) , i = 1 , 2 . L_{f_{i}}=\max(L_{f_{i}^{1}},L_{f_{i}^{2}}),i=1,2.
∎
Report issue for preceding element
From the Theorem above we have:
Report issue for preceding element
Theorem 5.2 .
Report issue for preceding element
Let f i 1 f_{i}^{1} and f i 2 f_{i}^{2} be as in Theorem 3.1 , i = 1 , 2 i=1,2 . Let S B f i 1 , S B f i 2 S_{B_{f_{i}^{1}}},S_{B_{f_{i}^{2}}} be the
solution set of the system (1 ) corresponding to f i 1 f_{i}^{1} and
f i 2 , i = 1 , 2 f_{i}^{2},i=1,2 . Suppose that there exists η i > 0 , i = 1 , 2 \eta_{i}>0,i=1,2 such that
Report issue for preceding element
(6)
| f i 1 ​ ( t , u 1 , u 2 , u 3 , u 4 ) − f i 2 ​ ( t , v 1 , v 2 , v 3 , v 4 ) | ≤ η i \left|f_{i}^{1}(\!t\!,\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4})\!-\!f_{i}^{2}(\!t\!,\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4})\!\right|\leq\eta_{i}
for all t ∈ [ t 0 , b ] , ( u 1 , u 2 , u 3 , u 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , i = 1 , 2 . t\in[t_{0},b],(\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!),\!(\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4}\!)\!\in\!(\![t_{0}-\tau_{1},b]\!\times\![t_{0}-\tau_{2},b]\!)^{2},i=1,2.
Report issue for preceding element
Then
Report issue for preceding element
H ∥ ⋅ ∥ C ​ ( S B f i 1 , S B f i 2 ) ≤ ( η 1 + η 2 ) ​ ( b − t 0 ) 1 − ( L f 1 + L f 2 ) ​ ( L + 2 ) ​ ( b − t 0 ) , H_{\left\|\cdot\right\|_{C}}(S_{B_{f_{i}^{1}}},S_{B_{f_{i}^{2}}})\leq\frac{(\eta_{1}+\eta_{2})(b\!-\!t_{0})}{1-(L_{f_{1}}+L_{f_{2}})(L+2)(b\!-\!t_{0})},
where L f i := max ( L f i 1 , L f i 2 ) L_{f_{i}}:=\max(L_{f_{i}^{1}},L_{f_{i}^{2}}) and H ∥ ⋅ ∥ C H_{\left\|\cdot\right\|_{C}} denotes the Pompeiu-Housdorff functional with
respect to ∥ ⋅ ∥ C \left\|\cdot\right\|_{C} on C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) . C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!).
Report issue for preceding element
We will look for those c 1 c_{1} and c 2 c_{2} for which in condition of Theorem 3.1 the operators B f i 1 B_{f_{i}^{1}} and B f i 2 , i = 1 , 2 B_{f_{i}^{2}},i=1,2 are c 1 c_{1} -WPO and c 2 c_{2} -WPO.
Report issue for preceding element
Let
Report issue for preceding element
X φ 1 := { x 1 ∈ C ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) | x 1 | [ t 0 − τ 1 , t 0 ] = φ 1 } , \displaystyle X_{\varphi_{1}}:=\{x_{1}\in C(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)|\ x_{1}|_{[t_{0}-\tau_{1},t_{0}]}=\varphi_{1}\},
X φ 2 := { x 2 ∈ C ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) | x 2 | [ t 0 − τ 2 , t 0 ] = φ 2 } . \displaystyle X_{\varphi_{2}}:=\{x_{2}\in C(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!)|\ x_{2}|_{[t_{0}-\tau_{2},t_{0}]}=\varphi_{2}\}.
It is clear that B f i 1 | X ​ φ 1 × X φ 2 = A f i 1 , B f i 2 | X ​ φ 1 × X φ 2 = A f i 2 . B_{f_{i}^{1}}|_{X\varphi_{1}\times X_{\varphi_{2}}}=A_{f_{i}^{1}},\ B_{f_{i}^{2}}|_{X\varphi_{1}\times X_{\varphi_{2}}}=A_{f_{i}^{2}}. So from Theorem 2.5 and Theorem 3.1 we have
Report issue for preceding element
‖ B f i 1 2 ​ ( x 1 , x 2 ) − B f i 1 ​ ( x 1 , x 2 ) ‖ C \displaystyle\left\|\!B_{f_{i}^{1}}^{2}\!(\!x_{1}\!,\!x_{2}\!)\!-\!B_{f_{i}^{1}}\!(\!x_{1}\!,\!x_{2}\!)\!\right\|_{C}\!
