Localization of critical points in annular conical sets via the method of Nehari manifold

Abstract

Using the Nehari manifold method, we establish sufficient conditions such that a smooth functional attains a ground state within an annular domain of a closed cone. The localization we obtain immediately allows for multiplicity when applied to disjoint conical sets. To illustrate our results, we consider a two-point boundary value problem and obtain a solution within a shell of a closed cone, defined in terms of a Harnack inequality with respect to the energy norm. The conditions imposed on the nonlinear term naturally extend those from classical examples in the literature which were derived using the method of Nehari manifold on the entire domain.

Authors

Andrei Stan
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Critical point, Nehari manifold, Birkhoff-Kellogg invariant-direction, cone, p-Laplace operator, positive solution, multiple solutions

Paper coordinates

A. Stan, Localization of critical points in annular conical sets via the method of Nehari manifold, Preprint, 2025.Β 

About this paper

Journal
Preprint
Publisher Name
Print ISSN
Online ISSN

google scholar link

Paper (preprint) in HTML form

Localization of critical points in annular conical sets via the method of Nehari manifold

Andrei Stan Department of Mathematics, BabeΘ™-Bolyai University AND Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

1. Introduction and Preliminaries

The theory of critical points has proved to be a cornerstone in the study of various problems arising from real-world mathematical models. In many cases, the solutions to such problems correspond to a critical point of some C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT energy functional E𝐸Eitalic_E. Specifically, one seeks u𝑒uitalic_u such that

E′⁒(u)=0,superscript𝐸′𝑒0E^{\prime}(u)=0,italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) = 0 ,

where Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT denotes the FrΓ©chet derivative of E𝐸Eitalic_E. In the upcoming discussion, H𝐻Hitalic_H denotes a Hilbert space, identified with its dual, equipped with the inner product (u,v)Hsubscript𝑒𝑣𝐻(u,v)_{H}( italic_u , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT and the associated norm |u|H=(u,u)Hsubscript𝑒𝐻subscript𝑒𝑒𝐻|u|_{H}=\sqrt{(u,u)_{H}}| italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = square-root start_ARG ( italic_u , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG. Also, BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT denotes the closed ball of radius R𝑅Ritalic_R centered at the origin in H𝐻Hitalic_H.

1.1. Nehari manifold

A significant advancement in the study of critical points is attributed to the pioneering papers of Nehari (see [13, 14]). The core idea involves minimizing the functional E𝐸Eitalic_E over the so-called Nehari manifold,

β„³={u∈Hβˆ–{0}:(E′⁒(u),u)H=0},β„³conditional-set𝑒𝐻0subscriptsuperscript𝐸′𝑒𝑒𝐻0\mathcal{M}=\left\{u\in H\setminus\{0\}\,:\,(E^{\prime}(u),u)_{H}=0\right\},caligraphic_M = { italic_u ∈ italic_H βˆ– { 0 } : ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 } ,

since in many cases the functional E𝐸Eitalic_E is bounded on β„³β„³\mathcal{M}caligraphic_M, even though it may be unbounded on the entire domain. Moreover, by its definition, all critical points of E𝐸Eitalic_E are contained within β„³β„³\mathcal{M}caligraphic_M. Typically, the Nehari method proceeds as follows,

  • 1)

    Prove that the infimum of E𝐸Eitalic_E over β„³β„³\mathcal{M}caligraphic_M is achieved, i.e., there exists u0βˆˆβ„³subscript𝑒0β„³u_{0}\in\mathcal{M}italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_M such that E⁒(u0)=c=inf𝒩E⁒(β‹…)𝐸subscript𝑒0𝑐subscriptinfimum𝒩𝐸⋅E(u_{0})=c=\inf_{\mathcal{N}}E(\cdot)italic_E ( italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_c = roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E ( β‹… ).

  • 2)

    Establish that β„³β„³\mathcal{M}caligraphic_M is homeomorphic to the unit sphere S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT in H𝐻Hitalic_H via a mapping Ο‰πœ”\omegaitalic_Ο‰. Then, show that u𝑒uitalic_u is a critical point of the mapping Eβˆ˜Ο‰:S1→ℝ:πΈπœ”β†’superscript𝑆1ℝE\circ\omega\colon S^{1}\to\mathbb{R}italic_E ∘ italic_Ο‰ : italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT β†’ blackboard_R. In the standard approach from the literature, the mapping Ο‰πœ”\omegaitalic_Ο‰ is obtained as the unique maximizer of the fibering mapping (0,∞)βˆ‹t↦E⁒(t⁒u)contains0𝑑maps-to𝐸𝑑𝑒(0,\infty)\ni t\mapsto E(tu)( 0 , ∞ ) βˆ‹ italic_t ↦ italic_E ( italic_t italic_u ) (see, e.g., [6]).

  • 3)

    Show that any critical point of Eβˆ˜Ο‰πΈπœ”E\circ\omegaitalic_E ∘ italic_Ο‰ corresponds to a critical point of E𝐸Eitalic_E.

The point u0subscript𝑒0u_{0}italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is usually called a ground state since it minimizes the functional over the set of all possible solutions. However, as shown in [21, Theorem 4.2], E⁒(u0)𝐸subscript𝑒0E(u_{0})italic_E ( italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is just a mountain pass value given by a min-max procedure over a specific set of paths.

