2. Main Result Report issue for preceding element
Let E : H β β : πΈ β π» β E:H\to\mathbb{R} italic_E : italic_H β blackboard_R be a twice FrΓ©chet differentiable functional, and let K πΎ K italic_K be a nondegenerate cone in H π» H italic_H , i.e.,
Report issue for preceding element
K β { 0 } β β
πΎ 0 K\setminus\left\{0\right\}\neq\emptyset italic_K β { 0 } β β
, β + β’ K β K subscript β πΎ πΎ \mathbb{R}_{+}K\subset K blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_K β italic_K and K + K β K πΎ πΎ πΎ K+K\subset K italic_K + italic_K β italic_K .
The second derivative of E πΈ E italic_E at x π₯ x italic_x in the direction y π¦ y italic_y on the point z π§ z italic_z is (see, e.g., [12 ] ):
Report issue for preceding element
E β²β² β’ ( x ) β’ ( z , y ) = lim t β 0 1 t β’ ( E β² β’ ( x + t β’ y ) β E β² β’ ( x ) , z ) H . superscript πΈ β²β² π₯ π§ π¦ subscript β π‘ 0 1 π‘ subscript superscript πΈ β² π₯ π‘ π¦ superscript πΈ β² π₯ π§ π» E^{\prime\prime}(x)(z,y)=\lim_{t\searrow 0}\frac{1}{t}\left(E^{\prime}(x+ty)-E%
^{\prime}(x),z\right)_{H}. italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_x ) ( italic_z , italic_y ) = roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_t end_ARG ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_x + italic_t italic_y ) - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_x ) , italic_z ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .
Throughout this paper, we assume that the operator N : H β H : π β π» π» N\colon H\to H italic_N : italic_H β italic_H given by
Report issue for preceding element
N β’ ( u ) = u β E β² β’ ( u ) β’ for all β’ u β H , π π’ π’ superscript πΈ β² π’ for all π’ π» N(u)=u-E^{\prime}(u)\,\,\text{ for all }u\in H, italic_N ( italic_u ) = italic_u - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ) for all italic_u β italic_H ,
is invariant over K πΎ K italic_K , i.e., N β’ ( K ) β K π πΎ πΎ N(K)\subset K italic_N ( italic_K ) β italic_K (recall that H π» H italic_H is identified with its duals, so E β² : H β H : superscript πΈ β² β π» π» E^{\prime}:H\to H italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT : italic_H β italic_H ).
Report issue for preceding element
Our aim is to determine a critical point of E πΈ E italic_E within the conical set
Report issue for preceding element
K r , R = { u β K β { 0 } : r β€ | u | H β€ R } , subscript πΎ π π
conditional-set π’ πΎ 0 π subscript π’ π» π
K_{r,R}=\left\{u\in K\setminus\{0\}\,:\,r\leq|u|_{H}\leq R\right\}, italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT = { italic_u β italic_K β { 0 } : italic_r β€ | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT β€ italic_R } ,
where 0 < r < R < β 0 π π
0<r<R<\infty 0 < italic_r < italic_R < β are some given real numbers.
The main assumption we consider on the functional E πΈ E italic_E is the following:
Report issue for preceding element
(h1)::
For each u β K β { 0 } π’ πΎ 0 u\in K\setminus\{0\} italic_u β italic_K β { 0 } , there exists a unique s β’ ( u ) β ( r | u | H , R | u | H ) π π’ π subscript π’ π» π
subscript π’ π» s(u)\in\left(\frac{r}{|u|_{H}},\frac{R}{|u|_{H}}\right) italic_s ( italic_u ) β ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) such that the mapping
Report issue for preceding element
Ο β¦ ( E β² β’ ( Ο β’ u ) , u ) H ( Ο > 0 ) , maps-to π subscript superscript πΈ β² π π’ π’ π» π 0
\tau\mapsto\left(E^{\prime}(\tau u),u\right)_{H}\quad(\tau>0), italic_Ο β¦ ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_Ο > 0 ) ,
is strictly positive on [ r | u | H , s β’ ( u ) ) π subscript π’ π» π π’ \left[\frac{r}{|u|_{H}},s(u)\right) [ divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ) and strictly negative on ( s β’ ( u ) , R | u | H ] π π’ π
subscript π’ π» \left(s(u),\frac{R}{|u|_{H}}\right] ( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ] .
Report issue for preceding element
From this, it follows that the mapping Ξ± u β’ ( Ο ) = E β’ ( Ο β’ u ) subscript πΌ π’ π πΈ π π’ \alpha_{u}(\tau)=E(\tau u) italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Ο ) = italic_E ( italic_Ο italic_u ) , for some u β K β { 0 } π’ πΎ 0 u\in K\setminus\{0\} italic_u β italic_K β { 0 } , has a unique critical point within the interval ( r | u | H , R | u | H ) π subscript π’ π» π
subscript π’ π» \left(\frac{r}{|u|_{H}},\frac{R}{|u|_{H}}\right) ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) at Ο = s β’ ( u ) π π π’ \tau=s(u) italic_Ο = italic_s ( italic_u ) , and is concave at this point. Thus, given the smoothness of the functional E πΈ E italic_E , these properties are characterized by
Report issue for preceding element
Ξ± u β² β’ ( s β’ ( u ) ) = 0 and Ξ± u β²β² β’ ( s β’ ( u ) ) β€ 0 . formulae-sequence superscript subscript πΌ π’ β² π π’ 0 and
superscript subscript πΌ π’ β²β² π π’ 0 \alpha_{u}^{\prime}(s(u))=0\quad\text{and}\quad\alpha_{u}^{\prime\prime}(s(u))%
\leq 0. italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_s ( italic_u ) ) = 0 and italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_s ( italic_u ) ) β€ 0 .
Moreover, we see that s β’ ( k β’ u ) = s β’ ( u ) k π π π’ π π’ π s(ku)=\frac{s(u)}{k} italic_s ( italic_k italic_u ) = divide start_ARG italic_s ( italic_u ) end_ARG start_ARG italic_k end_ARG for all k > 0 π 0 k>0 italic_k > 0 .
Report issue for preceding element
Following the method of Nehari manifold, we look for critical points of E πΈ E italic_E on K r , R subscript πΎ π π
K_{r,R} italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT within the conical shell
Report issue for preceding element
π© ~ = { u β K r , R : ( E β² β’ ( u ) , u ) H = 0 } . ~ π© conditional-set π’ subscript πΎ π π
subscript superscript πΈ β² π’ π’ π» 0 \tilde{\mathcal{N}}=\left\{u\in K_{r,R}\,:\,\left(E^{\prime}(u),u\right)_{H}=0%
\right\}. over~ start_ARG caligraphic_N end_ARG = { italic_u β italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT : ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 } .
Further, let π© π© \mathcal{N} caligraphic_N be the set
Report issue for preceding element
π© = { s β’ ( u ) β’ u : u β K β { 0 } } , π© conditional-set π π’ π’ π’ πΎ 0 \mathcal{N}=\left\{s(u)u\,:\,u\in K\setminus\{0\}\right\}, caligraphic_N = { italic_s ( italic_u ) italic_u : italic_u β italic_K β { 0 } } ,
and observe that π© = π© ~ π© ~ π© \mathcal{N}=\tilde{\mathcal{N}} caligraphic_N = over~ start_ARG caligraphic_N end_ARG . To see this, from
(h1) one clearly has π© β π© ~ . π© ~ π© \mathcal{N}\subset\tilde{\mathcal{N}}. caligraphic_N β over~ start_ARG caligraphic_N end_ARG . Conversely, if ( E β² β’ ( u ) , u ) H = 0 subscript superscript πΈ β² π’ π’ π» 0 (E^{\prime}(u),u)_{H}=0 ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 for some u β K β { 0 } π’ πΎ 0 u\in K\setminus\{0\} italic_u β italic_K β { 0 } , then s β’ ( u ) = 1 π π’ 1 s(u)=1 italic_s ( italic_u ) = 1 , which implies u β π© π’ π© u\in\mathcal{N} italic_u β caligraphic_N .
Report issue for preceding element
The main result of this paper is presented in Theorem 2.2 below, where we establish an analogue of the results presented in [16 ] , obtained using the method of Nehari manifold.
Report issue for preceding element
Theorem 2.2 .
Report issue for preceding element
Assume condition (h1) holds. In addition, we suppose that
Report issue for preceding element
(h2)::
The functional E πΈ E italic_E is bounded from below on π© π© \mathcal{N} caligraphic_N .
Report issue for preceding element
(h3)::
The second FrΓ©chet derivative E β²β² β’ ( u ) superscript πΈ β²β² π’ E^{\prime\prime}(u) italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) is bounded uniformly with respect to u β π© π’ π© u\in\mathcal{N} italic_u β caligraphic_N , i.e., there exists C 1 > 0 subscript πΆ 1 0 C_{1}>0 italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > 0 such that
Report issue for preceding element
sup w 1 , w 2 β H | w 1 | H = | w 2 | H = 1 | E β²β² β’ ( u ) β’ ( w 1 , w 2 ) | β€ C 1 β’ for all β’ u β π© . subscript supremum subscript π€ 1 subscript π€ 2
π» subscript subscript π€ 1 π» subscript subscript π€ 2 π» 1
superscript πΈ β²β² π’ subscript π€ 1 subscript π€ 2 subscript πΆ 1 for all π’ π© \sup_{\begin{subarray}{c}w_{1},w_{2}\in H\\
|w_{1}|_{H}=|w_{2}|_{H}=1\end{subarray}}\left|E^{\prime\prime}(u)(w_{1},w_{2})%
\right|\leq C_{1}\,\,\text{ for all }u\in\mathcal{N}. roman_sup start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β italic_H end_CELL end_ROW start_ROW start_CELL | italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = | italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 1 end_CELL end_ROW end_ARG end_POSTSUBSCRIPT | italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | β€ italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT for all italic_u β caligraphic_N .
(h4)::
There is a positive constant C 2 > 0 subscript πΆ 2 0 C_{2}>0 italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > 0 satisfying
Report issue for preceding element
| E β²β² β’ ( u ) β’ ( u , u ) | β₯ C 2 > 0 β’ for all β’ u β π© . superscript πΈ β²β² π’ π’ π’ subscript πΆ 2 0 for all π’ π© |E^{\prime\prime}(u)(u,u)|\geq C_{2}>0\,\,\text{ for all }u\in\mathcal{N}. | italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) | β₯ italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > 0 for all italic_u β caligraphic_N .
Then, there exists a sequence { u n } β π© subscript π’ π π© \{u_{n}\}\subset\mathcal{N} { italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } β caligraphic_N such that
Report issue for preceding element
E β’ ( u n ) β inf π© E and E β² β’ ( u n ) β 0 . formulae-sequence β πΈ subscript π’ π subscript infimum π© πΈ and
β superscript πΈ β² subscript π’ π 0 E(u_{n})\to\inf_{\mathcal{N}}E\quad\text{ and }\quad E^{\prime}(u_{n})\to 0. italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β 0 .
The following auxiliary result will be of great importance in proving Theorem 2.2 .
Report issue for preceding element
Lemma 2.3 .
Report issue for preceding element
Let u β π© π’ π© u\in\mathcal{N} italic_u β caligraphic_N , v β H π£ π» v\in H italic_v β italic_H and let Ξ΅ > 0 π 0 \varepsilon>0 italic_Ξ΅ > 0 be such that
Report issue for preceding element
u + t β’ v β K β’ for all t β [ 0 , Ξ΅ ] . π’ π‘ π£ πΎ for all t β [ 0 , Ξ΅ ] . u+tv\in K\,\,\text{ for all $t\in[0,\varepsilon]$. } italic_u + italic_t italic_v β italic_K for all italic_t β [ 0 , italic_Ξ΅ ] .
If assumption (h4) holds true, then the limit
Report issue for preceding element
lim t β 0 s β’ ( u + t β’ v ) β s β’ ( u ) t subscript β π‘ 0 π π’ π‘ π£ π π’ π‘ \lim_{t\searrow 0}\frac{s(u+tv)-s(u)}{t} roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG italic_s ( italic_u + italic_t italic_v ) - italic_s ( italic_u ) end_ARG start_ARG italic_t end_ARG
exists and has the value
Report issue for preceding element
β E β²β² β’ ( u ) β’ ( u , v ) + ( E β² β’ ( u ) , v ) H E β²β² β’ ( u ) β’ ( u , u ) . superscript πΈ β²β² π’ π’ π£ subscript superscript πΈ β² π’ π£ π» superscript πΈ β²β² π’ π’ π’ -\frac{E^{\prime\prime}(u)(u,v)+(E^{\prime}(u),v)_{H}}{E^{\prime\prime}(u)(u,u%
)}. - divide start_ARG italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_v ) + ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) end_ARG .
Proof. Report issue for preceding element
Let us consider the mapping g : ( 0 , β ) Γ ( β Ξ΅ , Ξ΅ ) β β : π β 0 π π β g\colon(0,\infty)\times(-\varepsilon,\varepsilon)\to\mathbb{R} italic_g : ( 0 , β ) Γ ( - italic_Ξ΅ , italic_Ξ΅ ) β blackboard_R given by
Report issue for preceding element
g β’ ( Ο , t ) = ( E β² β’ ( Ο β’ ( u + t β’ v ) ) , u + t β’ v ) H . π π π‘ subscript superscript πΈ β² π π’ π‘ π£ π’ π‘ π£ π» g(\tau,t)=\left(E^{\prime}(\tau(u+tv)),u+tv\right)_{H}. italic_g ( italic_Ο , italic_t ) = ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .
Note that g π g italic_g is continuously differentiable, with partial derivatives
Report issue for preceding element
(2.1)
g Ο β² β’ ( Ο , t ) subscript superscript π β² π π π‘ \displaystyle g^{\prime}_{\tau}(\tau,t) italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο end_POSTSUBSCRIPT ( italic_Ο , italic_t )
= lim Ξ΄ β 0 1 Ξ΄ β’ ( E β² β’ ( Ο β’ ( u + t β’ v ) + Ξ΄ β’ ( u + t β’ v ) ) β E β² β’ ( Ο β’ ( u + t β’ v ) ) , u + t β’ v ) H absent subscript β πΏ 0 1 πΏ subscript superscript πΈ β² π π’ π‘ π£ πΏ π’ π‘ π£ superscript πΈ β² π π’ π‘ π£ π’ π‘ π£ π» \displaystyle=\lim_{\delta\searrow 0}\frac{1}{\delta}\left(E^{\prime}(\tau(u+%
tv)+\delta(u+tv))-E^{\prime}(\tau(u+tv)),u+tv\right)_{H} = roman_lim start_POSTSUBSCRIPT italic_Ξ΄ β 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) + italic_Ξ΄ ( italic_u + italic_t italic_v ) ) - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
= E β²β² β’ ( Ο β’ ( u + t β’ v ) ) β’ ( u + t β’ v , u + t β’ v ) , absent superscript πΈ β²β² π π’ π‘ π£ π’ π‘ π£ π’ π‘ π£ \displaystyle=E^{\prime\prime}(\tau(u+tv))(u+tv,u+tv), = italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) ) ( italic_u + italic_t italic_v , italic_u + italic_t italic_v ) ,
and
Report issue for preceding element
(2.2)
g t β² β’ ( Ο , t ) subscript superscript π β² π‘ π π‘ \displaystyle g^{\prime}_{t}(\tau,t) italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_Ο , italic_t )
= lim Ξ΄ β 0 ( 1 Ξ΄ β’ ( E β² β’ ( Ο β’ ( u + t β’ v ) + Ξ΄ β’ Ο β’ v ) , u + t β’ v + Ξ΄ β’ v ) H β ( E β² β’ ( Ο β’ ( u + t β’ v ) ) , u + t β’ v ) H ) absent subscript β πΏ 0 1 πΏ subscript superscript πΈ β² π π’ π‘ π£ πΏ π π£ π’ π‘ π£ πΏ π£ π» subscript superscript πΈ β² π π’ π‘ π£ π’ π‘ π£ π» \displaystyle=\lim_{\delta\searrow 0}\left(\frac{1}{\delta}\left(E^{\prime}(%
\tau(u+tv)+\delta\tau v),u+tv+\delta v\right)_{H}-\left(E^{\prime}(\tau(u+tv))%
,u+tv\right)_{H}\right) = roman_lim start_POSTSUBSCRIPT italic_Ξ΄ β 0 end_POSTSUBSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) + italic_Ξ΄ italic_Ο italic_v ) , italic_u + italic_t italic_v + italic_Ξ΄ italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT - ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT )
= ( E β² ( Ο ( u + t v ) , v ) H + lim Ξ΄ β 0 1 Ξ΄ ( E β² ( Ο ( u + t v ) + Ξ΄ Ο v ) β E β² ( Ο ( u + t v ) ) , u + t v ) H \displaystyle=\left(E^{\prime}(\tau(u+tv),v\right)_{H}+\lim_{\delta\searrow 0}%
\frac{1}{\delta}\left(E^{\prime}(\tau(u+tv)+\delta\tau v)-E^{\prime}(\tau(u+tv%
)),u+tv\right)_{H} = ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + roman_lim start_POSTSUBSCRIPT italic_Ξ΄ β 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) + italic_Ξ΄ italic_Ο italic_v ) - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
= ( E β² ( Ο ( u + t v ) , v ) H + E β²β² ( Ο ( u + t v ) ) ( u + t v , Ο v ) . \displaystyle=\left(E^{\prime}(\tau(u+tv),v\right)_{H}+E^{\prime\prime}(\tau(u%
+tv))(u+tv,\tau v). = ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_Ο ( italic_u + italic_t italic_v ) ) ( italic_u + italic_t italic_v , italic_Ο italic_v ) .
Additionally, we have
Report issue for preceding element
g β’ ( 1 , 0 ) = 0 and g Ο β² β’ ( 1 , 0 ) < 0 . formulae-sequence π 1 0 0 and
subscript superscript π β² π 1 0 0 g(1,0)=0\quad\text{ and }\quad g^{\prime}_{\tau}(1,0)<0. italic_g ( 1 , 0 ) = 0 and italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο end_POSTSUBSCRIPT ( 1 , 0 ) < 0 .
Indeed, the first relation follows immediately since s β’ ( u ) = 1 π π’ 1 s(u)=1 italic_s ( italic_u ) = 1 , while the second one follows from (2.1 ) and (h4).
Report issue for preceding element
Employing the
implicit function theorem, there exists Ξ΅ 0 > 0 subscript π 0 0 \varepsilon_{0}>0 italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 and a unique continuously differentiable mapping ΞΎ : ( β Ξ΅ 0 , Ξ΅ 0 ) β β : π β subscript π 0 subscript π 0 β \xi\colon(-\varepsilon_{0},\varepsilon_{0})\to\mathbb{R} italic_ΞΎ : ( - italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) β blackboard_R such that ΞΎ β’ ( 0 ) = 1 π 0 1 \xi(0)=1 italic_ΞΎ ( 0 ) = 1 ,
Report issue for preceding element
g β’ ( ΞΎ β’ ( t ) , t ) = 0 and ΞΎ β² β’ ( t ) = β g t β² β’ ( ΞΎ β’ ( t ) , t ) g Ο β² β’ ( ΞΎ β’ ( t ) , t ) β’ for all β’ t β ( β Ξ΅ 0 , Ξ΅ 0 ) . formulae-sequence π π π‘ π‘ 0 and
superscript π β² π‘ subscript superscript π β² π‘ π π‘ π‘ subscript superscript π β² π π π‘ π‘ for all π‘ subscript π 0 subscript π 0 g(\xi(t),t)=0\quad\text{and}\quad\xi^{\prime}(t)=-\frac{g^{\prime}_{t}(\xi(t),%
t)}{g^{\prime}_{\tau}(\xi(t),t)}\,\,\text{ for all }t\in(-\varepsilon_{0},%
\varepsilon_{0}). italic_g ( italic_ΞΎ ( italic_t ) , italic_t ) = 0 and italic_ΞΎ start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) = - divide start_ARG italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_ΞΎ ( italic_t ) , italic_t ) end_ARG start_ARG italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο end_POSTSUBSCRIPT ( italic_ΞΎ ( italic_t ) , italic_t ) end_ARG for all italic_t β ( - italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .
On the other hand, for each t β [ 0 , Ξ΅ ] π‘ 0 π t\in[0,\varepsilon] italic_t β [ 0 , italic_Ξ΅ ] , since u + t β’ v β K π’ π‘ π£ πΎ u+tv\in K italic_u + italic_t italic_v β italic_K , assumption ( h β’ 1 ) β 1 (h1) ( italic_h 1 ) guarantees the existence of a unique value s β’ ( u + t β’ v ) π π’ π‘ π£ s(u+tv) italic_s ( italic_u + italic_t italic_v ) within the interval ( r | u + t β’ v | H , R | u + t β’ v | H ) π subscript π’ π‘ π£ π» π
subscript π’ π‘ π£ π» \left(\frac{r}{|u+tv|_{H}},\frac{R}{|u+tv|_{H}}\right) ( divide start_ARG italic_r end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) satisfying
Report issue for preceding element
( E β² β’ ( s β’ ( u + t β’ v ) β’ ( u + t β’ v ) ) , u + t β’ v ) H = 0 , i.e., g β’ ( s β’ ( u + t β’ v ) , t ) = 0 . formulae-sequence subscript superscript πΈ β² π π’ π‘ π£ π’ π‘ π£ π’ π‘ π£ π» 0 i.e.,
π π π’ π‘ π£ π‘ 0 (E^{\prime}(s(u+tv)(u+tv)),u+tv)_{H}=0,\quad\text{ i.e., }\quad g(s(u+tv),t)=0. ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_s ( italic_u + italic_t italic_v ) ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 , i.e., italic_g ( italic_s ( italic_u + italic_t italic_v ) , italic_t ) = 0 .
Since ΞΎ π \xi italic_ΞΎ is smooth and ΞΎ β’ ( 0 ) = 1 β ( r | u | H , R | u | H ) π 0 1 π subscript π’ π» π
subscript π’ π» \xi(0)=1\in\left(\frac{r}{|u|_{H}},\frac{R}{|u|_{H}}\right) italic_ΞΎ ( 0 ) = 1 β ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) , there exists Ξ΅ 1 > 0 subscript π 1 0 \varepsilon_{1}>0 italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > 0 such that
Report issue for preceding element
ΞΎ β’ ( t ) β ( r | u + t β’ v | H , R | u + t β’ v | H ) β’ for all t β ( β Ξ΅ 1 , Ξ΅ 1 ) . π π‘ π subscript π’ π‘ π£ π» π
subscript π’ π‘ π£ π» for all t β ( β Ξ΅ 1 , Ξ΅ 1 ) . \xi(t)\in\left(\frac{r}{|u+tv|_{H}},\frac{R}{|u+tv|_{H}}\right)\,\,\text{ for %
all $t\in(-\varepsilon_{1},\varepsilon_{1})$. } italic_ΞΎ ( italic_t ) β ( divide start_ARG italic_r end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) for all italic_t β ( - italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .
Consequently, we have
Report issue for preceding element
ΞΎ β’ ( t ) = s β’ ( u + t β’ v ) β’ for all β’ t β [ 0 , Ξ΅ 2 ) , π π‘ π π’ π‘ π£ for all π‘ 0 subscript π 2 \xi(t)=s(u+tv)\,\,\text{ for all }t\in[0,\varepsilon_{2}), italic_ΞΎ ( italic_t ) = italic_s ( italic_u + italic_t italic_v ) for all italic_t β [ 0 , italic_Ξ΅ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ,
where Ξ΅ 2 = min β‘ { Ξ΅ , Ξ΅ 0 , Ξ΅ 1 } subscript π 2 π subscript π 0 subscript π 1 \varepsilon_{2}=\min\{\varepsilon,\varepsilon_{0},\varepsilon_{1}\} italic_Ξ΅ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = roman_min { italic_Ξ΅ , italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } .
Whence
Report issue for preceding element
lim t β 0 s β’ ( u + t β’ v ) β s β’ ( u ) t = ΞΎ β² β’ ( 0 ) = β g t β² β’ ( 1 , 0 ) g Ο β² β’ ( 1 , 0 ) . subscript β π‘ 0 π π’ π‘ π£ π π’ π‘ superscript π β² 0 subscript superscript π β² π‘ 1 0 subscript superscript π β² π 1 0 \lim_{t\searrow 0}\frac{s(u+tv)-s(u)}{t}=\xi^{\prime}(0)=-\frac{g^{\prime}_{t}%
(1,0)}{g^{\prime}_{\tau}(1,0)}. roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG italic_s ( italic_u + italic_t italic_v ) - italic_s ( italic_u ) end_ARG start_ARG italic_t end_ARG = italic_ΞΎ start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 0 ) = - divide start_ARG italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( 1 , 0 ) end_ARG start_ARG italic_g start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο end_POSTSUBSCRIPT ( 1 , 0 ) end_ARG .
Now, taking Ο = 1 π 1 \tau=1 italic_Ο = 1 and t = 0 π‘ 0 t=0 italic_t = 0 in (2.1 ) and (2.2 ), we derive the conclusion
Report issue for preceding element
lim t β 0 s β’ ( u + t β’ v ) β s β’ ( u ) t = β E β²β² β’ ( u ) β’ ( u , v ) + ( E β² β’ ( u ) , v ) H E β²β² β’ ( u ) β’ ( u , u ) . subscript β π‘ 0 π π’ π‘ π£ π π’ π‘ superscript πΈ β²β² π’ π’ π£ subscript superscript πΈ β² π’ π£ π» superscript πΈ β²β² π’ π’ π’ \lim_{t\searrow 0}\frac{s(u+tv)-s(u)}{t}=-\frac{E^{\prime\prime}(u)(u,v)+(E^{%
\prime}(u),v)_{H}}{E^{\prime\prime}(u)(u,u)}. roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG italic_s ( italic_u + italic_t italic_v ) - italic_s ( italic_u ) end_ARG start_ARG italic_t end_ARG = - divide start_ARG italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_v ) + ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) end_ARG .
β
Report issue for preceding element
Proof of Theorem 2.2 . Report issue for preceding element
From assumption (h2), E πΈ E italic_E is bounded from below on π© π© \mathcal{N} caligraphic_N . Moreover, since π© π© \mathcal{N} caligraphic_N is closed, we may apply Ekelandβs variational principle to the functional E πΈ E italic_E on the set π© π© \mathcal{N} caligraphic_N . This guarantees the existence of a sequence { u n } β π© subscript π’ π π© \{u_{n}\}\subset\mathcal{N} { italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } β caligraphic_N such that
Report issue for preceding element
(2.3)
E β’ ( u n ) πΈ subscript π’ π \displaystyle E(u_{n}) italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT )
β€ inf π© E + 1 n , absent subscript infimum π© πΈ 1 π \displaystyle\leq\inf_{\mathcal{N}}E+\frac{1}{n}, β€ roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG ,
(2.4)
E β’ ( u n ) πΈ subscript π’ π \displaystyle E(u_{n}) italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT )
β€ E β’ ( u ) + 1 n β’ | u n β u | H β’ for all β’ u β π© . absent πΈ π’ 1 π subscript subscript π’ π π’ π» for all π’ π© \displaystyle\leq E(u)+\frac{1}{n}|u_{n}-u|_{H}\,\,\text{for all }u\in\mathcal%
{N}. β€ italic_E ( italic_u ) + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT for all italic_u β caligraphic_N .
For each n β β π β n\in\mathbb{N} italic_n β blackboard_N , consider the mapping Ο : β β H : π β β π» \varphi\colon\mathbb{R}\to H italic_Ο : blackboard_R β italic_H given by
Report issue for preceding element
Ο β’ ( t ) = u n β t β’ E β² β’ ( u n ) . π π‘ subscript π’ π π‘ superscript πΈ β² subscript π’ π \varphi(t)=u_{n}-tE^{\prime}(u_{n}). italic_Ο ( italic_t ) = italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) .
Clearly, Ο π \varphi italic_Ο is continuously differentiable with Ο β² β’ ( 0 ) = β E β² β’ ( u n ) superscript π β² 0 superscript πΈ β² subscript π’ π \varphi^{\prime}(0)=-E^{\prime}(u_{n}) italic_Ο start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 0 ) = - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) . Moreover, we have
Ο β’ ( t ) β K π π‘ πΎ \varphi(t)\in K italic_Ο ( italic_t ) β italic_K for all t β [ 0 , 1 ] π‘ 0 1 t\in[0,1] italic_t β [ 0 , 1 ] . Indeed, since both u n β K subscript π’ π πΎ u_{n}\in K italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT β italic_K and N β’ ( u n ) β K π subscript π’ π πΎ N(u_{n})\in K italic_N ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β italic_K , one has
Report issue for preceding element
u n β t β’ E β² β’ ( u n ) = ( 1 β t ) β’ u n + t β’ ( u n β E β² β’ ( u n ) ) = ( 1 β t ) β’ u n + t β’ N β’ ( u n ) β K . subscript π’ π π‘ superscript πΈ β² subscript π’ π 1 π‘ subscript π’ π π‘ subscript π’ π superscript πΈ β² subscript π’ π 1 π‘ subscript π’ π π‘ π subscript π’ π πΎ u_{n}-tE^{\prime}(u_{n})=(1-t)u_{n}+t\left(u_{n}-E^{\prime}(u_{n})\right)=(1-t%
)u_{n}+tN(u_{n})\in K. italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = ( 1 - italic_t ) italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_t ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ( 1 - italic_t ) italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_t italic_N ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β italic_K .
Next, we define
Report issue for preceding element
Ο β’ ( t ) = s β’ ( Ο β’ ( t ) ) β’ Ο β’ ( t ) β π© β’ for all β’ t β [ 0 , 1 ] . π π‘ π π π‘ π π‘ π© for all π‘ 0 1 \psi(t)=s(\varphi(t))\varphi(t)\in\mathcal{N}\,\,\text{ for all }t\in[0,1]. italic_Ο ( italic_t ) = italic_s ( italic_Ο ( italic_t ) ) italic_Ο ( italic_t ) β caligraphic_N for all italic_t β [ 0 , 1 ] .