≤ \displaystyle\leq
( b − t 0 ) ​ ( L f 1 1 + L f 2 1 ) ​ ( L + 2 ) ​ ‖ B f i 1 ​ ( x 1 , x 2 ) − ( x 1 , x 2 ) ‖ C , \displaystyle\!(b\!-\!t_{0})\!(L_{f_{1}^{1}}\!+\!L_{f_{2}^{1}})\!(L\!+\!2)\!\left\|\!B_{f_{i}^{1}}\!(\!x_{1}\!,\!x_{2}\!)\!-\!(\!x_{1}\!,\!x_{2}\!)\!\right\|_{C},
‖ B f i 2 2 ​ ( x 1 , x 2 ) − B f i 2 ​ ( x 1 , x 2 ) ‖ C \displaystyle\left\|\!B_{f_{i}^{2}}^{2}\!(\!x_{1}\!,\!x_{2}\!)\!-\!B_{f_{i}^{2}}\!(\!x_{1}\!,\!x_{2}\!)\!\right\|_{C}\!
≤ \displaystyle\leq
( b − t 0 ) ​ ( L f 1 2 + L f 2 2 ) ​ ( L + 2 ) ​ ‖ B f i 2 ​ ( x 1 , x 2 ) − ( x 1 , x 2 ) ‖ C , \displaystyle\!(b\!-\!t_{0})\!(L_{f_{1}^{2}}\!+\!L_{f_{2}^{2}})\!(L\!+\!2)\!\left\|\!B_{f_{i}^{2}}\!(\!x_{1}\!,\!x_{2}\!)\!-\!(\!x_{1}\!,\!x_{2}\!)\!\right\|_{C},
for all ( x 1 , x 2 ) ∈ C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) , i = 1 , 2 . (x_{1},x_{2})\in C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!),i=1,2.
Report issue for preceding element
Now choosing
Report issue for preceding element
α 1 \displaystyle\alpha_{1}
= \displaystyle=
( b − t 0 ) ​ ( L f 1 1 + L f 2 1 ) ​ ( L + 2 ) , \displaystyle(b-t_{0})(L_{f_{1}^{1}}+L_{f_{2}^{1}})(L+2),
α 2 \displaystyle\alpha_{2}
= \displaystyle=
( b − t 0 ) ​ ( L f 1 2 + L f 2 2 ) ​ ( L + 2 ) , \displaystyle(b-t_{0})(L_{f_{1}^{2}}+L_{f_{2}^{2}})(L+2),
we get that B f i 1 B_{f_{i}^{1}} and B f i 2 B_{f_{i}^{2}} are c 1 c_{1} -WPO and c 2 c_{2} -WPO with c 1 = ( 1 − α 1 ) − 1 , c 2 = ( 1 − α 2 ) − 1 c_{1}=(1-\alpha_{1})^{-1},\ c_{2}=(1-\alpha_{2})^{-1} . From (6 ) we obtain that
Report issue for preceding element
‖ B f i 1 ​ ( x 1 , x 2 ) − B f i 2 ​ ( x 1 , x 2 ) ‖ C ≤ ( η 1 + η 2 ) ​ ( b − t 0 ) , \left\|B_{f_{i}^{1}}(x_{1},x_{2})-B_{f_{i}^{2}}(x_{1},x_{2})\right\|_{C}\leq(\eta_{1}+\eta_{2})(b-t_{0}),
for all ( x 1 , x 2 ) ∈ C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) , i = 1 , 2 . (x_{1},x_{2})\in C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!),i=1,2. Applying Theorem 2.9 we have that
Report issue for preceding element
H ∥ ⋅ ∥ C ​ ( S B f i 1 , S B f i 2 ) ≤ ( η 1 + η 2 ) ​ ( b − t 0 ) 1 − ( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) , H_{\left\|\cdot\right\|_{C}}(S_{B_{f_{i}^{1}}},S_{B_{f_{i}^{2}}})\leq\frac{(\eta_{1}+\eta_{2})(b-t_{0})}{1-(b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2)},
where L f i := max ( L f i 1 , L f i 2 ) L_{f_{i}}:=\max(L_{f_{i}^{1}},L_{f_{i}^{2}}) and H ∥ ⋅ ∥ C H_{\left\|\cdot\right\|_{C}} denotes the Pompeiu-Housdorff functional with
respect to ∥ ⋅ ∥ C \left\|\cdot\right\|_{C} on C L ​ ( [ t 0 − τ 1 , b ] , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] , [ t 0 − τ 2 , b ] ) , i = 1 , 2 . C_{L}(\![t_{0}\!-\!\tau_{1},b]\!,\![t_{0}\!-\!\tau_{1},b]\!)\!\times\!C_{L}(\![t_{0}\!-\!\tau_{2},b]\!,\![t_{0}\!-\!\tau_{2},b]\!),\ i=1,2.