In cases where β„³β„³\mathcal{M}caligraphic_M is a C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT manifold (e.g., when E𝐸Eitalic_E is a C2superscript𝐢2C^{2}italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT functional), the mapping Ο‰πœ”\omegaitalic_Ο‰ is of C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT class, allowing us to work directly on the manifold β„³β„³\mathcal{M}caligraphic_M. For further details, we refer the reader to the remarkable monograph by Szulkin and Weth [15]. Additionally, some excellent sources include [2, 9] and the references therein.

1.2. Localization

In addition to establishing the existence of a critical point, one may also ask for its localization or, more generally, aim to identify a critical point within a specific subset. A localization result, particularly with respect to an energetic norm, may be of interest because, for example, when modeling a real process, the parameters of the nonlinear term can be adjusted to obtain a solution whose energy lies within predefined limits. Another motivation for localization arises in nonlinear problems, where the uniqueness of solutions may fail. In such cases, it is often important to focus the analysis on a specific solution, which requires localization.

In general, to achieve localization results for nonlinear problems, one typically employs a combination of inequalities, such as Poincaré’s and Harnack’s inequalities, alongside abstract localization techniques, e.g., Krasnoselskii-type methods or approaches that use the properties of topological degree.

One of the earliest results on the localization of critical points can be found in Schechter [20, Chapter 5.3], which provides sufficient conditions to ensure the existence of a minimizing sequence of a functional within a given ball. Under the assumption of the Palais-Smale condition, this minimizing sequence has a convergent subsequence whose limit is a critical point.

Theorem 1.1 (Schechter’s Theorem).

Assume E𝐸Eitalic_E is bounded from below on BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT (R>0𝑅0R>0italic_R > 0) and the following Leray-Schauder boundary condition holds

E′⁒(u)+μ⁒uβ‰ 0⁒ for all β’uβˆˆβˆ‚BR⁒ and β’ΞΌ>0.superscriptπΈβ€²π‘’πœ‡π‘’0 for all π‘’subscript𝐡𝑅 and πœ‡0E^{\prime}(u)+\mu u\neq 0\,\,\text{ for all }u\in\partial B_{R}\text{ and }\mu% >0.italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) + italic_ΞΌ italic_u β‰  0 for all italic_u ∈ βˆ‚ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT and italic_ΞΌ > 0 .

Then, there exists a sequence {un}βŠ‚BRsubscript𝑒𝑛subscript𝐡𝑅\{u_{n}\}\subset B_{R}{ italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } βŠ‚ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT such that

E⁒(un)β†’infBRE and E′⁒(un)β†’0.E⁒(un)β†’infBRE and E′⁒(un)β†’0\text{$E(u_{n})\to\inf_{B_{R}}E$ \quad and \quad$E^{\prime}(u_{n})\to 0$}.italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ roman_inf start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ 0 .

In [17, Theorem 3.1], a result analogous to Schecter’s theorem was established for the set BRβˆ–BrΒ―Β―subscript𝐡𝑅subscriptπ΅π‘Ÿ\overline{B_{R}\setminus B_{r}}overΒ― start_ARG italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT βˆ– italic_B start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG (0<r<R0π‘Ÿπ‘…0<r<R0 < italic_r < italic_R), while in [16, Theorem 2.3], a similar result was obtained for the conical set

Kr,R={u∈K:r≀|u|1⁒ and β’|u|2≀R}(0<r<R<∞),subscriptπΎπ‘Ÿπ‘…conditional-setπ‘’πΎπ‘Ÿsubscript𝑒1 and subscript𝑒2𝑅0π‘Ÿπ‘…K_{r,R}=\left\{u\in K\,:\,r\leq|u|_{1}\text{ and }|u|_{2}\leq R\right\}\quad(0% <r<R<\infty),italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT = { italic_u ∈ italic_K : italic_r ≀ | italic_u | start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and | italic_u | start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≀ italic_R } ( 0 < italic_r < italic_R < ∞ ) ,

where |β‹…|i|\cdot|_{i}| β‹… | start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (i=1,2𝑖12i=1,2italic_i = 1 , 2) are two norms on H𝐻Hitalic_H, and K𝐾Kitalic_K is a wedge, i.e., K𝐾Kitalic_K is a closed convex subset of H𝐻Hitalic_H satisfying λ⁒KβŠ‚Kπœ†πΎπΎ\lambda K\subset Kitalic_Ξ» italic_K βŠ‚ italic_K for all Ξ»>0πœ†0\lambda>0italic_Ξ» > 0. Further results on the localization of critical points can be found in [1, 11, 19, 10].

1.3. Ekeland variational principle

The proof of our main result is essentially based on the weak form of Ekeland’s variational principle (see, e.g., [7, 8]).

Lemma 1.2 (Ekeland Principle - weak form).