Choosing
u = Ο β’ ( t ) π’ π π‘ u=\psi(t) italic_u = italic_Ο ( italic_t ) in (2.4 ) yields
Report issue for preceding element
(2.5)
E β’ ( Ο β’ ( 0 ) ) β€ E β’ ( Ο β’ ( t ) ) + 1 n β’ | Ο β’ ( t ) β Ο β’ ( 0 ) | H β’ for all β’ t β [ 0 , 1 ] . πΈ π 0 πΈ π π‘ 1 π subscript π π‘ π 0 π» for all π‘ 0 1 E(\psi(0))\leq E(\psi(t))+\frac{1}{n}|\psi(t)-\psi(0)|_{H}\,\,\text{ for all }%
t\in[0,1]. italic_E ( italic_Ο ( 0 ) ) β€ italic_E ( italic_Ο ( italic_t ) ) + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | italic_Ο ( italic_t ) - italic_Ο ( 0 ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT for all italic_t β [ 0 , 1 ] .
By Lemma 2.3 , the mapping t β¦ s β’ ( Ο β’ ( t ) ) maps-to π‘ π π π‘ t\mapsto s(\varphi(t)) italic_t β¦ italic_s ( italic_Ο ( italic_t ) ) has a right derivative at zero given by
Report issue for preceding element
z n = E β²β² β’ ( u n ) β’ ( u n , β E β² β’ ( u n ) ) β | E β² β’ ( u n ) | H 2 E β²β² β’ ( u n ) β’ ( u n , u n ) . subscript π§ π superscript πΈ β²β² subscript π’ π subscript π’ π superscript πΈ β² subscript π’ π superscript subscript superscript πΈ β² subscript π’ π π» 2 superscript πΈ β²β² subscript π’ π subscript π’ π subscript π’ π z_{n}=\frac{E^{\prime\prime}(u_{n})(u_{n},-E^{\prime}(u_{n}))-|E^{\prime}(u_{n%
})|_{H}^{2}}{E^{\prime\prime}(u_{n})(u_{n},u_{n})}. italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) - | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_ARG .
Thus, since Ο β’ ( 0 ) = u n π 0 subscript π’ π \varphi(0)=u_{n} italic_Ο ( 0 ) = italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , when differentiating, we obtain
Report issue for preceding element
(2.6)
Ο + β² β’ ( 0 ) = lim t β 0 Ο β’ ( t ) β Ο β’ ( 0 ) t = z n β’ u n β E β² β’ ( u n ) . subscript superscript π β² 0 subscript β π‘ 0 π π‘ π 0 π‘ subscript π§ π subscript π’ π superscript πΈ β² subscript π’ π \psi^{\prime}_{+}(0)=\lim_{t\searrow 0}\frac{\psi(t)-\psi(0)}{t}=z_{n}\,u_{n}-%
E^{\prime}(u_{n}). italic_Ο start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( 0 ) = roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG italic_Ο ( italic_t ) - italic_Ο ( 0 ) end_ARG start_ARG italic_t end_ARG = italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) .
Regarding z n subscript π§ π z_{n} italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , from assumption (h3) and (h4), one has
Report issue for preceding element
(2.7)
| z n | β€ C 1 C 2 β’ | u n | H β’ | E β² β’ ( u n ) | H + 1 C 2 β’ | E β² β’ ( u n ) | H 2 . subscript π§ π subscript πΆ 1 subscript πΆ 2 subscript subscript π’ π π» subscript superscript πΈ β² subscript π’ π π» 1 subscript πΆ 2 subscript superscript superscript πΈ β² subscript π’ π 2 π» |z_{n}|\leq\frac{C_{1}}{C_{2}}|u_{n}|_{H}|E^{\prime}(u_{n})|_{H}+\frac{1}{C_{2%
}}|E^{\prime}(u_{n})|^{2}_{H}. | italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | β€ divide start_ARG italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .
Now, dividing relation (2.5 ) by t > 0 π‘ 0 t>0 italic_t > 0 gives
Report issue for preceding element
(2.8)
E β’ ( Ο β’ ( 0 ) ) β E β’ ( Ο β’ ( t ) ) t β€ 1 n β’ | Ο β’ ( t ) β Ο β’ ( 0 ) t | H . πΈ π 0 πΈ π π‘ π‘ 1 π subscript π π‘ π 0 π‘ π» \displaystyle\frac{E(\psi(0))-E(\psi(t))}{t}\leq\frac{1}{n}\left|\frac{\psi(t)%
-\psi(0)}{t}\right|_{H}. divide start_ARG italic_E ( italic_Ο ( 0 ) ) - italic_E ( italic_Ο ( italic_t ) ) end_ARG start_ARG italic_t end_ARG β€ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | divide start_ARG italic_Ο ( italic_t ) - italic_Ο ( 0 ) end_ARG start_ARG italic_t end_ARG | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .
Taking the limit as t β 0 β π‘ 0 t\searrow 0 italic_t β 0 , from (2.6 ) and ( E β² β’ ( u n ) , u n ) H = 0 subscript superscript πΈ β² subscript π’ π subscript π’ π π» 0 \left(E^{\prime}(u_{n}),u_{n}\right)_{H}=0 ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 , the left-hand side of (2.8 ) becomes
Report issue for preceding element
(2.9)
lim t β 0 E β’ ( Ο β’ ( 0 ) ) β E β’ ( Ο β’ ( t ) ) t subscript β π‘ 0 πΈ π 0 πΈ π π‘ π‘ \displaystyle\lim_{t\searrow 0}\frac{E(\psi(0))-E(\psi(t))}{t} roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG italic_E ( italic_Ο ( 0 ) ) - italic_E ( italic_Ο ( italic_t ) ) end_ARG start_ARG italic_t end_ARG
= β ( E β² β’ ( Ο β’ ( 0 ) ) , Ο + β² β’ ( 0 ) ) H absent subscript superscript πΈ β² π 0 subscript superscript π β² 0 π» \displaystyle=-\left(E^{\prime}(\psi(0)),\psi^{\prime}_{+}(0)\right)_{H} = - ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ( 0 ) ) , italic_Ο start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( 0 ) ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
= β ( E β² β’ ( u n ) , z n β’ u n β E β² β’ ( u n ) ) H absent subscript superscript πΈ β² subscript π’ π subscript π§ π subscript π’ π superscript πΈ β² subscript π’ π π» \displaystyle=-\left(E^{\prime}(u_{n}),z_{n}u_{n}-E^{\prime}(u_{n})\right)_{H} = - ( italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
= | E β² β’ ( u n ) | H 2 . absent subscript superscript superscript πΈ β² subscript π’ π 2 π» \displaystyle=|E^{\prime}(u_{n})|^{2}_{H}. = | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .
For the right-hand side of (2.8 ), using (2.6 ) and (2.7 ), we obtain
Report issue for preceding element
(2.10)
lim t β 0 1 n β’ | Ο β’ ( t ) β Ο β’ ( 0 ) t | H β€ C n β’ ( | u n | H β’ | E β² β’ ( u n ) | H + | E β² β’ ( u n ) | H 2 ) . subscript β π‘ 0 1 π subscript π π‘ π 0 π‘ π» πΆ π subscript subscript π’ π π» subscript superscript πΈ β² subscript π’ π π» subscript superscript superscript πΈ β² subscript π’ π 2 π» \displaystyle\lim_{t\searrow 0}\frac{1}{n}\left|\frac{\psi(t)-\psi(0)}{t}%
\right|_{H}\leq\frac{C}{n}\left(|u_{n}|_{H}|E^{\prime}(u_{n})|_{H}+|E^{\prime}%
(u_{n})|^{2}_{H}\right). roman_lim start_POSTSUBSCRIPT italic_t β 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | divide start_ARG italic_Ο ( italic_t ) - italic_Ο ( 0 ) end_ARG start_ARG italic_t end_ARG | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT β€ divide start_ARG italic_C end_ARG start_ARG italic_n end_ARG ( | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) .
Consequently, from (2.8 ), (2.9 ) and (2.10 ), we obtain
Report issue for preceding element
| E β² β’ ( u n ) | H β€ C n β’ ( | u n | H + | E β² β’ ( u n ) | H ) β€ C n β’ ( R + | E β² β’ ( u n ) | H ) , subscript superscript πΈ β² subscript π’ π π» πΆ π subscript subscript π’ π π» subscript superscript πΈ β² subscript π’ π π» πΆ π π
subscript superscript πΈ β² subscript π’ π π» |E^{\prime}(u_{n})|_{H}\leq\frac{C}{n}\left(|u_{n}|_{H}+|E^{\prime}(u_{n})|_{H%
}\right)\leq\frac{C}{n}\left(R+|E^{\prime}(u_{n})|_{H}\right), | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT β€ divide start_ARG italic_C end_ARG start_ARG italic_n end_ARG ( | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) β€ divide start_ARG italic_C end_ARG start_ARG italic_n end_ARG ( italic_R + | italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) ,
which ensures that E β² β’ ( u n ) β 0 β superscript πΈ β² subscript π’ π 0 E^{\prime}(u_{n})\to 0 italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β 0 as n β β β π n\to\infty italic_n β β .
Report issue for preceding element
β
Report issue for preceding element
If we further assume a compactness condition, Theorem 2.2 leads to the following critical point principle.
Report issue for preceding element
Theorem 2.4 .
Report issue for preceding element
Assume (h1)-(h4) hold true. If in addition the operator N π N italic_N given in (2 ) is completely continuous, then there exists u β β π© superscript π’ β π© u^{\ast}\in\mathcal{N} italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT β caligraphic_N such that
Report issue for preceding element
E β’ ( u β ) = inf π© E and E β² β’ ( u β ) = 0 . formulae-sequence πΈ superscript π’ β subscript infimum π© πΈ and
superscript πΈ β² superscript π’ β 0 E(u^{\ast})=\inf_{\mathcal{N}}E\quad\text{ and }\quad E^{\prime}(u^{\ast})=0. italic_E ( italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT ) = roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT ) = 0 .
Proof. Report issue for preceding element
From assumptions (h1)-(h4), Theorem 2.2 guarantees the existence of a sequence { u n } β π© subscript π’ π π© \{u_{n}\}\subset\mathcal{N} { italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } β caligraphic_N such that
Report issue for preceding element
(2.11)
E β’ ( u n ) β€ inf π© E + 1 n and E β² β’ ( u n ) β 0 . formulae-sequence πΈ subscript π’ π subscript infimum π© πΈ 1 π and
β superscript πΈ β² subscript π’ π 0 E(u_{n})\leq\inf_{\mathcal{N}}E+\frac{1}{n}\quad\text{ and }\quad E^{\prime}(u%
_{n})\to 0. italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β€ roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG and italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β 0 .
Since N π N italic_N is completely continuous and { u n } subscript π’ π \{u_{n}\} { italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } is bounded (recall that π© β K r , R π© subscript πΎ π π
\mathcal{N}\subset K_{r,R} caligraphic_N β italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT ), it follows that, after possibly passing to a subsequence, the sequence { N β’ ( u n ) } π subscript π’ π \{N(u_{n})\} { italic_N ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) } is convergent to some u β β H superscript π’ β π» u^{\ast}\in H italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT β italic_H . Now, taking the limit in (2.11 ), one has that u n β u β β subscript π’ π superscript π’ β u_{n}\to u^{\ast} italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT β italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT , hence u β β π© superscript π’ β π© u^{\ast}\in\mathcal{N} italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT β caligraphic_N , E β’ ( u β ) = inf π© E πΈ superscript π’ β subscript infimum π© πΈ E(u^{\ast})=\inf_{\mathcal{N}}E italic_E ( italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT ) = roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and E β² β’ ( u β ) = 0 superscript πΈ β² superscript π’ β 0 E^{\prime}(u^{\ast})=0 italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT ) = 0 .
β
Report issue for preceding element
Finally, we note that Theorem 2.4 immediately yields multiplicity results if the hypotheses are satisfied for several finite or infinitely many pairs of numbers.
Report issue for preceding element
3. Application Report issue for preceding element
In this section, we present an application of Theorem 2.4 . We aim to obtain a symmetric and positive solution for the Dirichlet problem
Report issue for preceding element
(3.1)
{ β u β²β² β’ ( t ) = g β’ ( t ) β’ f β’ ( u β’ ( t ) ) β’ on β’ [ 0 , 1 ] , u β’ ( 0 ) = u β’ ( 1 ) = 0 , cases superscript π’ β²β² π‘ π π‘ π π’ π‘ on 0 1 otherwise π’ 0 π’ 1 0 otherwise \begin{cases}-u^{\prime\prime}\left(t\right)=g(t)f\left(u\left(t\right)\right)%
\,\,\text{ on }\left[0,1\right],\\
u\left(0\right)=u\left(1\right)=0,\end{cases} { start_ROW start_CELL - italic_u start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_t ) = italic_g ( italic_t ) italic_f ( italic_u ( italic_t ) ) on [ 0 , 1 ] , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_u ( 0 ) = italic_u ( 1 ) = 0 , end_CELL start_CELL end_CELL end_ROW
where f : β β β : π β β β f\colon\mathbb{R}\to\mathbb{R} italic_f : blackboard_R β blackboard_R is continuously differentiable. In addition, we suppose that f π f italic_f is nondecreasing and positive on β + subscript β \mathbb{R}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT . The function g : [ 0 , 1 ] β β + : π β 0 1 subscript β g\colon[0,1]\to\mathbb{R}_{+} italic_g : [ 0 , 1 ] β blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is assumed to be bounded, nondecreasing on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] and symmetric with respect to the middle of the interval, i.e.,
Report issue for preceding element
g β’ ( t ) = g β’ ( 1 β t ) for all β’ t β [ 0 , 1 / 2 ] . formulae-sequence π π‘ π 1 π‘ for all π‘ 0 1 2 g(t)=g(1-t)\quad\text{ for all }t\in[0,1/2]. italic_g ( italic_t ) = italic_g ( 1 - italic_t ) for all italic_t β [ 0 , 1 / 2 ] .
Note that, since g π g italic_g is nondecreasing and bounded on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] , it is measurable on this interval, and by symmetry, the same holds on the entire interval [ 0 , 1 ] 0 1 [0,1] [ 0 , 1 ] .
Consider the Sobolev space H = H 0 1 β’ ( 0 , 1 ) π» superscript subscript π» 0 1 0 1 H=H_{0}^{1}(0,1) italic_H = italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) endowed with the inner product
Report issue for preceding element
( u , v ) H 0 1 = β« 0 1 u β² β’ ( t ) β’ v β² β’ ( t ) β’ π t , subscript π’ π£ superscript subscript π» 0 1 superscript subscript 0 1 superscript π’ β² π‘ superscript π£ β² π‘ differential-d π‘ (u,v)_{H_{0}^{1}}=\int_{0}^{1}u^{\prime}(t)v^{\prime}(t)dt, ( italic_u , italic_v ) start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) italic_v start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ,
and the energetic norm
Report issue for preceding element
| u | H 0 1 = ( u , u ) H 0 1 . subscript π’ superscript subscript π» 0 1 subscript π’ π’ superscript subscript π» 0 1 |u|_{H_{0}^{1}}=\sqrt{\left(u,u\right)_{H_{0}^{1}}}. | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = square-root start_ARG ( italic_u , italic_u ) start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG .
We identify the space H 0 1 β’ ( 0 , 1 ) superscript subscript π» 0 1 0 1 H_{0}^{1}(0,1) italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) with its dual H β 1 β’ ( 0 , 1 ) superscript π» 1 0 1 H^{-1}(0,1) italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 0 , 1 ) via the mapping
Report issue for preceding element
J : H 0 1 β’ ( 0 , 1 ) β H β 1 β’ ( 0 , 1 ) , J β’ u = β u β²β² . : π½ formulae-sequence β superscript subscript π» 0 1 0 1 superscript π» 1 0 1 π½ π’ superscript π’ β²β² J\colon H_{0}^{1}(0,1)\to H^{-1}(0,1),\quad Ju=-u^{\prime\prime}. italic_J : italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) β italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 0 , 1 ) , italic_J italic_u = - italic_u start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT .
Clearly, J π½ J italic_J is invertible and its inverse J β 1 β’ v superscript π½ 1 π£ J^{-1}v italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v is the weak solution of the Dirichlet problem β u β²β² β’ ( t ) = v , u β’ ( 0 ) = u β’ ( 1 ) = 0 formulae-sequence superscript π’ β²β² π‘ π£ π’ 0 π’ 1 0 -u^{\prime\prime}(t)=v,\,u(0)=u(1)=0 - italic_u start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_t ) = italic_v , italic_u ( 0 ) = italic_u ( 1 ) = 0 . If v β L 2 β’ ( 0 , 1 ) π£ superscript πΏ 2 0 1 v\in L^{2}(0,1) italic_v β italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 0 , 1 ) , then
Report issue for preceding element
( J β 1 β’ v ) β’ ( t ) = β« 0 1 G β’ ( t , s ) β’ v β’ ( s ) β’ π s , superscript π½ 1 π£ π‘ superscript subscript 0 1 πΊ π‘ π π£ π differential-d π (J^{-1}v)(t)=\int_{0}^{1}G(t,s)v(s)ds, ( italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v ) ( italic_t ) = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_G ( italic_t , italic_s ) italic_v ( italic_s ) italic_d italic_s ,
where G πΊ G italic_G is the Greenβs function of the differential operator J π½ J italic_J with respect to
the boundary conditions u β’ ( 0 ) = u β’ ( 1 ) = 0 π’ 0 π’ 1 0 u(0)=u(1)=0 italic_u ( 0 ) = italic_u ( 1 ) = 0 (see, e.g., A. Cabada [5 , Example 1.8.18] ),
Report issue for preceding element
G β’ ( t , s ) = { s β’ ( 1 β t ) , s β€ t t β’ ( 1 β s ) , s β₯ t . πΊ π‘ π cases π 1 π‘ π
π‘ otherwise π‘ 1 π π
π‘ otherwise G(t,s)=\begin{cases}s\left(1-t\right),s\leq t\\
t\left(1-s\right),s\geq t.\end{cases} italic_G ( italic_t , italic_s ) = { start_ROW start_CELL italic_s ( 1 - italic_t ) , italic_s β€ italic_t end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_t ( 1 - italic_s ) , italic_s β₯ italic_t . end_CELL start_CELL end_CELL end_ROW
Moreover, given the continuous embedding of H 0 1 β’ ( 0 , 1 ) superscript subscript π» 0 1 0 1 H_{0}^{1}(0,1) italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) in C β’ [ 0 , 1 ] πΆ 0 1 C[0,1] italic_C [ 0 , 1 ] , one has
Report issue for preceding element
(3.2)
sup t β [ 0 , 1 ] | u β’ ( t ) | β€ | u | H 0 1 β’ for all β’ u β H 0 1 β’ ( 0 , 1 ) . subscript supremum π‘ 0 1 π’ π‘ subscript π’ superscript subscript π» 0 1 for all π’ superscript subscript π» 0 1 0 1 \sup_{t\in[0,1]}|u(t)|\leq|u|_{H_{0}^{1}}\,\,\text{ for all }u\in H_{0}^{1}(0,%
1). roman_sup start_POSTSUBSCRIPT italic_t β [ 0 , 1 ] end_POSTSUBSCRIPT | italic_u ( italic_t ) | β€ | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for all italic_u β italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) .
Additionally, the Wirtinger inequality holds [4 ] ,
Report issue for preceding element
(3.3)
β« 0 1 u 2 β’ ( t ) β’ π t β€ 1 Ο 2 β’ | u | H 0 1 2 . superscript subscript 0 1 superscript π’ 2 π‘ differential-d π‘ 1 superscript π 2 superscript subscript π’ superscript subscript π» 0 1 2 \int_{0}^{1}u^{2}(t)dt\leq\frac{1}{\pi^{2}}|u|_{H_{0}^{1}}^{2}. β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t β€ divide start_ARG 1 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .
The energy functional of the problem (3.1 ) is E : H 0 1 β’ ( 0 , 1 ) β β , : πΈ β superscript subscript π» 0 1 0 1 β E\colon H_{0}^{1}(0,1)\to\mathbb{R}, italic_E : italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) β blackboard_R ,
Report issue for preceding element
E β’ ( u ) = 1 2 β’ | u | H 0 1 2 β β« 0 1 F β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ π t , πΈ π’ 1 2 superscript subscript π’ superscript subscript π» 0 1 2 superscript subscript 0 1 πΉ π’ π‘ π π‘ differential-d π‘ E\left(u\right)=\frac{1}{2}\left|u\right|_{H_{0}^{1}}^{2}-\int_{0}^{1}F\left(u%
(t)\right)g(t)dt, italic_E ( italic_u ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_F ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_d italic_t ,
where
F β’ ( ΞΎ ) = β« 0 ΞΎ f β’ ( s ) β’ π s . πΉ π superscript subscript 0 π π π differential-d π F\left(\xi\right)=\int_{0}^{\xi}f\left(s\right)ds. italic_F ( italic_ΞΎ ) = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΎ end_POSTSUPERSCRIPT italic_f ( italic_s ) italic_d italic_s .
Clearly, the smoothness of f π f italic_f implies that E πΈ E italic_E is a C 2 superscript πΆ 2 C^{2} italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT functional. Its first derivative is given by
Report issue for preceding element
E β² β’ ( u ) = u β N β’ ( u ) ( u β H 0 1 β’ ( 0 , 1 ) ) , superscript πΈ β² π’ π’ π π’ π’ superscript subscript π» 0 1 0 1
E^{\prime}(u)=u-N(u)\quad\left(u\in H_{0}^{1}(0,1)\right), italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ) = italic_u - italic_N ( italic_u ) ( italic_u β italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) ) ,
where
Report issue for preceding element
N β’ ( u ) β’ ( t ) = β« 0 1 G β’ ( t , s ) β’ f β’ ( u β’ ( s ) ) β’ g β’ ( s ) β’ π s ( u β H 0 1 β’ ( 0 , 1 ) ) , π π’ π‘ superscript subscript 0 1 πΊ π‘ π π π’ π π π differential-d π π’ superscript subscript π» 0 1 0 1
N(u)(t)=\int_{0}^{1}G(t,s)f(u(s))g(s)ds\quad(u\in H_{0}^{1}(0,1)), italic_N ( italic_u ) ( italic_t ) = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_G ( italic_t , italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s ( italic_u β italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) ) ,
while the second derivative is expressed by
Report issue for preceding element
E β²β² β’ ( u ) β’ ( w 1 , w 2 ) = ( w 1 , w 2 ) H 0 1 β β« 0 1 f β² β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ w 1 β’ ( t ) β’ w 2 β’ ( t ) β’ π t , superscript πΈ β²β² π’ subscript π€ 1 subscript π€ 2 subscript subscript π€ 1 subscript π€ 2 superscript subscript π» 0 1 superscript subscript 0 1 superscript π β² π’ π‘ π π‘ subscript π€ 1 π‘ subscript π€ 2 π‘ differential-d π‘ E^{\prime\prime}(u)(w_{1},w_{2})=\left(w_{1},w_{2}\right)_{H_{0}^{1}}-\int_{0}%
^{1}f^{\prime}(u(t))g(t)w_{1}(t)w_{2}(t)dt, italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) italic_d italic_t ,
for u , w 1 , w 2 β H 0 1 β’ ( 0 , 1 ) . π’ subscript π€ 1 subscript π€ 2
superscript subscript π» 0 1 0 1 u,w_{1},w_{2}\in H_{0}^{1}(0,1). italic_u , italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) .
Report issue for preceding element
In H 0 1 β’ ( 0 , 1 ) superscript subscript π» 0 1 0 1 H_{0}^{1}(0,1) italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) , we consider the cone
Report issue for preceding element
K = { u β H 0 1 ( 0 , 1 ) : \displaystyle K=\Big{\{}u\in H_{0}^{1}(0,1)\,: italic_K = { italic_u β italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) :
u β’ is nondecreasing on β’ [ 0 , 1 / 2 ] , π’ is nondecreasing on 0 1 2 \displaystyle u\text{ is nondecreasing on }[0,1/2], italic_u is nondecreasing on [ 0 , 1 / 2 ] ,
u ( t ) = u ( 1 β t ) and u ( t ) β₯ Ο ( t ) | u | H 0 1 for all t β [ 0 , 1 / 2 ] } , \displaystyle u(t)=u(1-t)\text{ and }u(t)\geq\phi(t)|u|_{H_{0}^{1}}\text{ for %
all }t\in[0,1/2]\Big{\}}, italic_u ( italic_t ) = italic_u ( 1 - italic_t ) and italic_u ( italic_t ) β₯ italic_Ο ( italic_t ) | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for all italic_t β [ 0 , 1 / 2 ] } ,
where
Report issue for preceding element
Ο : [ 0 , 1 / 2 ] β β , Ο β’ ( t ) = t β’ ( 1 β 2 β’ t ) . : italic-Ο β 0 1 2 β Ο β’ ( t ) = t β’ ( 1 β 2 β’ t ) .
\phi\colon[0,1/2]\to\mathbb{R},\text{ \quad$\phi(t)=t(1-2t)$.} italic_Ο : [ 0 , 1 / 2 ] β blackboard_R , italic_Ο ( italic_t ) = italic_t ( 1 - 2 italic_t ) .
Note that the function u β’ ( t ) = sin β‘ ( Ο β’ t ) π’ π‘ π π‘ u(t)=\sin(\pi t) italic_u ( italic_t ) = roman_sin ( italic_Ο italic_t ) belongs to K πΎ K italic_K , so the cone K πΎ K italic_K is nondegenerate.
Report issue for preceding element
We claim that operator N π N italic_N is invariant with respect to K πΎ K italic_K , i.e.,
Report issue for preceding element
N β’ ( K ) β K . π πΎ πΎ N(K)\subset K. italic_N ( italic_K ) β italic_K .
An important result in proving our claim is the
following Harnack-type inequality obtained in [11 , Lemma 3.1] .
Report issue for preceding element
Lemma 3.1 .
Report issue for preceding element
For every function u β K π’ πΎ u\in K italic_u β italic_K , with J β’ u β C β’ ( [ 0 , 1 ] ; β + ) π½ π’ πΆ 0 1 superscript β
Ju\in C([0,1];\mathbb{R}^{+}) italic_J italic_u β italic_C ( [ 0 , 1 ] ; blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) nondecreasing on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] , one has
Report issue for preceding element
(3.4)
u β’ ( t ) β₯ Ο β’ ( t ) β’ | u | H 0 1 for all β’ t β [ 0 , 1 / 2 ] . formulae-sequence π’ π‘ italic-Ο π‘ subscript π’ superscript subscript π» 0 1 for all π‘ 0 1 2 u(t)\geq\phi(t)|u|_{H_{0}^{1}}\quad\text{for all }t\in[0,1/2]. italic_u ( italic_t ) β₯ italic_Ο ( italic_t ) | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for all italic_t β [ 0 , 1 / 2 ] .
Let u β K π’ πΎ u\in K italic_u β italic_K . From the definition of N π N italic_N , one has
Report issue for preceding element
J β’ ( N β’ ( u ) ) = g β’ ( β
) β’ f β’ ( u ) β C β’ [ 0 , 1 ] . π½ π π’ π β
π π’ πΆ 0 1 J(N(u))=g(\cdot)f(u)\in C[0,1]. italic_J ( italic_N ( italic_u ) ) = italic_g ( β
) italic_f ( italic_u ) β italic_C [ 0 , 1 ] .
Simple computations show that the Greenβs function satisfies
Report issue for preceding element
G β’ ( t , s ) = G β’ ( 1 β t , 1 β s ) and G β’ ( t , 1 β s ) = G β’ ( 1 β t , s ) , formulae-sequence πΊ π‘ π πΊ 1 π‘ 1 π and
πΊ π‘ 1 π πΊ 1 π‘ π G(t,s)=G(1-t,1-s)\quad\text{ and }\quad G(t,1-s)=G(1-t,s),\, italic_G ( italic_t , italic_s ) = italic_G ( 1 - italic_t , 1 - italic_s ) and italic_G ( italic_t , 1 - italic_s ) = italic_G ( 1 - italic_t , italic_s ) ,
for all t , s β [ 0 , 1 / 2 ] π‘ π
0 1 2 t,s\in[0,1/2] italic_t , italic_s β [ 0 , 1 / 2 ] . Thus, from the symmetry of u π’ u italic_u , for any t β [ 0 , 1 / 2 ] π‘ 0 1 2 t\in[0,1/2] italic_t β [ 0 , 1 / 2 ] , we obtain
Report issue for preceding element
N β’ ( u ) β’ ( t ) π π’ π‘ \displaystyle N(u)(t) italic_N ( italic_u ) ( italic_t )
= β« 0 1 / 2 G β’ ( t , s ) β’ f β’ ( u β’ ( 1 β s ) ) β’ g β’ ( 1 β s ) β’ π s + β« 0 1 / 2 G β’ ( t , 1 β s ) β’ f β’ ( u β’ ( s ) ) β’ g β’ ( s ) β’ π s absent superscript subscript 0 1 2 πΊ π‘ π π π’ 1 π π 1 π differential-d π superscript subscript 0 1 2 πΊ π‘ 1 π π π’ π π π differential-d π \displaystyle=\int_{0}^{1/2}G(t,s)f(u(1-s))g(1-s)ds+\int_{0}^{1/2}G(t,1-s)f(u(%
s))g(s)ds = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_G ( italic_t , italic_s ) italic_f ( italic_u ( 1 - italic_s ) ) italic_g ( 1 - italic_s ) italic_d italic_s + β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_G ( italic_t , 1 - italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s
= β« 1 / 2 1 G β’ ( 1 β t , s ) β’ f β’ ( u β’ ( s ) ) β’ g β’ ( s ) β’ π s + β« 0 1 / 2 G β’ ( 1 β t , s ) β’ f β’ ( u β’ ( s ) ) β’ g β’ ( s ) β’ π s absent superscript subscript 1 2 1 πΊ 1 π‘ π π π’ π π π differential-d π superscript subscript 0 1 2 πΊ 1 π‘ π π π’ π π π differential-d π \displaystyle=\int_{1/2}^{1}G(1-t,s)f(u(s))g(s)ds+\int_{0}^{1/2}G(1-t,s)f(u(s)%
)g(s)ds = β« start_POSTSUBSCRIPT 1 / 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_G ( 1 - italic_t , italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s + β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_G ( 1 - italic_t , italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s
= N β’ ( u β’ ( 1 β t ) ) , absent π π’ 1 π‘ \displaystyle=N(u(1-t)), = italic_N ( italic_u ( 1 - italic_t ) ) ,
which proves that N β’ ( u ) π π’ N(u) italic_N ( italic_u ) is symmetric.