∎
Report issue for preceding element
6. DATA DEPENDENCE: DIFFERENTIABILITY Report issue for preceding element
Consider the following Cauchy problem with parameter
Report issue for preceding element
(7)
x i ′ ​ ( t ) = f i ​ ( t , x 1 ​ ( t ) , x 2 ​ ( t ) , x 1 ​ ( x 1 ​ ( t − τ 1 ) ) , x 2 ​ ( x 2 ​ ( t − τ 2 ) ) ; λ ) , t ∈ [ t 0 , b ] , i = 1 , 2 , x_{i}^{\prime}(t)=f_{i}(\!t,x_{1}(t),x_{2}(t),x_{1}(x_{1}(t\!-\!\tau_{1})),x_{2}(x_{2}(t\!-\!\tau_{2}));\lambda\!),\ t\in[t_{0},b],i=1,2,
(8)
x i ​ ( t ) = φ i ​ ( t ) , t ∈ [ t 0 − τ i , t 0 ] , i = 1 , 2 . x_{i}(t)=\varphi_{i}(t),\ t\in[t_{0}-\tau_{i},t_{0}],i=1,2.
Suppose that we have satisfied the following conditions:
Report issue for preceding element
(C1 )
t 0 < b , τ 1 , τ 2 > 0 , τ 1 < τ 2 , J ⊂ ℝ t_{0}<b,\tau_{1},\tau_{2}>0,\tau_{1}<\tau_{2},J\subset\mathbb{R} a compact interval;
Report issue for preceding element
(C2 )
φ i ∈ C L ​ ( [ t 0 − τ i , t 0 ] , [ t 0 − τ i , b ] ) , i = 1 , 2 ; \varphi_{i}\in C_{L}([t_{0}-\tau_{i},t_{0}],[t_{0}-\tau_{i},b]),\ i=1,2;
Report issue for preceding element
(C3 )
f i ∈ C 1 ​ ( [ t 0 , b ] × ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 × J , ℝ ) ​ i = 1 , 2 ; f_{i}\in C^{1}([t_{0},b]\times([t_{0}-\tau_{1},b]\times[t_{0}-\tau_{2},b])^{2}\times J,\mathbb{R})\ i=1,2;
Report issue for preceding element
(C4 )
there exists L f i > 0 L_{f_{i}}>0 such that
Report issue for preceding element
| ∂ f i ​ ( t , u 1 , u 2 , u 3 , u 4 ; λ ) ∂ u i | ≤ L f i \left|\frac{\partial f_{i}(t,u_{1},u_{2},u_{3},u_{4};\lambda)}{\partial u_{i}}\right|\leq L_{f_{i}}
for all t ∈ [ t 0 , b ] , ( u 1 , u 2 , u 3 , u 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , i = 1 , 2 , λ ∈ J ; t\in[t_{0},b],(\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!)\!\in\!(\![t_{0}-\tau_{1},b]\!\times\![t_{0}-\tau_{2},b]\!)^{2},\ i=1,2,\lambda\in J;
Report issue for preceding element
(C5 )
m f i m_{f_{i}} and M f i ∈ ℝ , i = 1 , 2 M_{f_{i}}\in\mathbb{R},\ i=1,2
are such that
Report issue for preceding element
(a)
m f i ≤ f i ​ ( t , u 1 , u 2 , u 3 , u 4 ) ≤ M f i , ∀ t ∈ [ t 0 , b ] , ( u 1 , u 2 , u 3 , u 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ ( [ t 0 − τ 1 , b ] × [ t 0 − τ 2 , b ] ) 2 , m_{f_{i}}\leq f_{i}(t,u_{1},u_{2},u_{3},u_{4})\leq M_{f_{i}},\forall t\in[t_{0},b],\ (\!u_{1}\!,\!u_{2}\!,u_{3}\!,u_{4}\!),\\
(\!v_{1}\!,\!v_{2}\!,\!v_{3}\!,\!v_{4}\!)\!\in\!(\![t_{0}\!-\!\tau_{1},b]\!\times\![t_{0}\!-\!\tau_{2},b]\!)^{2},
Report issue for preceding element
(b)
t 0 − τ i ≤ φ i ​ ( t 0 ) + m f i ​ ( b − t 0 ) for ​ m f i < 0 , t 0 − τ i ≤ φ i ​ ( t 0 ) for ​ m f i ≥ 0 , b ≥ φ i ​ ( t 0 ) for ​ M f i ≤ 0 , b ≥ φ i ​ ( t 0 ) + M f i ​ ( b − t 0 ) for ​ M f i > 0 , \begin{array}[]{ll}t_{0}-\tau_{i}\leq\varphi_{i}(t_{0})+m_{f_{i}}(b-t_{0})&\text{for }m_{f_{i}}<0,\\
t_{0}-\tau_{i}\leq\varphi_{i}(t_{0})&\text{for }m_{f_{i}}\geq 0,\\
b\geq\varphi_{i}(t_{0})&\text{for }M_{f_{i}}\leq 0,\\
b\geq\varphi_{i}(t_{0})+M_{f_{i}}(b-t_{0})&\text{for }M_{f_{i}}>0,\end{array}
(c)
L + M f i < 1 ; L+M_{f_{i}}<1;
Report issue for preceding element
(C6 )
( b − t 0 ) ​ ( L f 1 + L f 2 ) ​ ( L + 2 ) < 1 . (b-t_{0})(L_{f_{1}}+L_{f_{2}})(L+2)<1.