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete metric space and let Ξ¦:X→ℝβˆͺ{+∞}:Φ→𝑋ℝ\Phi:X\rightarrow\mathbb{R}\cup\{+\infty\}roman_Ξ¦ : italic_X β†’ blackboard_R βˆͺ { + ∞ } be a lower semicontinuous and bounded from below functional. Then, given any Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0, there exists uΡ∈Xsubscriptπ‘’πœ€π‘‹u_{\varepsilon}\in Xitalic_u start_POSTSUBSCRIPT italic_Ξ΅ end_POSTSUBSCRIPT ∈ italic_X such that

Φ⁒(uΞ΅)≀infXΞ¦+Ξ΅,Ξ¦subscriptπ‘’πœ€subscriptinfimumπ‘‹Ξ¦πœ€\Phi(u_{\varepsilon})\leq\inf_{X}\Phi+\varepsilon,roman_Ξ¦ ( italic_u start_POSTSUBSCRIPT italic_Ξ΅ end_POSTSUBSCRIPT ) ≀ roman_inf start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT roman_Ξ¦ + italic_Ξ΅ ,

and

Φ⁒(uΞ΅)≀Φ⁒(u)+Ρ⁒d⁒(u,uΞ΅),Ξ¦subscriptπ‘’πœ€Ξ¦π‘’πœ€π‘‘π‘’subscriptπ‘’πœ€\Phi(u_{\varepsilon})\leq\Phi(u)+\varepsilon d(u,u_{\varepsilon}),roman_Ξ¦ ( italic_u start_POSTSUBSCRIPT italic_Ξ΅ end_POSTSUBSCRIPT ) ≀ roman_Ξ¦ ( italic_u ) + italic_Ξ΅ italic_d ( italic_u , italic_u start_POSTSUBSCRIPT italic_Ξ΅ end_POSTSUBSCRIPT ) ,

for all u∈X.𝑒𝑋u\in X.italic_u ∈ italic_X .

1.4. Implicit function theorem

In our analysis, we employ the following variant of the implicit function theorem. For another use of the implicit function theorem in the context of Nehari manifolds, see [3, Proposition 4.2].

Theorem 1.3.

Let A,B𝐴𝐡A,Bitalic_A , italic_B be open sets in ℝℝ\mathbb{R}blackboard_R, and let x0∈Int β’Asubscriptπ‘₯0Int π΄x_{0}\in\text{Int }Aitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ Int italic_A, y0∈Int β’Bsubscript𝑦0Int π΅y_{0}\in\text{Int }Bitalic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ Int italic_B. Suppose that ℱ⁒(y,x):BΓ—A→ℝ:ℱ𝑦π‘₯→𝐡𝐴ℝ\mathcal{F}(y,x)\colon B\times A\to\mathbb{R}caligraphic_F ( italic_y , italic_x ) : italic_B Γ— italic_A β†’ blackboard_R is a function that satisfies the following conditions:

  1. (1)

    ℱ⁒(y0,x0)=0β„±subscript𝑦0subscriptπ‘₯00\mathcal{F}(y_{0},x_{0})=0caligraphic_F ( italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0;

  2. (2)

    The function ℱ⁒(y,x)ℱ𝑦π‘₯\mathcal{F}(y,x)caligraphic_F ( italic_y , italic_x ) is continuously differentiable with respect to both variables in a neighborhood of (y0,x0)subscript𝑦0subscriptπ‘₯0(y_{0},x_{0})( italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT );

  3. (3)

    β„±y⁒(y0,x0)β‰ 0subscriptℱ𝑦subscript𝑦0subscriptπ‘₯00\mathcal{F}_{y}(y_{0},x_{0})\neq 0caligraphic_F start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) β‰  0;

Then:

  1. (a)

    There exist neighborhoods U0βŠ‚Asubscriptπ‘ˆ0𝐴U_{0}\subset Aitalic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT βŠ‚ italic_A of x0subscriptπ‘₯0x_{0}italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and V0βŠ‚Bsubscript𝑉0𝐡V_{0}\subset Bitalic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT βŠ‚ italic_B of y0subscript𝑦0y_{0}italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, as well as a unique mapping y=ξ⁒(x):U0β†’V0:π‘¦πœ‰π‘₯β†’subscriptπ‘ˆ0subscript𝑉0y=\xi(x)\colon U_{0}\to V_{0}italic_y = italic_ΞΎ ( italic_x ) : italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT β†’ italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that:

    ξ⁒(x0)=y0andℱ⁒(ξ⁒(x),x)=0for all β’x∈U0;formulae-sequenceπœ‰subscriptπ‘₯0subscript𝑦0andformulae-sequenceβ„±πœ‰π‘₯π‘₯0for all π‘₯subscriptπ‘ˆ0\xi(x_{0})=y_{0}\quad\text{and}\quad\mathcal{F}(\xi(x),x)=0\quad\text{for all % }x\in U_{0};italic_ΞΎ ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and caligraphic_F ( italic_ΞΎ ( italic_x ) , italic_x ) = 0 for all italic_x ∈ italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ;
  2. (b)

    The mapping ΞΎπœ‰\xiitalic_ΞΎ is continuously differentiable on U0subscriptπ‘ˆ0U_{0}italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and moreover satisfies

    ξ′⁒(x)=βˆ’β„±x⁒(ξ⁒(x),x)β„±y⁒(ξ⁒(x),x)⁒ for all β’x∈U0.superscriptπœ‰β€²π‘₯subscriptβ„±π‘₯πœ‰π‘₯π‘₯subscriptβ„±π‘¦πœ‰π‘₯π‘₯ for all π‘₯subscriptπ‘ˆ0\xi^{\prime}(x)=-\frac{\mathcal{F}_{x}(\xi(x),x)}{\mathcal{F}_{y}(\xi(x),x)}\,% \,\text{ for all }x\in U_{0}.italic_ΞΎ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) = - divide start_ARG caligraphic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_ΞΎ ( italic_x ) , italic_x ) end_ARG start_ARG caligraphic_F start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_ΞΎ ( italic_x ) , italic_x ) end_ARG for all italic_x ∈ italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .

2. Main Result

Let E:H→ℝ:𝐸→𝐻ℝE:H\to\mathbb{R}italic_E : italic_H β†’ blackboard_R be a twice FrΓ©chet differentiable functional, and let K𝐾Kitalic_K be a nondegenerate cone in H𝐻Hitalic_H, i.e.,

Kβˆ–{0}β‰ βˆ…πΎ0K\setminus\left\{0\right\}\neq\emptysetitalic_K βˆ– { 0 } β‰  βˆ…, ℝ+⁒KβŠ‚Ksubscriptℝ𝐾𝐾\mathbb{R}_{+}K\subset Kblackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_K βŠ‚ italic_K and K+KβŠ‚K𝐾𝐾𝐾K+K\subset Kitalic_K + italic_K βŠ‚ italic_K.

The second derivative of E𝐸Eitalic_E at xπ‘₯xitalic_x in the direction y𝑦yitalic_y on the point z𝑧zitalic_z is (see, e.g., [12]):

E′′⁒(x)⁒(z,y)=limtβ†˜01t⁒(E′⁒(x+t⁒y)βˆ’E′⁒(x),z)H.superscript𝐸′′π‘₯𝑧𝑦subscriptβ†˜π‘‘01𝑑subscriptsuperscript𝐸′π‘₯𝑑𝑦superscript𝐸′π‘₯𝑧𝐻E^{\prime\prime}(x)(z,y)=\lim_{t\searrow 0}\frac{1}{t}\left(E^{\prime}(x+ty)-E% ^{\prime}(x),z\right)_{H}.italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_x ) ( italic_z , italic_y ) = roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_t end_ARG ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x + italic_t italic_y ) - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) , italic_z ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .

Throughout this paper, we assume that the operator N:Hβ†’H:𝑁→𝐻𝐻N\colon H\to Hitalic_N : italic_H β†’ italic_H given by

N⁒(u)=uβˆ’E′⁒(u)⁒ for all β’u∈H,𝑁𝑒𝑒superscript𝐸′𝑒 for all π‘’𝐻N(u)=u-E^{\prime}(u)\,\,\text{ for all }u\in H,italic_N ( italic_u ) = italic_u - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) for all italic_u ∈ italic_H ,

is invariant over K𝐾Kitalic_K, i.e., N⁒(K)βŠ‚K𝑁𝐾𝐾N(K)\subset Kitalic_N ( italic_K ) βŠ‚ italic_K (recall that H𝐻Hitalic_H is identified with its duals, so Eβ€²:Hβ†’H:superscript𝐸′→𝐻𝐻E^{\prime}:H\to Hitalic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT : italic_H β†’ italic_H).

Our aim is to determine a critical point of E𝐸Eitalic_E within the conical set

Kr,R={u∈Kβˆ–{0}:r≀|u|H≀R},subscriptπΎπ‘Ÿπ‘…conditional-set𝑒𝐾0π‘Ÿsubscript𝑒𝐻𝑅K_{r,R}=\left\{u\in K\setminus\{0\}\,:\,r\leq|u|_{H}\leq R\right\},italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT = { italic_u ∈ italic_K βˆ– { 0 } : italic_r ≀ | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≀ italic_R } ,

where 0<r<R<∞0π‘Ÿπ‘…0<r<R<\infty0 < italic_r < italic_R < ∞ are some given real numbers. The main assumption we consider on the functional E𝐸Eitalic_E is the following:

(h1)::

For each u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }, there exists a unique s⁒(u)∈(r|u|H,R|u|H)π‘ π‘’π‘Ÿsubscript𝑒𝐻𝑅subscript𝑒𝐻s(u)\in\left(\frac{r}{|u|_{H}},\frac{R}{|u|_{H}}\right)italic_s ( italic_u ) ∈ ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) such that the mapping

τ↦(E′⁒(τ⁒u),u)H(Ο„>0),maps-to𝜏subscriptsuperscriptπΈβ€²πœπ‘’π‘’π»πœ0\tau\mapsto\left(E^{\prime}(\tau u),u\right)_{H}\quad(\tau>0),italic_Ο„ ↦ ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_Ο„ > 0 ) ,

is strictly positive on [r|u|H,s⁒(u))π‘Ÿsubscript𝑒𝐻𝑠𝑒\left[\frac{r}{|u|_{H}},s(u)\right)[ divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ) and strictly negative on (s⁒(u),R|u|H]𝑠𝑒𝑅subscript𝑒𝐻\left(s(u),\frac{R}{|u|_{H}}\right]( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ].