Since u π’ u italic_u takes positive values and both f π f italic_f and g π g italic_g are nonnegative, it follows that N β’ ( u ) π π’ N(u) italic_N ( italic_u ) is concave, hence N β’ ( u ) π π’ N(u) italic_N ( italic_u ) is nondecreasing on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] . Furthermore, the monotonicity of f π f italic_f on β + subscript β \mathbb{R}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and of u π’ u italic_u and g π g italic_g on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] ensures that J β’ ( N β’ ( u ) ) = g β’ ( β
) β’ f β’ ( u ) π½ π π’ π β
π π’ J(N(u))=g(\cdot)f(u) italic_J ( italic_N ( italic_u ) ) = italic_g ( β
) italic_f ( italic_u ) is also nondecreasing on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] . Therefore, by Lemma 3.1 , inequality (3.4 ) holds for N β’ ( u ) π π’ N(u) italic_N ( italic_u ) . Thus, N β’ ( u ) β K π π’ πΎ N(u)\in K italic_N ( italic_u ) β italic_K , as desired.
Report issue for preceding element
For the sake of completeness, below we provide a proof of Lemma 3.1 shorter than the one given in [11 ] .
Report issue for preceding element
Proof of Lemma 3.1 . Report issue for preceding element
From the hypothesis, it follows directly that both u π’ u italic_u and u β² superscript π’ β² u^{\prime} italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT are positive and concave on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] . Moreover, the symmetry of u π’ u italic_u ensures that u π’ u italic_u is increasing on [ 0 , 1 / 2 ] 0 1 2 [0,1/2] [ 0 , 1 / 2 ] , while u β² superscript π’ β² u^{\prime} italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT is decreasing, with u β² β’ ( 1 / 2 ) = 0 superscript π’ β² 1 2 0 u^{\prime}(1/2)=0 italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 1 / 2 ) = 0 . For any t β ( 0 , 1 / 2 ) π‘ 0 1 2 t\in(0,1/2) italic_t β ( 0 , 1 / 2 ) , the monotonicity of u β² superscript π’ β² u^{\prime} italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT implies
Report issue for preceding element
(3.5)
u β’ ( t ) = β« 0 t u β² β’ ( s ) β’ π s β₯ t β’ u β² β’ ( t ) , π’ π‘ superscript subscript 0 π‘ superscript π’ β² π differential-d π π‘ superscript π’ β² π‘ u(t)=\int_{0}^{t}u^{\prime}(s)ds\geq tu^{\prime}(t), italic_u ( italic_t ) = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_s ) italic_d italic_s β₯ italic_t italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) ,
while its concavity yields
Report issue for preceding element
(3.6)
u β² β’ ( t ) superscript π’ β² π‘ \displaystyle u^{\prime}(t) italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t )
= u β² β’ ( 2 β’ t β’ 1 2 + ( 1 β 2 β’ t ) β’ 0 ) β₯ 2 β’ t β’ u β² β’ ( 1 2 ) + ( 1 β 2 β’ t ) β’ u β² β’ ( 0 ) absent superscript π’ β² 2 π‘ 1 2 1 2 π‘ 0 2 π‘ superscript π’ β² 1 2 1 2 π‘ superscript π’ β² 0 \displaystyle=u^{\prime}\left(2t\,\frac{1}{2}+(1-2t)0\right)\geq 2tu^{\prime}%
\left(\frac{1}{2}\right)+(1-2t)u^{\prime}(0) = italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 2 italic_t divide start_ARG 1 end_ARG start_ARG 2 end_ARG + ( 1 - 2 italic_t ) 0 ) β₯ 2 italic_t italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) + ( 1 - 2 italic_t ) italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 0 )
= ( 1 β 2 β’ t ) β’ u β² β’ ( 0 ) . absent 1 2 π‘ superscript π’ β² 0 \displaystyle=(1-2t)u^{\prime}(0). = ( 1 - 2 italic_t ) italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 0 ) .
Finally, we obtain the conclusion using (3.5 ), (3.6 ) and
Report issue for preceding element
| u | H 0 1 2 = β« 0 1 u β² β’ ( s ) 2 β’ π s = 2 β’ β« 0 1 / 2 u β² β’ ( s ) 2 β’ π s β€ u β² β’ ( 0 ) 2 . superscript subscript π’ superscript subscript π» 0 1 2 superscript subscript 0 1 superscript π’ β² superscript π 2 differential-d π 2 superscript subscript 0 1 2 superscript π’ β² superscript π 2 differential-d π superscript π’ β² superscript 0 2 |u|_{H_{0}^{1}}^{2}=\int_{0}^{1}u^{\prime}(s)^{2}ds=2\int_{0}^{1/2}u^{\prime}(%
s)^{2}ds\leq u^{\prime}(0)^{2}. | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_s = 2 β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_s β€ italic_u start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( 0 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .
β
Report issue for preceding element
Let 0 < r < R < β 0 π π
0<r<R<\infty 0 < italic_r < italic_R < β be positive real numbers, Ξ² β ( 0 , 1 / 4 ) π½ 0 1 4 \beta\in(0,1/4) italic_Ξ² β ( 0 , 1 / 4 ) , and define
Report issue for preceding element
A ~ = ( β« 0 1 g 2 β’ ( t ) β’ π t ) 1 / 2 , B ~ = β« 0 Ξ² g β’ ( t ) β’ π t and C ~ = β« Ξ² 1 / 2 g β’ ( t ) β’ π t . formulae-sequence ~ π΄ superscript superscript subscript 0 1 superscript π 2 π‘ differential-d π‘ 1 2 formulae-sequence ~ π΅ superscript subscript 0 π½ π π‘ differential-d π‘ and
~ πΆ superscript subscript π½ 1 2 π π‘ differential-d π‘ \tilde{A}=\left(\int_{0}^{1}g^{2}(t)dt\right)^{1/2},\quad\tilde{B}=\int_{0}^{%
\beta}g(t)dt\quad\text{ and }\quad\tilde{C}=\int_{\beta}^{1/2}g(t)dt. over~ start_ARG italic_A end_ARG = ( β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT , over~ start_ARG italic_B end_ARG = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_d italic_t and over~ start_ARG italic_C end_ARG = β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_d italic_t .
In what follows, we assume
Report issue for preceding element
(H1):
The constants A ~ ~ π΄ \tilde{A} over~ start_ARG italic_A end_ARG and C ~ ~ πΆ \tilde{C} over~ start_ARG italic_C end_ARG are strictly positive, and moreover
Report issue for preceding element
f β’ ( r ) r < Ο A ~ and f β’ ( R β’ Ο β’ ( Ξ² ) ) R > 1 2 β’ Ο β’ ( Ξ² ) β’ C ~ . formulae-sequence π π π π ~ π΄ and
π π
italic-Ο π½ π
1 2 italic-Ο π½ ~ πΆ \frac{f(r)}{r}<\frac{\pi}{\tilde{A}}\quad\text{and}\quad\frac{f\left(R\phi(%
\beta)\right)}{R}>\frac{1}{2\phi(\beta)\tilde{C}}. divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG < divide start_ARG italic_Ο end_ARG start_ARG over~ start_ARG italic_A end_ARG end_ARG and divide start_ARG italic_f ( italic_R italic_Ο ( italic_Ξ² ) ) end_ARG start_ARG italic_R end_ARG > divide start_ARG 1 end_ARG start_ARG 2 italic_Ο ( italic_Ξ² ) over~ start_ARG italic_C end_ARG end_ARG .
Additionally, suppose that the function
f π f italic_f satisfies one of the following three conditions:
Report issue for preceding element
(H2):
There exists a continuous mapping ΞΈ : [ 0 , R ] β β : π β 0 π
β \theta\colon[0,R]\to\mathbb{R} italic_ΞΈ : [ 0 , italic_R ] β blackboard_R such that ΞΈ β’ ( t ) > 0 π π‘ 0 \theta(t)>0 italic_ΞΈ ( italic_t ) > 0 for t β ( 0 , R ] π‘ 0 π
t\in(0,R] italic_t β ( 0 , italic_R ] , and
Report issue for preceding element
t β’ f β² β’ ( t ) β f β’ ( t ) β₯ ΞΈ β’ ( t ) β’ for all β’ t β [ 0 , R ] ; π‘ superscript π β² π‘ π π‘ π π‘ for all π‘ 0 π
tf^{\prime}(t)-f(t)\geq\theta(t)\,\,\text{ for all }t\in[0,R]; italic_t italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) - italic_f ( italic_t ) β₯ italic_ΞΈ ( italic_t ) for all italic_t β [ 0 , italic_R ] ;
(H3):
There exists constants ΞΌ = ΞΌ β’ ( r , R ) > 1 π π π π
1 \mu=\mu(r,R)>1 italic_ΞΌ = italic_ΞΌ ( italic_r , italic_R ) > 1 and Ξ» = Ξ» β’ ( r , R ) > 0 π π π π
0 \lambda=\lambda(r,R)>0 italic_Ξ» = italic_Ξ» ( italic_r , italic_R ) > 0 such that
Report issue for preceding element
t β’ f β² β’ ( t ) β ΞΌ β’ f β’ ( t ) β₯ 0 β’ and β’ f β² β’ ( t ) β₯ Ξ» β’ for all β’ t β [ r β’ Ο β’ ( Ξ² ) , R ] , π‘ superscript π β² π‘ π π π‘ 0 and superscript π β² π‘ π for all π‘ π italic-Ο π½ π
tf^{\prime}(t)-\mu f(t)\geq 0\text{ and }f^{\prime}(t)\geq\lambda\,\,\text{ %
for all }t\in[r\phi(\beta),R], italic_t italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) - italic_ΞΌ italic_f ( italic_t ) β₯ 0 and italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) β₯ italic_Ξ» for all italic_t β [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] ,
and
Report issue for preceding element
(3.7)
B ~ β’ f β’ ( r β’ Ο β’ ( Ξ² ) ) < Ξ» β’ C ~ β’ ( 1 β 1 ΞΌ ) β’ r β’ Ο β’ ( Ξ² ) ; ~ π΅ π π italic-Ο π½ π ~ πΆ 1 1 π π italic-Ο π½ \tilde{B}f(r\phi(\beta))<\lambda\tilde{C}\left(1-\frac{1}{\mu}\right)r\phi(%
\beta); over~ start_ARG italic_B end_ARG italic_f ( italic_r italic_Ο ( italic_Ξ² ) ) < italic_Ξ» over~ start_ARG italic_C end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r italic_Ο ( italic_Ξ² ) ;
(H4):
The support of the function g π g italic_g is included in [ Ξ² , 1 / 2 ] π½ 1 2 [\beta,1/2] [ italic_Ξ² , 1 / 2 ] , i.e.,
Report issue for preceding element
(3.8)
g β’ ( t ) = 0 for all β’ t β [ 0 , Ξ² ] . formulae-sequence π π‘ 0 for all π‘ 0 π½ g(t)=0\quad\text{ for all }t\in[0,\beta]. italic_g ( italic_t ) = 0 for all italic_t β [ 0 , italic_Ξ² ] .
Additionally, the function f π f italic_f is of class C 2 superscript πΆ 2 C^{2} italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT on [ r β’ Ο β’ ( Ξ² ) , R ] π italic-Ο π½ π
[r\phi(\beta),R] [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] with a strictly positive second derivative, that is, there exists M = M β’ ( r , R ) > 0 π π π π
0 M=M(r,R)>0 italic_M = italic_M ( italic_r , italic_R ) > 0 with
Report issue for preceding element
f β²β² β’ ( t ) β₯ M for all β’ t β [ r β’ Ο β’ ( Ξ² ) , R ] . formulae-sequence superscript π β²β² π‘ π for all π‘ π italic-Ο π½ π
f^{\prime\prime}(t)\geq M\quad\text{ for all }t\in[r\phi(\beta),R]. italic_f start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_t ) β₯ italic_M for all italic_t β [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] .
Furthermore, there exists a continuous positive mapping ΞΈ ~ : [ r β’ Ο β’ ( Ξ² ) , R ] β β : ~ π β π italic-Ο π½ π
β \tilde{\theta}\colon[r\phi(\beta),R]\to\mathbb{R} over~ start_ARG italic_ΞΈ end_ARG : [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] β blackboard_R such that
Report issue for preceding element
(3.9)
t β’ f β² β’ ( t ) β f β’ ( t ) β₯ ΞΈ ~ β’ ( t ) for all β’ t β [ r β’ Ο β’ ( Ξ² ) , R ] . formulae-sequence π‘ superscript π β² π‘ π π‘ ~ π π‘ for all π‘ π italic-Ο π½ π
tf^{\prime}(t)-f(t)\geq\tilde{\theta}(t)\quad\text{ for all }t\in[r\phi(\beta)%
,R]. italic_t italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) - italic_f ( italic_t ) β₯ over~ start_ARG italic_ΞΈ end_ARG ( italic_t ) for all italic_t β [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] .
We show that under condition (H1) and either (H2), (H3) or (H4), conditions (h1)-(h4) are satisfied.
Note that (h2) and (h3) follow directly from (3.2 ), Wirtingerβs inequality, and the smoothness of the function f π f italic_f .