Report issue for preceding element
Then, from Theorem 3.1 , we have that the problem (1 )–(2 ) has a unique solution ( x 1 ∗ ​ ( ⋅ , λ ) , x 2 ∗ ​ ( ⋅ , λ ) ) . (x_{1}^{\ast}(\cdot,\lambda),x_{2}^{\ast}(\cdot,\lambda)).
Report issue for preceding element
We will prove that
Report issue for preceding element
x i ∗ ​ ( ⋅ , λ ) ∈ C 1 ​ ( J ) , for all ​ t ∈ [ t 0 − τ i , t 0 ] , i = 1 , 2 . x_{i}^{\ast}(\cdot,\lambda)\in C^{1}(J),\text{ for all }t\in[t_{0}-\tau_{i},t_{0}],i=1,2.
For this we consider the system
Report issue for preceding element
(9)
x i ′ ​ ( t , λ ) = f i ​ ( t , x 1 ​ ( t ; λ ) , x 2 ​ ( t ; λ ) , x 1 ​ ( x 1 ​ ( t − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( t − τ 2 ; λ ) ; λ ) ; λ ) , x_{i}^{\prime}(t,\lambda)=f_{i}(t,x_{1}(t;\lambda),x_{2}(t;\lambda),x_{1}(x_{1}(t-\tau_{1};\lambda);\lambda),x_{2}(x_{2}(t-\tau_{2};\lambda);\lambda);\lambda),
t ∈ [ t 0 , b ] , λ ∈ J , x i ∈ C ​ ( [ t 0 − τ i , b ] × J , [ t 0 − τ i , b ] × J ) ∩ C 1 ​ ( [ t 0 , b ] × J , [ t 0 − τ i , b ] × J ) , i = 1 , 2 . t\in[t_{0},b],\ \lambda\in J,\ x_{i}\in C([t_{0}-\tau_{i},b]\times J,[t_{0}-\tau_{i},b]\times J)\cap C^{1}([t_{0},b]\times J,[t_{0}-\tau_{i},b]\times J),\ i=1,2.
Report issue for preceding element
Theorem 6.1 .
Report issue for preceding element
Consider the problem (9 )–(8 ),
and suppose the conditions (C 1 {}_{\text{1}} )–(C 6 {}_{\text{6}} ) holds. Then,
Report issue for preceding element
(i)
( 9 )–( 8 ) has a unique solution ( x 1 ∗ , x 2 ∗ ) (x_{1}^{\ast},x_{2}^{\ast}) , in C ​ ( [ t 0 − τ 1 , b ] × J , [ t 0 − τ 1 , b ] ) × C ​ ( [ t 0 − τ 2 , b ] × J , [ t 0 − τ 2 , b ] ) ; C([t_{0}-\tau_{1},b]\times J,[t_{0}-\tau_{1},b])\times C([t_{0}-\tau_{2},b]\times J,[t_{0}-\tau_{2},b]);
Report issue for preceding element
(ii)
x i ∗ ​ ( ⋅ , λ ) ∈ C 1 ​ ( J ) , x_{i}^{\ast}(\cdot,\lambda)\in C^{1}(J), for all t ∈ [ t 0 − τ i , t 0 ] , i = 1 , 2 . t\in[t_{0}-\tau_{i},t_{0}],i=1,2.