From this, it follows that the mapping Ξ±u⁒(Ο„)=E⁒(τ⁒u)subscriptπ›Όπ‘’πœπΈπœπ‘’\alpha_{u}(\tau)=E(\tau u)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Ο„ ) = italic_E ( italic_Ο„ italic_u ), for some u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }, has a unique critical point within the interval (r|u|H,R|u|H)π‘Ÿsubscript𝑒𝐻𝑅subscript𝑒𝐻\left(\frac{r}{|u|_{H}},\frac{R}{|u|_{H}}\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) at Ο„=s⁒(u)πœπ‘ π‘’\tau=s(u)italic_Ο„ = italic_s ( italic_u ), and is concave at this point. Thus, given the smoothness of the functional E𝐸Eitalic_E, these properties are characterized by

Ξ±u′⁒(s⁒(u))=0andΞ±u′′⁒(s⁒(u))≀0.formulae-sequencesuperscriptsubscript𝛼𝑒′𝑠𝑒0andsuperscriptsubscript𝛼𝑒′′𝑠𝑒0\alpha_{u}^{\prime}(s(u))=0\quad\text{and}\quad\alpha_{u}^{\prime\prime}(s(u))% \leq 0.italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ( italic_u ) ) = 0 and italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_s ( italic_u ) ) ≀ 0 .

Moreover, we see that s⁒(k⁒u)=s⁒(u)kπ‘ π‘˜π‘’π‘ π‘’π‘˜s(ku)=\frac{s(u)}{k}italic_s ( italic_k italic_u ) = divide start_ARG italic_s ( italic_u ) end_ARG start_ARG italic_k end_ARG for all k>0π‘˜0k>0italic_k > 0.

Following the method of Nehari manifold, we look for critical points of E𝐸Eitalic_E on Kr,RsubscriptπΎπ‘Ÿπ‘…K_{r,R}italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT within the conical shell

𝒩~={u∈Kr,R:(E′⁒(u),u)H=0}.~𝒩conditional-set𝑒subscriptπΎπ‘Ÿπ‘…subscriptsuperscript𝐸′𝑒𝑒𝐻0\tilde{\mathcal{N}}=\left\{u\in K_{r,R}\,:\,\left(E^{\prime}(u),u\right)_{H}=0% \right\}.over~ start_ARG caligraphic_N end_ARG = { italic_u ∈ italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT : ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 } .

Further, let 𝒩𝒩\mathcal{N}caligraphic_N be the set

𝒩={s⁒(u)⁒u:u∈Kβˆ–{0}},𝒩conditional-set𝑠𝑒𝑒𝑒𝐾0\mathcal{N}=\left\{s(u)u\,:\,u\in K\setminus\{0\}\right\},caligraphic_N = { italic_s ( italic_u ) italic_u : italic_u ∈ italic_K βˆ– { 0 } } ,

and observe that 𝒩=𝒩~𝒩~𝒩\mathcal{N}=\tilde{\mathcal{N}}caligraphic_N = over~ start_ARG caligraphic_N end_ARG. To see this, from (h1) one clearly has π’©βŠ‚π’©~.𝒩~𝒩\mathcal{N}\subset\tilde{\mathcal{N}}.caligraphic_N βŠ‚ over~ start_ARG caligraphic_N end_ARG . Conversely, if (E′⁒(u),u)H=0subscriptsuperscript𝐸′𝑒𝑒𝐻0(E^{\prime}(u),u)_{H}=0( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_u ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 for some u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }, then s⁒(u)=1𝑠𝑒1s(u)=1italic_s ( italic_u ) = 1, which implies uβˆˆπ’©π‘’π’©u\in\mathcal{N}italic_u ∈ caligraphic_N.

The main result of this paper is presented in Theorem 2.2 below, where we establish an analogue of the results presented in [16], obtained using the method of Nehari manifold.

Remark 2.1.

We mention that in [9], the existence of a ground state for a C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT functional was established over an open cone in Banach spaces. However, our result do not require this condition, and in applications, the cones often have empty interior (as the one from Section 3).

Theorem 2.2.

Assume condition (h1) holds. In addition, we suppose that

(h2)::

The functional E𝐸Eitalic_E is bounded from below on 𝒩𝒩\mathcal{N}caligraphic_N.

(h3)::

The second FrΓ©chet derivative E′′⁒(u)superscript𝐸′′𝑒E^{\prime\prime}(u)italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) is bounded uniformly with respect to uβˆˆπ’©π‘’π’©u\in\mathcal{N}italic_u ∈ caligraphic_N, i.e., there exists C1>0subscript𝐢10C_{1}>0italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > 0 such that

supw1,w2∈H|w1|H=|w2|H=1|E′′⁒(u)⁒(w1,w2)|≀C1⁒ for all β’uβˆˆπ’©.subscriptsupremumsubscript𝑀1subscript𝑀2𝐻subscriptsubscript𝑀1𝐻subscriptsubscript𝑀2𝐻1superscript𝐸′′𝑒subscript𝑀1subscript𝑀2subscript𝐢1 for all π‘’𝒩\sup_{\begin{subarray}{c}w_{1},w_{2}\in H\\ |w_{1}|_{H}=|w_{2}|_{H}=1\end{subarray}}\left|E^{\prime\prime}(u)(w_{1},w_{2})% \right|\leq C_{1}\,\,\text{ for all }u\in\mathcal{N}.roman_sup start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_H end_CELL end_ROW start_ROW start_CELL | italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = | italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 1 end_CELL end_ROW end_ARG end_POSTSUBSCRIPT | italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | ≀ italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT for all italic_u ∈ caligraphic_N .
(h4)::

There is a positive constant C2>0subscript𝐢20C_{2}>0italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > 0 satisfying

|E′′⁒(u)⁒(u,u)|β‰₯C2>0⁒ for all β’uβˆˆπ’©.superscript𝐸′′𝑒𝑒𝑒subscript𝐢20 for all π‘’𝒩|E^{\prime\prime}(u)(u,u)|\geq C_{2}>0\,\,\text{ for all }u\in\mathcal{N}.| italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) | β‰₯ italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > 0 for all italic_u ∈ caligraphic_N .