Report issue for preceding element
To prove (h1),
let u β K β { 0 } π’ πΎ 0 u\in K\setminus\{0\} italic_u β italic_K β { 0 } . The mapping Ξ± u subscript πΌ π’ \alpha_{u} italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT introduced in (h1) is given by
Report issue for preceding element
Ξ± u β’ ( Ο ) = 1 2 β’ Ο 2 β’ | u | H 0 1 2 β β« 0 1 F β’ ( Ο β’ u β’ ( t ) ) β’ g β’ ( t ) β’ π t , Ο β ( r | u | H 0 1 , R | u | H 0 1 ) formulae-sequence subscript πΌ π’ π 1 2 superscript π 2 superscript subscript π’ superscript subscript π» 0 1 2 superscript subscript 0 1 πΉ π π’ π‘ π π‘ differential-d π‘ π π subscript π’ superscript subscript π» 0 1 π
subscript π’ superscript subscript π» 0 1 \alpha_{u}(\tau)=\frac{1}{2}\tau^{2}|u|_{H_{0}^{1}}^{2}-\int_{0}^{1}F(\tau u(t%
))g(t)dt,\quad\tau\in\left(\frac{r}{|u|_{H_{0}^{1}}},\frac{R}{|u|_{H_{0}^{1}}}\right) italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Ο ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_F ( italic_Ο italic_u ( italic_t ) ) italic_g ( italic_t ) italic_d italic_t , italic_Ο β ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG )
and its derivative is
Report issue for preceding element
Ξ± u β² β’ ( Ο ) superscript subscript πΌ π’ β² π \displaystyle\alpha_{u}^{\prime}(\tau) italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο )
= Ο β’ | u | H 0 1 2 β β« 0 1 f β’ ( Ο β’ u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t . absent π superscript subscript π’ superscript subscript π» 0 1 2 superscript subscript 0 1 π π π’ π‘ π π‘ π’ π‘ differential-d π‘ \displaystyle=\tau|u|_{H_{0}^{1}}^{2}-\int_{0}^{1}f(\tau u(t))g(t)u(t)dt. = italic_Ο | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Ο italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t .
First, we show that
Report issue for preceding element
(3.10)
Ξ± u β² β’ ( r | u | H 0 1 ) > 0 and Ξ± u β² β’ ( R | u | H 0 1 ) < 0 . Ξ± u β² β’ ( r | u | H 0 1 ) > 0 and Ξ± u β² β’ ( R | u | H 0 1 ) < 0 \text{$\alpha_{u}^{\prime}\left(\frac{r}{|u|_{H_{0}^{1}}}\right)>0$ \quad and %
\quad$\alpha_{u}^{\prime}\left(\frac{R}{|u|_{H_{0}^{1}}}\right)<0$}. italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) > 0 and italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) < 0 .
Denote
Report issue for preceding element
v β’ ( t ) = u β’ ( t ) | u | H 0 1 β K β { 0 } , π£ π‘ π’ π‘ subscript π’ superscript subscript π» 0 1 πΎ 0 v(t)=\frac{u(t)}{|u|_{H_{0}^{1}}}\in K\setminus\{0\}, italic_v ( italic_t ) = divide start_ARG italic_u ( italic_t ) end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG β italic_K β { 0 } ,
so | v | H 0 1 = 1 subscript π£ superscript subscript π» 0 1 1 |v|_{H_{0}^{1}}=1 | italic_v | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = 1 . Then, we have
Report issue for preceding element
Ξ± u β² β’ ( Ο | u | H 0 1 ) = Ο β’ | u | H 0 1 β’ ( 1 β β« 0 1 1 Ο β’ f β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t ) . superscript subscript πΌ π’ β² π subscript π’ superscript subscript π» 0 1 π subscript π’ superscript subscript π» 0 1 1 superscript subscript 0 1 1 π π π π£ π‘ π π‘ π£ π‘ differential-d π‘ \displaystyle\alpha_{u}^{\prime}\left(\frac{\tau}{|u|_{H_{0}^{1}}}\right)=\tau%
|u|_{H_{0}^{1}}\left(1-\int_{0}^{1}\frac{1}{\tau}f\left(\tau v(t)\right)g(t)v(%
t)dt\right). italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( divide start_ARG italic_Ο end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) = italic_Ο | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( 1 - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_Ο end_ARG italic_f ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t ) .
From (3.2 ), (H1) and both Wirtinger and HΓΆlder inequalities, one has
Report issue for preceding element
β« 0 1 1 r β’ f β’ ( r β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t β€ β« 0 1 f β’ ( r ) r β’ g β’ ( t ) β’ v β’ ( t ) β’ π t superscript subscript 0 1 1 π π π π£ π‘ π π‘ π£ π‘ differential-d π‘ superscript subscript 0 1 π π π π π‘ π£ π‘ differential-d π‘ \displaystyle\int_{0}^{1}\frac{1}{r}f\left(rv(t)\right)g(t)v(t)dt\leq\int_{0}^%
{1}\frac{f\left(r\right)}{r}g(t)v(t)dt β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_f ( italic_r italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t β€ β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
β€ f β’ ( r ) r β’ ( β« 0 1 g 2 β’ ( t ) β’ π t ) 1 / 2 β’ ( β« 0 1 v 2 β’ ( t ) β’ π t ) 1 / 2 absent π π π superscript superscript subscript 0 1 superscript π 2 π‘ differential-d π‘ 1 2 superscript superscript subscript 0 1 superscript π£ 2 π‘ differential-d π‘ 1 2 \displaystyle\leq\frac{f(r)}{r}\left(\int_{0}^{1}g^{2}(t)dt\right)^{1/2}\left(%
\int_{0}^{1}v^{2}(t)dt\right)^{1/2} β€ divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG ( β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT
β€ f β’ ( r ) r β’ A ~ Ο β’ | v | H 0 1 = f β’ ( r ) r β’ A ~ Ο < 1 , absent π π π ~ π΄ π subscript π£ superscript subscript π» 0 1 π π π ~ π΄ π 1 \displaystyle\leq\frac{f(r)}{r}\frac{\tilde{A}}{\pi}|v|_{H_{0}^{1}}=\frac{f(r)%
}{r}\frac{\tilde{A}}{\pi}<1, β€ divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG divide start_ARG over~ start_ARG italic_A end_ARG end_ARG start_ARG italic_Ο end_ARG | italic_v | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG divide start_ARG over~ start_ARG italic_A end_ARG end_ARG start_ARG italic_Ο end_ARG < 1 ,
which proves the first inequality in (3.10 ). For the second one, using the monotonicity of v π£ v italic_v and the Harnack inequality, we see that
Report issue for preceding element
(3.11)
v β’ ( t ) β₯ Ο β’ ( Ξ² ) for all β’ t β [ Ξ² , 1 / 2 ] . formulae-sequence π£ π‘ italic-Ο π½ for all π‘ π½ 1 2 v(t)\geq\phi(\beta)\quad\text{ for all }t\in[\beta,1/2]. italic_v ( italic_t ) β₯ italic_Ο ( italic_Ξ² ) for all italic_t β [ italic_Ξ² , 1 / 2 ] .
Therefore, from (H1), the symmetry of v π£ v italic_v and (3.11 ), we obtain
Report issue for preceding element
β« 0 1 f β’ ( R β’ v β’ ( t ) ) R β’ g β’ ( t ) β’ v β’ ( t ) β’ π t superscript subscript 0 1 π π
π£ π‘ π
π π‘ π£ π‘ differential-d π‘ \displaystyle\int_{0}^{1}\frac{f\left(Rv(t)\right)}{R}g(t)v(t)dt β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_v ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
= 2 β’ β« 0 1 / 2 f β’ ( R β’ v β’ ( t ) ) R β’ g β’ ( t ) β’ v β’ ( t ) β’ π t β₯ 2 β’ β« Ξ² 1 / 2 f β’ ( R β’ v β’ ( t ) ) R β’ g β’ ( t ) β’ v β’ ( t ) β’ π t absent 2 superscript subscript 0 1 2 π π
π£ π‘ π
π π‘ π£ π‘ differential-d π‘ 2 superscript subscript π½ 1 2 π π
π£ π‘ π
π π‘ π£ π‘ differential-d π‘ \displaystyle=2\int_{0}^{1/2}\frac{f(Rv(t))}{R}g(t)v(t)dt\geq 2\int_{\beta}^{1%
/2}\frac{f(Rv(t))}{R}g(t)v(t)dt = 2 β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_v ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t β₯ 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_v ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
β₯ 2 β’ β« Ξ² 1 / 2 f β’ ( R β’ Ο β’ ( t ) ) R β’ g β’ ( t ) β’ Ο β’ ( t ) β’ π t β₯ 2 β’ Ο β’ ( Ξ² ) β’ C ~ β’ f β’ ( R β’ Ο β’ ( Ξ² ) ) R > 1 , absent 2 superscript subscript π½ 1 2 π π
italic-Ο π‘ π
π π‘ italic-Ο π‘ differential-d π‘ 2 italic-Ο π½ ~ πΆ π π
italic-Ο π½ π
1 \displaystyle\geq 2\int_{\beta}^{1/2}\frac{f(R\phi(t))}{R}g(t)\phi(t)dt\geq 2%
\phi(\beta)\tilde{C}\frac{f\left(R\phi(\beta)\right)}{R}>1, β₯ 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_Ο ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_Ο ( italic_t ) italic_d italic_t β₯ 2 italic_Ο ( italic_Ξ² ) over~ start_ARG italic_C end_ARG divide start_ARG italic_f ( italic_R italic_Ο ( italic_Ξ² ) ) end_ARG start_ARG italic_R end_ARG > 1 ,
whence relation (3.10 ) holds.
Report issue for preceding element
Define Ο = Ο β’ | u | H 0 1 π π subscript π’ superscript subscript π» 0 1 \sigma=\tau|u|_{H_{0}^{1}} italic_Ο = italic_Ο | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and the functions h , h ~ : [ r , R ] β β : β ~ β
β π π
β h,\tilde{h}\colon[r,R]\to\mathbb{R} italic_h , over~ start_ARG italic_h end_ARG : [ italic_r , italic_R ] β blackboard_R ,
Report issue for preceding element
h β’ ( Ο ) = 1 β β« 0 1 f β’ ( Ο β’ v β’ ( t ) ) Ο β’ g β’ ( t ) β’ v β’ ( t ) β’ π t , β π 1 superscript subscript 0 1 π π π£ π‘ π π π‘ π£ π‘ differential-d π‘ \displaystyle h(\sigma)=1-\int_{0}^{1}\frac{f(\sigma v(t))}{\sigma}g(t)v(t)dt, italic_h ( italic_Ο ) = 1 - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_Ο italic_v ( italic_t ) ) end_ARG start_ARG italic_Ο end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t ,
h ~ β’ ( Ο ) = Ο β β« 0 1 f β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t . ~ β π π superscript subscript 0 1 π π π£ π‘ π π‘ π£ π‘ differential-d π‘ \displaystyle\tilde{h}(\sigma)=\sigma-\int_{0}^{1}f(\sigma v(t))g(t)v(t)dt. over~ start_ARG italic_h end_ARG ( italic_Ο ) = italic_Ο - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .
Clearly, h β h italic_h and h ~ ~ β \tilde{h} over~ start_ARG italic_h end_ARG are dependent on the chosen u π’ u italic_u , so one should write h u subscript β π’ h_{u} italic_h start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT and h ~ u subscript ~ β π’ \tilde{h}_{u} over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT , respectively. However, for simplicity, we omit the subscript in the following analysis, as the dependence on u π’ u italic_u is clear from the context.
Report issue for preceding element
We now show that the function h β h italic_h is decreasing under either (H2) or (H3), while the function h ~ ~ β \tilde{h} over~ start_ARG italic_h end_ARG is concave under (H4).
Report issue for preceding element
(a)
In case (H2) holds, the mapping
Report issue for preceding element
t β¦ f β’ ( t ) t β’ is increasing on β’ ( 0 , R ] . maps-to π‘ π π‘ π‘ is increasing on 0 π
t\mapsto\frac{f(t)}{t}\,\text{ is increasing on }(0,R]. italic_t β¦ divide start_ARG italic_f ( italic_t ) end_ARG start_ARG italic_t end_ARG is increasing on ( 0 , italic_R ] .
The conclusion now follows directly, as Ο β’ v β’ ( t ) β [ 0 , R ] π π£ π‘ 0 π
\sigma v(t)\in[0,R] italic_Ο italic_v ( italic_t ) β [ 0 , italic_R ] for all t β [ 0 , 1 ] π‘ 0 1 t\in[0,1] italic_t β [ 0 , 1 ] and Ο β [ r , R ] π π π
\sigma\in[r,R] italic_Ο β [ italic_r , italic_R ] .
Report issue for preceding element
(b)
Under condition (H3), we prove that h β² β’ ( Ο ) < 0 superscript β β² π 0 h^{\prime}(\sigma)<0 italic_h start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ) < 0 for all Ο β [ r , R ] π π π
\sigma\in[r,R] italic_Ο β [ italic_r , italic_R ] . Using the symmetry of v π£ v italic_v , a straightforward computation yields
Report issue for preceding element
h β² β’ ( Ο ) = 2 Ο 2 β’ β« 0 1 / 2 ( f β’ ( Ο β’ v β’ ( t ) ) β f β² β’ ( Ο β’ v β’ ( t ) ) β’ Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t . superscript β β² π 2 superscript π 2 superscript subscript 0 1 2 π π π£ π‘ superscript π β² π π£ π‘ π π£ π‘ π π‘ π£ π‘ differential-d π‘ h^{\prime}(\sigma)=\frac{2}{\sigma^{2}}\int_{0}^{1/2}\left(f(\sigma v(t))-f^{%
\prime}(\sigma v(t))\sigma v(t)\right)g(t)v(t)dt. italic_h start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ) = divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( italic_f ( italic_Ο italic_v ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο italic_v ( italic_t ) ) italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .
Let β¬ β¬ \mathcal{B} caligraphic_B denote the set
Report issue for preceding element
β¬ = { t β [ 0 , 1 / 2 ] : Ο β’ v β’ ( t ) β€ r β’ Ο β’ ( Ξ² ) } . β¬ conditional-set π‘ 0 1 2 π π£ π‘ π italic-Ο π½ \mathcal{B}=\{t\in[0,1/2]\,:\,\sigma v(t)\leq r\phi(\beta)\}. caligraphic_B = { italic_t β [ 0 , 1 / 2 ] : italic_Ο italic_v ( italic_t ) β€ italic_r italic_Ο ( italic_Ξ² ) } .
From (3.11 ), it follows that
Report issue for preceding element
(3.12)
β¬ β [ 0 , Ξ² ] and [ Ξ² , 1 / 2 ] β [ 0 , 1 / 2 ] β β¬ . formulae-sequence β¬ 0 π½ and
π½ 1 2 0 1 2 β¬ \mathcal{B}\subset[0,\beta]\quad\text{ and }\quad[\beta,1/2]\subset[0,1/2]%
\setminus\mathcal{B}. caligraphic_B β [ 0 , italic_Ξ² ] and [ italic_Ξ² , 1 / 2 ] β [ 0 , 1 / 2 ] β caligraphic_B .
Since the derivative of f π f italic_f is nonnegative, one has
Report issue for preceding element
2 Ο 2 β’ β« β¬ ( f β’ ( Ο β’ v β’ ( t ) ) β f β² β’ ( Ο β’ v β’ ( t ) ) β’ Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t 2 superscript π 2 subscript β¬ π π π£ π‘ superscript π β² π π£ π‘ π π£ π‘ π π‘ π£ π‘ differential-d π‘ \displaystyle\frac{2}{\sigma^{2}}\int_{\mathcal{B}}\left(f(\sigma v(t))-f^{%
\prime}(\sigma v(t))\sigma v(t)\right)g(t)v(t)dt divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG β« start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT ( italic_f ( italic_Ο italic_v ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο italic_v ( italic_t ) ) italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
β€ 2 Ο 2 β’ β« β¬ f β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t . absent 2 superscript π 2 subscript β¬ π π π£ π‘ π π‘ π£ π‘ differential-d π‘ \displaystyle\leq\frac{2}{\sigma^{2}}\int_{\mathcal{B}}f(\sigma v(t))g(t)v(t)dt. β€ divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG β« start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT italic_f ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .
Now, using the monotonicity of v π£ v italic_v and f π f italic_f , along with (3.11 ) and (3.12 ), we obtain
Report issue for preceding element
(3.13)
2 Ο 2 β’ β« β¬ f β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t = 2 Ο 3 β’ β« β¬ f β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ Ο β’ v β’ ( t ) β’ π t β€ 2 β’ B ~ Ο 3 β’ f β’ ( r β’ Ο β’ ( Ξ² ) ) β’ r β’ Ο β’ ( Ξ² ) . 2 superscript π 2 subscript β¬ π π π£ π‘ π π‘ π£ π‘ differential-d π‘ 2 superscript π 3 subscript β¬ π π π£ π‘ π π‘ π π£ π‘ differential-d π‘ 2 ~ π΅ superscript π 3 π π italic-Ο π½ π italic-Ο π½ \frac{2}{\sigma^{2}}\int_{\mathcal{B}}f(\sigma v(t))g(t)v(t)dt=\frac{2}{\sigma%
^{3}}\int_{\mathcal{B}}f(\sigma v(t))g(t)\sigma v(t)dt\leq\frac{2\tilde{B}}{%
\sigma^{3}}f(r\phi(\beta))r\phi(\beta). divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG β« start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT italic_f ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t = divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG β« start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT italic_f ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_Ο italic_v ( italic_t ) italic_d italic_t β€ divide start_ARG 2 over~ start_ARG italic_B end_ARG end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_f ( italic_r italic_Ο ( italic_Ξ² ) ) italic_r italic_Ο ( italic_Ξ² ) .
On the other hand, from (H3), since Ο β’ v β’ ( t ) β [ r β’ Ο β’ ( Ξ² ) , R ] π π£ π‘ π italic-Ο π½ π
\sigma v(t)\in[r\phi(\beta),R] italic_Ο italic_v ( italic_t ) β [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] for all t β [ 0 , 1 / 2 ] β β¬ π‘ 0 1 2 β¬ t\in[0,1/2]\setminus\mathcal{B} italic_t β [ 0 , 1 / 2 ] β caligraphic_B , we derive
Report issue for preceding element
(3.14)
2 Ο 2 β’ β« [ 0 , 1 / 2 ] β β¬ ( f β² β’ ( Ο β’ v β’ ( t ) ) β’ Ο β’ v β’ ( t ) β f β’ ( Ο β’ v β’ ( t ) ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t 2 superscript π 2 subscript 0 1 2 β¬ superscript π β² π π£ π‘ π π£ π‘ π π π£ π‘ π π‘ π£ π‘ differential-d π‘ \displaystyle\frac{2}{\sigma^{2}}\int_{[0,1/2]\setminus\mathcal{B}}\left(f^{%
\prime}(\sigma v(t))\sigma v(t)-f(\sigma v(t))\right)g(t)v(t)dt divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG β« start_POSTSUBSCRIPT [ 0 , 1 / 2 ] β caligraphic_B end_POSTSUBSCRIPT ( italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο italic_v ( italic_t ) ) italic_Ο italic_v ( italic_t ) - italic_f ( italic_Ο italic_v ( italic_t ) ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
β₯ 2 Ο 3 β’ ( 1 β 1 ΞΌ ) β’ β« [ 0 , 1 / 2 ] β β¬ g β’ ( t ) β’ f β² β’ ( Ο β’ v β’ ( t ) ) β’ Ο 2 β’ v β’ ( t ) 2 β’ π t absent 2 superscript π 3 1 1 π subscript 0 1 2 β¬ π π‘ superscript π β² π π£ π‘ superscript π 2 π£ superscript π‘ 2 differential-d π‘ \displaystyle\geq\frac{2}{\sigma^{3}}\left(1-\frac{1}{\mu}\right)\int_{[0,1/2]%
\setminus\mathcal{B}}g(t)f^{\prime}(\sigma v(t))\sigma^{2}v(t)^{2}dt β₯ divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) β« start_POSTSUBSCRIPT [ 0 , 1 / 2 ] β caligraphic_B end_POSTSUBSCRIPT italic_g ( italic_t ) italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο italic_v ( italic_t ) ) italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β₯ 2 Ο 3 β’ ( 1 β 1 ΞΌ ) β’ β« Ξ² 1 / 2 β Ξ² g β’ ( t ) β’ f β² β’ ( Ο β’ v β’ ( t ) ) β’ Ο 2 β’ v β’ ( t ) 2 β’ π t absent 2 superscript π 3 1 1 π superscript subscript π½ 1 2 π½ π π‘ superscript π β² π π£ π‘ superscript π 2 π£ superscript π‘ 2 differential-d π‘ \displaystyle\geq\frac{2}{\sigma^{3}}\left(1-\frac{1}{\mu}\right)\int_{\beta}^%
{1/2-\beta}g(t)f^{\prime}(\sigma v(t))\sigma^{2}v(t)^{2}dt β₯ divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 - italic_Ξ² end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο italic_v ( italic_t ) ) italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β₯ 2 Ο 3 β’ Ξ» β’ ( 1 β 1 ΞΌ ) β’ β« Ξ² 1 / 2 β Ξ² g β’ ( t ) β’ Ο 2 β’ v β’ ( t ) 2 β’ π t β₯ 2 β’ C ~ Ο 3 β’ Ξ» β’ ( 1 β 1 ΞΌ ) β’ r 2 β’ Ο β’ ( Ξ² ) 2 . absent 2 superscript π 3 π 1 1 π superscript subscript π½ 1 2 π½ π π‘ superscript π 2 π£ superscript π‘ 2 differential-d π‘ 2 ~ πΆ superscript π 3 π 1 1 π superscript π 2 italic-Ο superscript π½ 2 \displaystyle\geq\frac{2}{\sigma^{3}}\lambda\left(1-\frac{1}{\mu}\right)\int_{%
\beta}^{1/2-\beta}g(t)\sigma^{2}v(t)^{2}dt\geq\frac{2\tilde{C}}{\sigma^{3}}%
\lambda\left(1-\frac{1}{\mu}\right)r^{2}\phi(\beta)^{2}. β₯ divide start_ARG 2 end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_Ξ» ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 - italic_Ξ² end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_Ο start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t β₯ divide start_ARG 2 over~ start_ARG italic_C end_ARG end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_Ξ» ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Ο ( italic_Ξ² ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .
Whence, the above two inequalities (3.13 ) and (3.14 ), together with (3.7 ), yield
Report issue for preceding element
h β² β’ ( Ο ) β€ 2 β’ B ~ Ο 3 β’ f β’ ( r β’ Ο β’ ( Ξ² ) ) β’ r β’ Ο β’ ( Ξ² ) β 2 β’ C ~ Ο 3 β’ Ξ» β’ ( 1 β 1 ΞΌ ) β’ r 2 β’ Ο β’ ( Ξ² ) 2 < 0 , superscript β β² π 2 ~ π΅ superscript π 3 π π italic-Ο π½ π italic-Ο π½ 2 ~ πΆ superscript π 3 π 1 1 π superscript π 2 italic-Ο superscript π½ 2 0 h^{\prime}(\sigma)\leq\frac{2\tilde{B}}{\sigma^{3}}f(r\phi(\beta))r\phi(\beta)%
-\frac{2\tilde{C}}{\sigma^{3}}\lambda\left(1-\frac{1}{\mu}\right)r^{2}\phi(%
\beta)^{2}<0, italic_h start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ) β€ divide start_ARG 2 over~ start_ARG italic_B end_ARG end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_f ( italic_r italic_Ο ( italic_Ξ² ) ) italic_r italic_Ο ( italic_Ξ² ) - divide start_ARG 2 over~ start_ARG italic_C end_ARG end_ARG start_ARG italic_Ο start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_Ξ» ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Ο ( italic_Ξ² ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < 0 ,
as expected.
Report issue for preceding element
(c) Assume that (H4) holds, and let Ο β [ r , R ] π π π
\sigma\in[r,R] italic_Ο β [ italic_r , italic_R ] . Given this assumption and the symmetry of v π£ v italic_v , we obtain
Report issue for preceding element
h ~ β’ ( Ο ) = Ο β 2 β’ β« Ξ² 1 / 2 f β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) β’ π t . ~ β π π 2 superscript subscript π½ 1 2 π π π£ π‘ π π‘ π£ π‘ differential-d π‘ \widetilde{h}(\sigma)=\sigma-2\int_{\beta}^{1/2}f(\sigma v(t))g(t)v(t)\,dt. over~ start_ARG italic_h end_ARG ( italic_Ο ) = italic_Ο - 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .
Since Ο β’ v β’ ( t ) β [ r β’ Ο β’ ( Ξ² ) , R ] π π£ π‘ π italic-Ο π½ π
\sigma v(t)\in[r\phi(\beta),R] italic_Ο italic_v ( italic_t ) β [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] for all t β [ Ξ² , 1 / 2 ] π‘ π½ 1 2 t\in[\beta,1/2] italic_t β [ italic_Ξ² , 1 / 2 ] by (3.11 ), it follows that h ~ ~ β \widetilde{h} over~ start_ARG italic_h end_ARG is of class C 2 β’ [ r , R ] superscript πΆ 2 π π
C^{2}[r,R] italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ italic_r , italic_R ] .
From (H4), one has
Report issue for preceding element
h ~ β²β² β’ ( Ο ) = β 2 β’ β« Ξ² 1 / 2 f β²β² β’ ( Ο β’ v β’ ( t ) ) β’ g β’ ( t ) β’ v β’ ( t ) 3 β’ π t β€ β 2 β’ C ~ β’ Ο β’ ( Ξ² ) 3 β’ min [ r β’ Ο β’ ( Ξ² ) , R ] β‘ f β²β² β’ ( β
) < 0 , superscript ~ β β²β² π 2 superscript subscript π½ 1 2 superscript π β²β² π π£ π‘ π π‘ π£ superscript π‘ 3 differential-d π‘ 2 ~ πΆ italic-Ο superscript π½ 3 subscript π italic-Ο π½ π
superscript π β²β² β
0 \widetilde{h}^{\prime\prime}(\sigma)=-2\int_{\beta}^{1/2}f^{\prime\prime}(%
\sigma v(t))g(t)v(t)^{3}\,dt\leq-2\widetilde{C}\phi(\beta)^{3}\min_{[r\phi(%
\beta),R]}f^{\prime\prime}(\cdot)<0, over~ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_Ο ) = - 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_Ο italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_d italic_t β€ - 2 over~ start_ARG italic_C end_ARG italic_Ο ( italic_Ξ² ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_min start_POSTSUBSCRIPT [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( β
) < 0 ,
which shows that h ~ ~ β \widetilde{h} over~ start_ARG italic_h end_ARG is strictly concave on [ r , R ] π π
[r,R] [ italic_r , italic_R ] .
Report issue for preceding element
Consequently, in all three cases, from (3.10 ), it follows immediately that Ξ± u β² β’ ( Ο ) superscript subscript πΌ π’ β² π \alpha_{u}^{\prime}(\tau) italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_Ο ) has exactly one zero within the interval ( r | u | H 0 1 , R | u | H 0 1 ) π subscript π’ superscript subscript π» 0 1 π
subscript π’ superscript subscript π» 0 1 \left(\frac{r}{|u|_{H_{0}^{1}}},\frac{R}{|u|_{H_{0}^{1}}}\right) ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) . Moreover, Ξ± u β² superscript subscript πΌ π’ β² \alpha_{u}^{\prime} italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT is positive on ( r | u | H 0 1 , s β’ ( u ) ) π subscript π’ superscript subscript π» 0 1 π π’ \left(\frac{r}{|u|_{H_{0}^{1}}},s(u)\right) ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ) , while Ξ± u β² subscript superscript πΌ β² π’ \alpha^{\prime}_{u} italic_Ξ± start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT is negative on ( s β’ ( u ) , R | u | H 0 1 ) π π’ π
subscript π’ superscript subscript π» 0 1 \left(s(u),\frac{R}{|u|_{H_{0}^{1}}}\right) ( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) , so condition (h1) is verified.
To prove the last assertion (h4), assume u β π© π’ π© u\in\mathcal{N} italic_u β caligraphic_N . Thus, r < | u | H 0 1 < R π subscript π’ superscript subscript π» 0 1 π
r<|u|_{H_{0}^{1}}<R italic_r < | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT < italic_R and
Report issue for preceding element
| u | H 0 1 2 = β« 0 1 f β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t . superscript subscript π’ superscript subscript π» 0 1 2 superscript subscript 0 1 π π’ π‘ π π‘ π’ π‘ differential-d π‘ |u|_{H_{0}^{1}}^{2}=\int_{0}^{1}f(u(t))g(t)u(t)dt. | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t .
(a)β
In case that (H2) holds, since u β’ ( t ) β₯ Ο β’ ( Ξ² ) β’ | u | H 0 1 β₯ r β’ Ο β’ ( Ξ² ) π’ π‘ italic-Ο π½ subscript π’ superscript subscript π» 0 1 π italic-Ο π½ u(t)\geq\phi(\beta)|u|_{H_{0}^{1}}\geq r\phi(\beta) italic_u ( italic_t ) β₯ italic_Ο ( italic_Ξ² ) | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT β₯ italic_r italic_Ο ( italic_Ξ² ) by (3.11 ), we compute
Report issue for preceding element
E β²β² β’ ( u ) β’ ( u , u ) superscript πΈ β²β² π’ π’ π’ \displaystyle E^{\prime\prime}(u)(u,u) italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u )
= | u | H 0 1 2 β β« 0 1 f β² β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u 2 β’ ( t ) β’ π t absent subscript superscript π’ 2 superscript subscript π» 0 1 superscript subscript 0 1 superscript π β² π’ π‘ π π‘ superscript π’ 2 π‘ differential-d π‘ \displaystyle=|u|^{2}_{H_{0}^{1}}-\int_{0}^{1}f^{\prime}(u(t))g(t)u^{2}(t)dt = | italic_u | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t
= β« 0 1 f β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t β β« 0 1 f β² β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) 2 β’ π t absent superscript subscript 0 1 π π’ π‘ π π‘ π’ π‘ differential-d π‘ superscript subscript 0 1 superscript π β² π’ π‘ π π‘ π’ superscript π‘ 2 differential-d π‘ \displaystyle=\int_{0}^{1}f(u(t))g(t)u(t)dt-\int_{0}^{1}f^{\prime}(u(t))g(t)u(%
t)^{2}dt = β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t - β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β€ β 2 β’ β« 0 1 / 2 ΞΈ β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t absent 2 superscript subscript 0 1 2 π π’ π‘ π π‘ π’ π‘ differential-d π‘ \displaystyle\leq-2\int_{0}^{1/2}\theta(u(t))g(t)u(t)dt β€ - 2 β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_ΞΈ ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t
β€ β 2 β’ r β’ Ο β’ ( Ξ² ) β’ β« Ξ² 1 / 2 ΞΈ β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ π t absent 2 π italic-Ο π½ superscript subscript π½ 1 2 π π’ π‘ π π‘ differential-d π‘ \displaystyle\leq-2r\phi(\beta)\int_{\beta}^{1/2}\theta(u(t))g(t)dt β€ - 2 italic_r italic_Ο ( italic_Ξ² ) β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_ΞΈ ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_d italic_t
β€ β 2 β’ C ~ β’ r β’ Ο β’ ( Ξ² ) β’ min [ r β’ Ο β’ ( Ξ² ) , R ] β‘ ΞΈ β’ ( β
) < 0 . absent 2 ~ πΆ π italic-Ο π½ subscript π italic-Ο π½ π
π β
0 \displaystyle\leq-2\tilde{C}r\phi(\beta)\min_{[r\phi(\beta),R]}\theta(\cdot)<0. β€ - 2 over~ start_ARG italic_C end_ARG italic_r italic_Ο ( italic_Ξ² ) roman_min start_POSTSUBSCRIPT [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_ΞΈ ( β
) < 0 .