Report issue for preceding element
The problem (9 )–(8 ) is equivalent with the
following functional integral equations
Report issue for preceding element
(10a)
x 1 ​ ( t ; λ ) = { φ 1 ​ ( t ) , t ∈ [ t 0 − τ 1 , t 0 ] φ 1 ​ ( t ) + ∫ t 0 t f 1 ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) , t ∈ [ t 0 , b ] x_{1}\!(\!t\!;\!\lambda\!)\!=\!\left\{\!\begin{array}[]{l}\!\varphi_{1}(t),\ t\in[t_{0}-\tau_{1},t_{0}]\\
\!\varphi_{1}\!(\!t\!)\!+\!\int_{t_{0}}^{t}\!f_{1}\!(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}\!(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}\!(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)\!,t\!\in\![\!t_{0}\!,\!b\!]\end{array}\right.
(10b)
x 2 ​ ( t ; λ ) = { φ 2 ​ ( t ) , t ∈ [ t 0 − τ 2 , t 0 ] φ 2 ​ ( t ) + ∫ t 0 t f 2 ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) , t ∈ [ t 0 , b ] x_{2}\!(\!t\!;\!\lambda\!)\!=\!\left\{\!\begin{array}[]{l}\varphi_{2}(t),\ t\in[t_{0}-\tau_{2},t_{0}]\\
\!\varphi_{2}\!(\!t\!)\!+\!\int_{t_{0}}^{t}\!f_{2}\!(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)\!,t\!\in\![\!t_{0}\!,\!b\!]\end{array}\right.
Now, let take the operator
Report issue for preceding element
A \displaystyle A\!
: \displaystyle:
C L ​ ( [ t 0 − τ 1 , b ] × J , [ t 0 − τ 1 , b ] × J ) × C L ​ ( [ t 0 − τ 2 , b ] × J , [ t 0 − τ 2 , b ] × J ) → \displaystyle\!C_{L}\!([t_{0}-\tau_{1},b]\times J,[t_{0}-\tau_{1},b]\times J)\!\times\!C_{L}\!([t_{0}-\tau_{2},b]\times J,[t_{0}-\tau_{2},b]\times J)\!\rightarrow
C L ​ ( [ t 0 − τ 1 , b ] × J , [ t 0 − τ 1 , b ] × J ) × C L ​ ( [ t 0 − τ 2 , b ] × J , [ t 0 − τ 2 , b ] × J ) , \displaystyle C_{L}\!([t_{0}-\tau_{1},b]\times J,[t_{0}-\tau_{1},b]\times J)\!\times\!C_{L\!}([t_{0}-\tau_{2},b]\times J,[t_{0}-\tau_{2},b]\times J),
given by the relation
Report issue for preceding element
A ​ ( x 1 , x 2 ) = ( A 1 ​ ( x 1 , x 2 ) , A 2 ​ ( x 1 , x 2 ) ) , A(x_{1},x_{2})=(A_{1}(x_{1},x_{2}),A_{2}(x_{1},x_{2})),
where A 1 ​ ( x 1 , x 2 ) ​ ( t ; λ ) := A_{1}(x_{1},x_{2})(t;\lambda):= the right hand side of (10a ) and A 2 ​ ( x 1 , x 2 ) ​ ( t ; λ ) := A_{2}(x_{1},x_{2})(t;\lambda):= the right hand side of (10b ).
Report issue for preceding element
Let X = C L ​ ( [ t 0 − τ 1 , b ] × J , [ t 0 − τ 1 , b ] ) × C L ​ ( [ t 0 − τ 2 , b ] × J , [ t 0 − τ 2 , b ] ) . X=C_{L}([t_{0}-\tau_{1},b]\times J,[t_{0}-\tau_{1},b])\times C_{L}([t_{0}-\tau_{2},b]\times J,[t_{0}-\tau_{2},b]).
Report issue for preceding element
It is clear from the proof of Theorem 3.1 that in the conditions
(C1 {}_{\text{1}} )–(C6 {}_{\text{6}} ) the operator
Report issue for preceding element
A : ( X , ∥ ⋅ ∥ C ) → ( X , ∥ ⋅ ∥ C ) A:(X,\left\|\cdot\right\|_{C})\rightarrow(X,\left\|\cdot\right\|_{C})
is a PO.
Report issue for preceding element
Let ( x 1 ∗ , x 2 ∗ ) (x_{1}^{\ast},x_{2}^{\ast}) be the unique fixed point of A . A.
Report issue for preceding element
We consider the subset X 1 ⊂ X , X_{1}\subset X,
Report issue for preceding element
X 1 := { ( x 1 , x 2 ) ∈ X | ∂ x 1 ∂ t ∈ [ t 0 − τ 1 , t 0 ] , ∂ x 2 ∂ t ∈ [ t 0 − τ 2 , t 0 ] } . X_{1}:=\{(x_{1},x_{2})\in X|\ \frac{\partial x_{1}}{\partial t}\in[t_{0}-\tau_{1},t_{0}],\ \frac{\partial x_{2}}{\partial t}\in[t_{0}-\tau_{2},t_{0}]\}.