Then, there exists a sequence {un}βŠ‚π’©subscript𝑒𝑛𝒩\{u_{n}\}\subset\mathcal{N}{ italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } βŠ‚ caligraphic_N such that

E⁒(un)β†’inf𝒩E and E′⁒(un)β†’0.formulae-sequence→𝐸subscript𝑒𝑛subscriptinfimum𝒩𝐸 and β†’superscript𝐸′subscript𝑒𝑛0E(u_{n})\to\inf_{\mathcal{N}}E\quad\text{ and }\quad E^{\prime}(u_{n})\to 0.italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ 0 .

The following auxiliary result will be of great importance in proving Theorem 2.2.

Lemma 2.3.

Let uβˆˆπ’©π‘’π’©u\in\mathcal{N}italic_u ∈ caligraphic_N, v∈H𝑣𝐻v\in Hitalic_v ∈ italic_H and let Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0 be such that

u+t⁒v∈K⁒ for all t∈[0,Ξ΅]𝑒𝑑𝑣𝐾 for all t∈[0,Ξ΅]u+tv\in K\,\,\text{ for all $t\in[0,\varepsilon]$. }italic_u + italic_t italic_v ∈ italic_K for all italic_t ∈ [ 0 , italic_Ξ΅ ] .

If assumption (h4) holds true, then the limit

limtβ†˜0s⁒(u+t⁒v)βˆ’s⁒(u)tsubscriptβ†˜π‘‘0𝑠𝑒𝑑𝑣𝑠𝑒𝑑\lim_{t\searrow 0}\frac{s(u+tv)-s(u)}{t}roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG italic_s ( italic_u + italic_t italic_v ) - italic_s ( italic_u ) end_ARG start_ARG italic_t end_ARG

exists and has the value

βˆ’E′′⁒(u)⁒(u,v)+(E′⁒(u),v)HE′′⁒(u)⁒(u,u).superscript𝐸′′𝑒𝑒𝑣subscriptsuperscript𝐸′𝑒𝑣𝐻superscript𝐸′′𝑒𝑒𝑒-\frac{E^{\prime\prime}(u)(u,v)+(E^{\prime}(u),v)_{H}}{E^{\prime\prime}(u)(u,u% )}.- divide start_ARG italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_v ) + ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) end_ARG .
Proof.

Let us consider the mapping g:(0,∞)Γ—(βˆ’Ξ΅,Ξ΅)→ℝ:𝑔→0πœ€πœ€β„g\colon(0,\infty)\times(-\varepsilon,\varepsilon)\to\mathbb{R}italic_g : ( 0 , ∞ ) Γ— ( - italic_Ξ΅ , italic_Ξ΅ ) β†’ blackboard_R given by

g⁒(Ο„,t)=(E′⁒(τ⁒(u+t⁒v)),u+t⁒v)H.π‘”πœπ‘‘subscriptsuperscriptπΈβ€²πœπ‘’π‘‘π‘£π‘’π‘‘π‘£π»g(\tau,t)=\left(E^{\prime}(\tau(u+tv)),u+tv\right)_{H}.italic_g ( italic_Ο„ , italic_t ) = ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .

Note that g𝑔gitalic_g is continuously differentiable, with partial derivatives

(2.1) gτ′⁒(Ο„,t)subscriptsuperscriptπ‘”β€²πœπœπ‘‘\displaystyle g^{\prime}_{\tau}(\tau,t)italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ( italic_Ο„ , italic_t ) =limΞ΄β†˜01δ⁒(E′⁒(τ⁒(u+t⁒v)+δ⁒(u+t⁒v))βˆ’E′⁒(τ⁒(u+t⁒v)),u+t⁒v)Habsentsubscriptβ†˜π›Ώ01𝛿subscriptsuperscriptπΈβ€²πœπ‘’π‘‘π‘£π›Ώπ‘’π‘‘π‘£superscriptπΈβ€²πœπ‘’π‘‘π‘£π‘’π‘‘π‘£π»\displaystyle=\lim_{\delta\searrow 0}\frac{1}{\delta}\left(E^{\prime}(\tau(u+% tv)+\delta(u+tv))-E^{\prime}(\tau(u+tv)),u+tv\right)_{H}= roman_lim start_POSTSUBSCRIPT italic_Ξ΄ β†˜ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) + italic_Ξ΄ ( italic_u + italic_t italic_v ) ) - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
=E′′⁒(τ⁒(u+t⁒v))⁒(u+t⁒v,u+t⁒v),absentsuperscriptπΈβ€²β€²πœπ‘’π‘‘π‘£π‘’π‘‘π‘£π‘’π‘‘π‘£\displaystyle=E^{\prime\prime}(\tau(u+tv))(u+tv,u+tv),= italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) ) ( italic_u + italic_t italic_v , italic_u + italic_t italic_v ) ,