(b)β Assume (H3) is satisfied. Then, taking Ο = | u | H 0 1 π subscript π’ superscript subscript π» 0 1 \sigma=|u|_{H_{0}^{1}} italic_Ο = | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and performing the same computations as in the estimates for the derivative of h β h italic_h in (b), we have
Report issue for preceding element
E β²β² β’ ( u ) β’ ( u , u ) superscript πΈ β²β² π’ π’ π’ \displaystyle E^{\prime\prime}(u)(u,u) italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u )
= 2 β’ β« 0 1 / 2 ( f β’ ( u β’ ( t ) ) β f β² β’ ( u β’ ( t ) ) β’ u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t absent 2 superscript subscript 0 1 2 π π’ π‘ superscript π β² π’ π‘ π’ π‘ π π‘ π’ π‘ differential-d π‘ \displaystyle=2\int_{0}^{1/2}\left(f(u(t))-f^{\prime}(u(t))u(t)\right)g(t)u(t)dt = 2 β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( italic_f ( italic_u ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t
β€ 2 β’ β« 0 Ξ² f β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t + 2 β’ β« Ξ² 1 / 2 ( f β’ ( u β’ ( t ) ) β f β² β’ ( u β’ ( t ) ) β’ u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t absent 2 superscript subscript 0 π½ π π’ π‘ π π‘ π’ π‘ differential-d π‘ 2 superscript subscript π½ 1 2 π π’ π‘ superscript π β² π’ π‘ π’ π‘ π π‘ π’ π‘ differential-d π‘ \displaystyle\leq 2\int_{0}^{\beta}f(u(t))g(t)u(t)dt+2\int_{\beta}^{1/2}\left(%
f(u(t))-f^{\prime}(u(t))u(t)\right)g(t)u(t)dt β€ 2 β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t + 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( italic_f ( italic_u ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t
β€ 2 β’ β« 0 Ξ² f β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t β 2 β’ ( 1 β 1 ΞΌ ) β’ β« Ξ² 1 / 2 f β² β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) 2 β’ π t absent 2 superscript subscript 0 π½ π π’ π‘ π π‘ π’ π‘ differential-d π‘ 2 1 1 π superscript subscript π½ 1 2 superscript π β² π’ π‘ π π‘ π’ superscript π‘ 2 differential-d π‘ \displaystyle\leq 2\int_{0}^{\beta}f(u(t))g(t)u(t)dt-2\left(1-\frac{1}{\mu}%
\right)\int_{\beta}^{1/2}f^{\prime}(u(t))g(t)u(t)^{2}dt β€ 2 β« start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t - 2 ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β€ 2 β’ r β’ Ο β’ ( Ξ² ) β’ ( B ~ β’ f β’ ( r β’ Ο β’ ( Ξ² ) ) β Ξ» β’ C ~ β’ ( 1 β 1 ΞΌ ) β’ r β’ Ο β’ ( Ξ² ) ) < 0 , absent 2 π italic-Ο π½ ~ π΅ π π italic-Ο π½ π ~ πΆ 1 1 π π italic-Ο π½ 0 \displaystyle\leq 2r\phi(\beta)\left(\tilde{B}f(r\phi(\beta))-\lambda\tilde{C}%
\left(1-\frac{1}{\mu}\right){r\phi(\beta)}\right)<0, β€ 2 italic_r italic_Ο ( italic_Ξ² ) ( over~ start_ARG italic_B end_ARG italic_f ( italic_r italic_Ο ( italic_Ξ² ) ) - italic_Ξ» over~ start_ARG italic_C end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r italic_Ο ( italic_Ξ² ) ) < 0 ,
where the latter inequality follows from (3.7 ).
(c)β For the last case, using (3.8 ) from (H4) and the symmetry of v π£ v italic_v , we see that
Report issue for preceding element
E β²β² β’ ( u ) β’ ( u , u ) superscript πΈ β²β² π’ π’ π’ \displaystyle E^{\prime\prime}(u)(u,u) italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u )
= | u | H 0 1 2 β 2 β’ β« Ξ² 1 / 2 f β² β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) 2 β’ π t absent subscript superscript π’ 2 superscript subscript π» 0 1 2 superscript subscript π½ 1 2 superscript π β² π’ π‘ π π‘ π’ superscript π‘ 2 differential-d π‘ \displaystyle=|u|^{2}_{H_{0}^{1}}-2\int_{\beta}^{1/2}f^{\prime}(u(t))g(t)u(t)^%
{2}dt = | italic_u | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
= 2 β’ β« Ξ² 1 / 2 f β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) β’ π t β 2 β’ β« Ξ² 1 / 2 f β² β’ ( u β’ ( t ) ) β’ g β’ ( t ) β’ u β’ ( t ) 2 β’ π t . absent 2 superscript subscript π½ 1 2 π π’ π‘ π π‘ π’ π‘ differential-d π‘ 2 superscript subscript π½ 1 2 superscript π β² π’ π‘ π π‘ π’ superscript π‘ 2 differential-d π‘ \displaystyle=2\int_{\beta}^{1/2}f(u(t))g(t)u(t)dt-2\int_{\beta}^{1/2}f^{%
\prime}(u(t))g(t)u(t)^{2}dt. = 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t - 2 β« start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t .
Since u β’ ( t ) β [ r β’ Ο β’ ( Ξ² ) , R ] π’ π‘ π italic-Ο π½ π
u(t)\in[r\phi(\beta),R] italic_u ( italic_t ) β [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] for all t β [ Ξ² , 1 / 2 ] π‘ π½ 1 2 t\in[\beta,1/2] italic_t β [ italic_Ξ² , 1 / 2 ] , the conclusion follows immediately by an argument similar to that in (a)β , that is,
Report issue for preceding element
E β²β² β’ ( u ) β’ ( u , u ) β€ β 2 β’ C ~ β’ r β’ Ο β’ ( Ξ² ) β’ min [ r β’ Ο β’ ( Ξ² ) , R ] β‘ ΞΈ ~ β’ ( β
) < 0 . superscript πΈ β²β² π’ π’ π’ 2 ~ πΆ π italic-Ο π½ subscript π italic-Ο π½ π
~ π β
0 E^{\prime\prime}(u)(u,u)\leq-2\tilde{C}r\phi(\beta)\min_{[r\phi(\beta),R]}%
\tilde{\theta}(\cdot)<0. italic_E start_POSTSUPERSCRIPT β² β² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) β€ - 2 over~ start_ARG italic_C end_ARG italic_r italic_Ο ( italic_Ξ² ) roman_min start_POSTSUBSCRIPT [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT over~ start_ARG italic_ΞΈ end_ARG ( β
) < 0 .
Therefore, in all three cases, condition (h4) is verified.
Summing up, we have the following result.
Report issue for preceding element
Theorem 3.2 .
Report issue for preceding element
Assume (H1) and either (H2), (H3) or (H4) hold true. Then, problem (3.1 ) has a solution u β β K superscript π’ β πΎ u^{\ast}\in K italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT β italic_K such that r < | u β | H 0 1 < R π subscript superscript π’ β superscript subscript π» 0 1 π
r<|u^{\ast}|_{H_{0}^{1}}<R italic_r < | italic_u start_POSTSUPERSCRIPT β end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT < italic_R .
Report issue for preceding element
Proof. Report issue for preceding element
As established above, assumptions (h1)-(h4) are verified, thus Theorem 2.2 guarantees the existence of a sequence u n β π© subscript π’ π π© u_{n}\in\mathcal{N} italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT β caligraphic_N such that
Report issue for preceding element
E β’ ( u n ) β inf π© E and E β² β’ ( u n ) β 0 . formulae-sequence β πΈ subscript π’ π subscript infimum π© πΈ and
β superscript πΈ β² subscript π’ π 0 E(u_{n})\to\inf_{\mathcal{N}}E\quad\text{ and }\quad E^{\prime}(u_{n})\to 0. italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β 0 .
Since L 2 β’ ( 0 , 1 ) superscript πΏ 2 0 1 L^{2}(0,1) italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 0 , 1 ) embeds compactly into H β 1 β’ ( 0 , 1 ) superscript π» 1 0 1 H^{-1}(0,1) italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 0 , 1 ) , the operator N π N italic_N is completely continuous from H 0 1 β’ ( 0 , 1 ) superscript subscript π» 0 1 0 1 H_{0}^{1}(0,1) italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) into itself (see, e.g., [18 ] ); therefore Theorem 2.4 applies and gives the conclusion.
β
Report issue for preceding element
It is worth providing some commentaries on the conditions (H2), (H3), and (H4).
Report issue for preceding element
(i):
The first condition, (H2), naturally extends the standard condition obtained via the Nehari manifold method over the entire domain. For instance, let a > 0 π 0 a>0 italic_a > 0 , p > 1 π 1 p>1 italic_p > 1 , g β‘ 1 π 1 g\equiv 1 italic_g β‘ 1 and choose 0 < r < R < β 0 π π
0<r<R<\infty 0 < italic_r < italic_R < β such that
Report issue for preceding element
(3.15)
a < Ο r p and a > 1 R p β 1 β’ Ξ² p + 1 β’ ( 1 β 2 β’ Ξ² ) p + 2 , formulae-sequence π π superscript π π and
π 1 superscript π
π 1 superscript π½ π 1 superscript 1 2 π½ π 2 a<\frac{\pi}{r^{p}}\quad\text{and}\quad a>\frac{1}{R^{p-1}\beta^{p+1}(1-2\beta%
)^{p+2}}, italic_a < divide start_ARG italic_Ο end_ARG start_ARG italic_r start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_ARG and italic_a > divide start_ARG 1 end_ARG start_ARG italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT italic_Ξ² start_POSTSUPERSCRIPT italic_p + 1 end_POSTSUPERSCRIPT ( 1 - 2 italic_Ξ² ) start_POSTSUPERSCRIPT italic_p + 2 end_POSTSUPERSCRIPT end_ARG ,
for some Ξ² β ( 0 , 1 / 4 ) π½ 0 1 4 \beta\in(0,1/4) italic_Ξ² β ( 0 , 1 / 4 ) . Then, the function f β’ ( t ) = a β’ t p π π‘ π superscript π‘ π f(t)=at^{p} italic_f ( italic_t ) = italic_a italic_t start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT satisfies (H1) and (H2). Indeed, conditions (3.15 ) ensure (H1), while (H2) follows directly since
Report issue for preceding element
t β’ f β² β’ ( t ) β f β’ ( t ) = a β’ ( p β 1 ) β’ t p . π‘ superscript π β² π‘ π π‘ π π 1 superscript π‘ π tf^{\prime}(t)-f(t)=a(p-1)t^{p}. italic_t italic_f start_POSTSUPERSCRIPT β² end_POSTSUPERSCRIPT ( italic_t ) - italic_f ( italic_t ) = italic_a ( italic_p - 1 ) italic_t start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .
However, it is not difficult to see that this setup does not lead to multiplicity. To see this, suppose (H2) holds for two pairs of points ( r 1 , R 1 ) subscript π 1 subscript π
1 (r_{1},R_{1}) ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and ( r 2 , R 2 ) subscript π 2 subscript π
2 (r_{2},R_{2}) ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) with r 1 < R 1 < r 2 < R 2 subscript π 1 subscript π
1 subscript π 2 subscript π
2 r_{1}<R_{1}<r_{2}<R_{2} italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT . Then, as the map f β’ ( t ) / t π π‘ π‘ f(t)/t italic_f ( italic_t ) / italic_t is increasing on [ 0 , r 2 ] 0 subscript π 2 [0,r_{2}] [ 0 , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] (see (a)), we have
Report issue for preceding element
f β’ ( R 1 ) R 1 < f β’ ( r 2 ) r 2 < Ο A ~ , π subscript π
1 subscript π
1 π subscript π 2 subscript π 2 π ~ π΄ \frac{f(R_{1})}{R_{1}}<\frac{f(r_{2})}{r_{2}}<\frac{\pi}{\tilde{A}}, divide start_ARG italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG < divide start_ARG italic_f ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG < divide start_ARG italic_Ο end_ARG start_ARG over~ start_ARG italic_A end_ARG end_ARG ,
which implies Ξ± u β’ ( R 1 | u | H 0 1 ) > 0 subscript πΌ π’ subscript π
1 subscript π’ superscript subscript π» 0 1 0 \alpha_{u}\left(\frac{R_{1}}{|u|_{H_{0}^{1}}}\right)>0 italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( divide start_ARG italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) > 0 for all u β K β { 0 } π’ πΎ 0 u\in K\setminus\{0\} italic_u β italic_K β { 0 } , contrary to (3.10 ).
Report issue for preceding element
(ii):
Conditions (H3) and (H4) may lead to multiplicity, as they impose restrictions intrinsically linked to the values of r π r italic_r and R π
R italic_R . Both conditions require an Ambrosetti-Rabinowitz-type assumption, which is often encountered in the study of the existence of solutions for nonlinear equations.
Report issue for preceding element
Additionally, (H3) includes an extra requirement on the derivative of f π f italic_f and the associated coefficients, while (H4) assumes that the function g π g italic_g vanishes on a small interval starting from 0 and that the function f π f italic_f is strictly convex on the interval [ r β’ Ο β’ ( Ξ² ) , R ] π italic-Ο π½ π
[r\phi(\beta),R] [ italic_r italic_Ο ( italic_Ξ² ) , italic_R ] .
We also remark that the three conditions (H2), (H3), and (H4) can be applied independently to different pairs ( r i , R i ) subscript π π subscript π
π (r_{i},R_{i}) ( italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) . However, it is important to note that if (H2) is used, it should only be applied to the first pair ( r 1 , R 1 ) subscript π 1 subscript π
1 (r_{1},R_{1}) ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , as remark (i) shows.
Report issue for preceding element