We remark that ( x 1 ∗ , x 2 ∗ ) ∈ X 1 , A ​ ( X 1 ) ⊂ X 1 \ (x_{1}^{\ast},x_{2}^{\ast})\in X_{1},A(X_{1})\subset X_{1} and A : ( X 1 , ∥ ⋅ ∥ C ) → ( X 1 , ∥ ⋅ ∥ C ) A:(X_{1},\left\|\cdot\right\|_{C})\rightarrow(X_{1},\left\|\cdot\right\|_{C}) is PO.
Report issue for preceding element
Let Y := C ​ ( [ t 0 − τ 1 , b ] × J ) × C ​ ( [ t 0 − τ 2 , b ] × J ) . Y:=C([t_{0}-\tau_{1},b]\times J)\times C([t_{0}-\tau_{2},b]\times J).
Report issue for preceding element
Supposing that there exists ∂ x 1 ∗ ∂ λ \dfrac{\partial x_{1}^{\ast}}{\partial\lambda} and ∂ x 2 ∗ ∂ λ , \dfrac{\partial x_{2}^{\ast}}{\partial\lambda}, from (10a )–(10b ) we have that
Report issue for preceding element
∂ x i ∗ ∂ λ \displaystyle\dfrac{\partial x_{i}^{\ast}}{\partial\lambda}\!\!
= ∫ t 0 t ∂ f i ​ ( s , x 1 ∗ ​ ( s ; λ ) , x 2 ∗ ​ ( s ; λ ) , x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 1 ⋅ ∂ x 1 ∗ ​ ( s , λ ) ∂ λ ​ 𝑑 s + \displaystyle=\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}\!(\!s\!,\!x_{1}^{\ast}(\!s\!;\!\lambda\!)\!,\!x_{2}^{\ast}(\!s\!;\!\lambda\!)\!,\!x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{1}}\!\cdot\!\frac{\partial x_{1}^{\ast}\!(\!s,\lambda\!)}{\partial\lambda}\!ds\!+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ∗ ​ ( s ; λ ) , x 2 ∗ ​ ( s ; λ ) , x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 2 ⋅ ∂ x 2 ∗ ​ ( s , λ ) ∂ λ ​ 𝑑 s + \displaystyle\!+\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}\!(\!s\!,\!x_{1}^{\ast}(\!s\!;\!\lambda\!)\!,\!x_{2}^{\ast}(\!s\!;\!\lambda\!)\!,\!x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{2}}\!\cdot\!\frac{\partial x_{2}^{\ast}\!(\!s\!,\!\lambda\!)}{\partial\lambda}\!ds\!+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ∗ ​ ( s ; λ ) , x 2 ∗ ​ ( s ; λ ) , x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 3 ⋅ \displaystyle\!+\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}^{\ast}(\!s;\!\lambda\!)\!,\!x_{2}^{\ast}(\!s;\!\lambda\!)\!,\!x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{3}}\cdot
⋅ [ ∂ x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) ∂ u 1 ⋅ ∂ x 1 ∗ ​ ( s − τ 1 ; λ ) ∂ λ + ∂ x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) ∂ λ ] ​ d ​ s + \displaystyle\cdot\left[\frac{\partial x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)}{\partial u_{1}}\cdot\frac{\partial x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!)}{\partial\lambda}+\frac{\partial x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)}{\partial\lambda}\right]ds+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ∗ ​ ( s ; λ ) , x 2 ∗ ​ ( s ; λ ) , x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 4 ⋅ \displaystyle\!+\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}^{\ast}(\!s;\!\lambda\!)\!,\!x_{2}^{\ast}(\!s;\!\lambda\!)\!,\!x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{4}}\cdot
⋅ [ ∂ x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 1 ; λ ) ; λ ) ∂ u 2 ⋅ ∂ x 2 ∗ ​ ( s − τ 2 ; λ ) ∂ λ + ∂ x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 2 ; λ ) ; λ ) ∂ λ ] ​ d ​ s + \displaystyle\cdot\left[\frac{\partial x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)}{\partial u_{2}}\cdot\frac{\partial x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!)}{\partial\lambda}+\frac{\partial x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!)}{\partial\lambda}\right]ds+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ∗ ​ ( s ; λ ) , x 2 ∗ ​ ( s ; λ ) , x 1 ∗ ​ ( x 1 ∗ ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ∗ ​ ( x 2 ∗ ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ λ ​ 𝑑 s , \displaystyle\!+\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}^{\ast}(\!s;\!\lambda\!)\!,\!x_{2}^{\ast}(\!s;\!\lambda\!)\!,\!x_{1}^{\ast}\!(\!x_{1}^{\ast}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}^{\ast}\!(\!x_{2}^{\ast}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial\lambda}ds,
t ∈ [ t 0 , b ] , λ ∈ J , i = 1 , 2 . t\in[t_{0},b],\lambda\in J,i=1,2.