and

(2.2) gt′⁒(Ο„,t)subscriptsuperscriptπ‘”β€²π‘‘πœπ‘‘\displaystyle g^{\prime}_{t}(\tau,t)italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_Ο„ , italic_t ) =limΞ΄β†˜0(1δ⁒(E′⁒(τ⁒(u+t⁒v)+δ⁒τ⁒v),u+t⁒v+δ⁒v)Hβˆ’(E′⁒(τ⁒(u+t⁒v)),u+t⁒v)H)absentsubscriptβ†˜π›Ώ01𝛿subscriptsuperscriptπΈβ€²πœπ‘’π‘‘π‘£π›Ώπœπ‘£π‘’π‘‘π‘£π›Ώπ‘£π»subscriptsuperscriptπΈβ€²πœπ‘’π‘‘π‘£π‘’π‘‘π‘£π»\displaystyle=\lim_{\delta\searrow 0}\left(\frac{1}{\delta}\left(E^{\prime}(% \tau(u+tv)+\delta\tau v),u+tv+\delta v\right)_{H}-\left(E^{\prime}(\tau(u+tv))% ,u+tv\right)_{H}\right)= roman_lim start_POSTSUBSCRIPT italic_Ξ΄ β†˜ 0 end_POSTSUBSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) + italic_Ξ΄ italic_Ο„ italic_v ) , italic_u + italic_t italic_v + italic_Ξ΄ italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT - ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT )
=(Eβ€²(Ο„(u+tv),v)H+limΞ΄β†˜01Ξ΄(Eβ€²(Ο„(u+tv)+δτv)βˆ’Eβ€²(Ο„(u+tv)),u+tv)H\displaystyle=\left(E^{\prime}(\tau(u+tv),v\right)_{H}+\lim_{\delta\searrow 0}% \frac{1}{\delta}\left(E^{\prime}(\tau(u+tv)+\delta\tau v)-E^{\prime}(\tau(u+tv% )),u+tv\right)_{H}= ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + roman_lim start_POSTSUBSCRIPT italic_Ξ΄ β†˜ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) + italic_Ξ΄ italic_Ο„ italic_v ) - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
=(Eβ€²(Ο„(u+tv),v)H+Eβ€²β€²(Ο„(u+tv))(u+tv,Ο„v).\displaystyle=\left(E^{\prime}(\tau(u+tv),v\right)_{H}+E^{\prime\prime}(\tau(u% +tv))(u+tv,\tau v).= ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_Ο„ ( italic_u + italic_t italic_v ) ) ( italic_u + italic_t italic_v , italic_Ο„ italic_v ) .

Additionally, we have

g⁒(1,0)=0 and gτ′⁒(1,0)<0.formulae-sequence𝑔100 and subscriptsuperscriptπ‘”β€²πœ100g(1,0)=0\quad\text{ and }\quad g^{\prime}_{\tau}(1,0)<0.italic_g ( 1 , 0 ) = 0 and italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ( 1 , 0 ) < 0 .

Indeed, the first relation follows immediately since s⁒(u)=1𝑠𝑒1s(u)=1italic_s ( italic_u ) = 1, while the second one follows from (2.1) and (h4).

Employing the implicit function theorem, there exists Ξ΅0>0subscriptπœ€00\varepsilon_{0}>0italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 and a unique continuously differentiable mapping ΞΎ:(βˆ’Ξ΅0,Ξ΅0)→ℝ:πœ‰β†’subscriptπœ€0subscriptπœ€0ℝ\xi\colon(-\varepsilon_{0},\varepsilon_{0})\to\mathbb{R}italic_ΞΎ : ( - italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) β†’ blackboard_R such that ξ⁒(0)=1πœ‰01\xi(0)=1italic_ΞΎ ( 0 ) = 1,

g⁒(ξ⁒(t),t)=0andξ′⁒(t)=βˆ’gt′⁒(ξ⁒(t),t)gτ′⁒(ξ⁒(t),t)⁒ for all β’t∈(βˆ’Ξ΅0,Ξ΅0).formulae-sequenceπ‘”πœ‰π‘‘π‘‘0andsuperscriptπœ‰β€²π‘‘subscriptsuperscriptπ‘”β€²π‘‘πœ‰π‘‘π‘‘subscriptsuperscriptπ‘”β€²πœπœ‰π‘‘π‘‘ for all π‘‘subscriptπœ€0subscriptπœ€0g(\xi(t),t)=0\quad\text{and}\quad\xi^{\prime}(t)=-\frac{g^{\prime}_{t}(\xi(t),% t)}{g^{\prime}_{\tau}(\xi(t),t)}\,\,\text{ for all }t\in(-\varepsilon_{0},% \varepsilon_{0}).italic_g ( italic_ΞΎ ( italic_t ) , italic_t ) = 0 and italic_ΞΎ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) = - divide start_ARG italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_ΞΎ ( italic_t ) , italic_t ) end_ARG start_ARG italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ( italic_ΞΎ ( italic_t ) , italic_t ) end_ARG for all italic_t ∈ ( - italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

On the other hand, for each t∈[0,Ξ΅]𝑑0πœ€t\in[0,\varepsilon]italic_t ∈ [ 0 , italic_Ξ΅ ], since u+t⁒v∈K𝑒𝑑𝑣𝐾u+tv\in Kitalic_u + italic_t italic_v ∈ italic_K, assumption (h⁒1)β„Ž1(h1)( italic_h 1 ) guarantees the existence of a unique value s⁒(u+t⁒v)𝑠𝑒𝑑𝑣s(u+tv)italic_s ( italic_u + italic_t italic_v ) within the interval (r|u+t⁒v|H,R|u+t⁒v|H)π‘Ÿsubscript𝑒𝑑𝑣𝐻𝑅subscript𝑒𝑑𝑣𝐻\left(\frac{r}{|u+tv|_{H}},\frac{R}{|u+tv|_{H}}\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) satisfying