Report issue for preceding element
The relation suggest us to consider the following operator
Report issue for preceding element
C : X 1 × Y → Y , ( x 1 , x 2 , u , v ) → C ​ ( x 1 , x 2 , u , v ) , C:X_{1}\times Y\rightarrow Y,\ (x_{1},x_{2},u,v)\rightarrow C(x_{1},x_{2},u,v),
where
Report issue for preceding element
C ​ ( x 1 , x 2 , u , v ) ​ ( t ; λ ) = 0 ​ for ​ t ∈ [ t 0 − τ i , t 0 ] , λ ∈ J , i = 1 , 2 C(x_{1},x_{2},u,v)(t;\lambda)=0\text{ for }t\in[t_{0}-\tau_{i},t_{0}],\lambda\in J,i=1,2
and
Report issue for preceding element
C ​ ( x 1 , x 2 , u , v ) ​ ( t ; λ ) := \displaystyle C(x_{1},x_{2},u,v)(t;\lambda):=
= ∫ t 0 t ∂ f i ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 1 ​ u ​ ( s ; λ ) ​ 𝑑 s + \displaystyle=\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{1}}u(s;\lambda)ds\!+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 2 ​ v ​ ( s ; λ ) ​ 𝑑 s + \displaystyle+\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{2}}v(s;\lambda)ds\!+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 3 ⋅ \displaystyle\!+\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{3}}\cdot
⋅ [ ∂ x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) ∂ u 1 ⋅ u ​ ( s − τ 1 ; λ ) + ∂ x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) ∂ λ ] ​ d ​ s + \displaystyle\cdot\left[\frac{\partial x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)}{\partial u_{1}}\cdot u(\!s\!-\!\tau_{1};\!\lambda\!)+\frac{\partial x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)}{\partial\lambda}\right]ds\!+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ u 4 ⋅ \displaystyle\!+\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial u_{4}}\cdot
⋅ [ ∂ x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ∂ u 2 ⋅ v ​ ( s − τ 2 ; λ ) + ∂ x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ∂ λ ] ​ d ​ s + \displaystyle\cdot\left[\frac{\partial x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!)}{\partial u_{2}}\cdot v(\!s\!-\!\tau_{2};\!\lambda\!)+\frac{\partial x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!)}{\partial\lambda}\right]ds\!+
+ ∫ t 0 t ∂ f i ​ ( s , x 1 ​ ( s ; λ ) , x 2 ​ ( s ; λ ) , x 1 ​ ( x 1 ​ ( s − τ 1 ; λ ) ; λ ) , x 2 ​ ( x 2 ​ ( s − τ 2 ; λ ) ; λ ) ; λ ) ∂ λ \displaystyle\!+\!\int_{t_{0}}^{t}\!\frac{\partial f_{i}(\!s\!,\!x_{1}(\!s;\!\lambda\!)\!,\!x_{2}(\!s;\!\lambda\!)\!,\!x_{1}\!(\!x_{1}(\!s\!-\!\tau_{1};\!\lambda\!);\!\lambda\!)\!,\!x_{2}\!(\!x_{2}(\!s\!-\!\tau_{2};\!\lambda\!);\!\lambda\!);\!\lambda\!)}{\partial\lambda}
for t ∈ [ t 0 , b ] , λ ∈ J , i = 1 , 2 . t\in[t_{0},b],\lambda\in J,i=1,2.
Report issue for preceding element
In this way we have the triangular operator
Report issue for preceding element
D \displaystyle D
: \displaystyle:
X 1 × Y → X 1 × Y , \displaystyle X_{1}\times Y\rightarrow X_{1}\times Y,
( x 1 , x 2 , u , v ) \displaystyle(x_{1},x_{2},u,v)
→ \displaystyle\rightarrow
( A ​ ( x 1 , x 2 ) , C ​ ( x 1 , x 2 , u , v ) ) , \displaystyle(A(x_{1},x_{2}),C(x_{1},x_{2},u,v)),
where A A is PO and C ​ ( x 1 , x 2 , ⋅ , ⋅ ) : Y → Y C(x_{1},x_{2},\cdot,\cdot):Y\rightarrow Y is an L C L_{C} -contraction with L C = ( b − t 0 ) ​ ( L ~ f 1 + L ~ f 2 ) ​ ( L + 2 ) , L_{C}=(b-t_{0})(\widetilde{L}_{f_{1}}+\widetilde{L}_{f_{2}})(L+2), where L ~ f i = max { L f i , L ⋅ L f i } , i = 1 , 2 . \widetilde{L}_{f_{i}}=\max\{L_{f_{i}},L\cdot L_{f_{i}}\},i=1,2.
Report issue for preceding element
From the fibre contraction Theorem we have that the operator D D is PO, i.e.
the sequences
Report issue for preceding element
( x 1 , n + 1 , x 2 , n + 1 ) := A ​ ( x 1 , n , x 2 , n ) , n ∈ ℕ , \displaystyle(x_{1,n+1},x_{2,n+1}):=A(x_{1,n},x_{2,n}),n\in\mathbb{N},
( u n + 1 , v n + 1 ) := C ​ ( x 1 , n , x 2 , n , u n , v n ) , n ∈ ℕ , \displaystyle(u_{n+1},v_{n+1}):=C(x_{1,n},x_{2,n},u_{n},v_{n}),n\in\mathbb{N},
converges uniformly, with respect to t ∈ X , λ ∈ J , t\in X,\ \lambda\in J, to ( x 1 ∗ , x 2 ∗ , u ∗ , v ∗ ) ∈ F D (x_{1}^{\ast},x_{2}^{\ast},u^{\ast},v^{\ast})\in F_{D} , for all ( x 1 , 0 , x 2 , 0 ) ∈ X 1 , ( u 0 , v 0 ) ∈ Y (x_{1,0},x_{2,0})\in X_{1},\ (u_{0},v_{0})\in Y .
Report issue for preceding element
If we take
Report issue for preceding element
x 1 , 0 = 0 , x 2 , 0 = 0 , u 0 = ∂ x 1 , 0 ∂ λ = 0 , v 0 = ∂ x 2 , 0 ∂ λ = 0 , x_{1,0}=0,\;x_{2,0}=0,u_{0}=\dfrac{\partial x_{1,0}}{\partial\lambda}=0,\;v_{0}=\dfrac{\partial x_{2,0}}{\partial\lambda}=0,
then
Report issue for preceding element
u 1 = ∂ x 1 , 1 ∂ λ , v 1 = ∂ x 2 , 1 ∂ λ . u_{1}=\frac{\partial x_{1,1}}{\partial\lambda},v_{1}=\frac{\partial x_{2,1}}{\partial\lambda}.
By induction we prove that
Report issue for preceding element
u n \displaystyle u_{n}
= \displaystyle=
∂ x 1 , n ∂ λ , ∀ n ∈ ℕ , \displaystyle\frac{\partial x_{1,n}}{\partial\lambda},\;\forall n\in\mathbb{N},
v n \displaystyle v_{n}
= \displaystyle=
∂ x 2 , n ∂ λ , ∀ n ∈ ℕ . \displaystyle\frac{\partial x_{2,n}}{\partial\lambda},\;\forall n\in\mathbb{N}.
So
Report issue for preceding element
x 1 , n \displaystyle x_{1,n}
→ u ​ n ​ i ​ f ​ x 1 ∗ ​ as ​ n → ∞ , \displaystyle\overset{unif}{\rightarrow}x_{1}^{\ast}\text{ as }n\rightarrow\infty,
x 2 , n \displaystyle x_{2,n}
→ u ​ n ​ i ​ f ​ x 2 ∗ ​ as ​ n → ∞ , \displaystyle\overset{unif}{\rightarrow}x_{2}^{\ast}\text{ as }n\rightarrow\infty,
∂ x 1 , n ∂ λ \displaystyle\frac{\partial x_{1,n}}{\partial\lambda}
→ u ​ n ​ i ​ f ​ u ∗ ​ as ​ n → ∞ , \displaystyle\overset{unif}{\rightarrow}u^{\ast}\text{ as }n\rightarrow\infty,
∂ x 2 , n ∂ λ \displaystyle\frac{\partial x_{2,n}}{\partial\lambda}
→ u ​ n ​ i ​ f ​ v ∗ ​ as ​ n → ∞ . \displaystyle\overset{unif}{\rightarrow}v^{\ast}\text{ as }n\rightarrow\infty.
From a Weierstrass argument we have that there exists ∂ x i ∗ ∂ λ , i = 1 , 2 \dfrac{\partial x_{i}^{\ast}}{\partial\lambda},\;i=1,2 and
Report issue for preceding element
∂ x 1 ∗ ∂ λ = u ∗ ​ , ​ ∂ x 2 ∗ ∂ λ = v ∗ ​ . \frac{\partial x_{1}^{\ast}}{\partial\lambda}=u^{\ast}\text{,}\frac{\partial x_{2}^{\ast}}{\partial\lambda}=v^{\ast}\text{.}
∎
Report issue for preceding element