(E′⁒(s⁒(u+t⁒v)⁒(u+t⁒v)),u+t⁒v)H=0, i.e., g⁒(s⁒(u+t⁒v),t)=0.formulae-sequencesubscriptsuperscript𝐸′𝑠𝑒𝑑𝑣𝑒𝑑𝑣𝑒𝑑𝑣𝐻0 i.e., π‘”𝑠𝑒𝑑𝑣𝑑0(E^{\prime}(s(u+tv)(u+tv)),u+tv)_{H}=0,\quad\text{ i.e., }\quad g(s(u+tv),t)=0.( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ( italic_u + italic_t italic_v ) ( italic_u + italic_t italic_v ) ) , italic_u + italic_t italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 , i.e., italic_g ( italic_s ( italic_u + italic_t italic_v ) , italic_t ) = 0 .

Since ΞΎπœ‰\xiitalic_ΞΎ is smooth and ξ⁒(0)=1∈(r|u|H,R|u|H)πœ‰01π‘Ÿsubscript𝑒𝐻𝑅subscript𝑒𝐻\xi(0)=1\in\left(\frac{r}{|u|_{H}},\frac{R}{|u|_{H}}\right)italic_ΞΎ ( 0 ) = 1 ∈ ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ), there exists Ξ΅1>0subscriptπœ€10\varepsilon_{1}>0italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > 0 such that

ξ⁒(t)∈(r|u+t⁒v|H,R|u+t⁒v|H)⁒ for all t∈(βˆ’Ξ΅1,Ξ΅1)πœ‰π‘‘π‘Ÿsubscript𝑒𝑑𝑣𝐻𝑅subscript𝑒𝑑𝑣𝐻 for all t∈(βˆ’Ξ΅1,Ξ΅1)\xi(t)\in\left(\frac{r}{|u+tv|_{H}},\frac{R}{|u+tv|_{H}}\right)\,\,\text{ for % all $t\in(-\varepsilon_{1},\varepsilon_{1})$. }italic_ΞΎ ( italic_t ) ∈ ( divide start_ARG italic_r end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u + italic_t italic_v | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ) for all italic_t ∈ ( - italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

Consequently, we have

ξ⁒(t)=s⁒(u+t⁒v)⁒ for all β’t∈[0,Ξ΅2),πœ‰π‘‘π‘ π‘’π‘‘π‘£ for all π‘‘0subscriptπœ€2\xi(t)=s(u+tv)\,\,\text{ for all }t\in[0,\varepsilon_{2}),italic_ΞΎ ( italic_t ) = italic_s ( italic_u + italic_t italic_v ) for all italic_t ∈ [ 0 , italic_Ξ΅ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ,

where Ξ΅2=min⁑{Ξ΅,Ξ΅0,Ξ΅1}subscriptπœ€2πœ€subscriptπœ€0subscriptπœ€1\varepsilon_{2}=\min\{\varepsilon,\varepsilon_{0},\varepsilon_{1}\}italic_Ξ΅ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = roman_min { italic_Ξ΅ , italic_Ξ΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT }. Whence

limtβ†˜0s⁒(u+t⁒v)βˆ’s⁒(u)t=ξ′⁒(0)=βˆ’gt′⁒(1,0)gτ′⁒(1,0).subscriptβ†˜π‘‘0𝑠𝑒𝑑𝑣𝑠𝑒𝑑superscriptπœ‰β€²0subscriptsuperscript𝑔′𝑑10subscriptsuperscriptπ‘”β€²πœ10\lim_{t\searrow 0}\frac{s(u+tv)-s(u)}{t}=\xi^{\prime}(0)=-\frac{g^{\prime}_{t}% (1,0)}{g^{\prime}_{\tau}(1,0)}.roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG italic_s ( italic_u + italic_t italic_v ) - italic_s ( italic_u ) end_ARG start_ARG italic_t end_ARG = italic_ΞΎ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = - divide start_ARG italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( 1 , 0 ) end_ARG start_ARG italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ( 1 , 0 ) end_ARG .

Now, taking Ο„=1𝜏1\tau=1italic_Ο„ = 1 and t=0𝑑0t=0italic_t = 0 in (2.1) and (2.2), we derive the conclusion

limtβ†˜0s⁒(u+t⁒v)βˆ’s⁒(u)t=βˆ’E′′⁒(u)⁒(u,v)+(E′⁒(u),v)HE′′⁒(u)⁒(u,u).subscriptβ†˜π‘‘0𝑠𝑒𝑑𝑣𝑠𝑒𝑑superscript𝐸′′𝑒𝑒𝑣subscriptsuperscript𝐸′𝑒𝑣𝐻superscript𝐸′′𝑒𝑒𝑒\lim_{t\searrow 0}\frac{s(u+tv)-s(u)}{t}=-\frac{E^{\prime\prime}(u)(u,v)+(E^{% \prime}(u),v)_{H}}{E^{\prime\prime}(u)(u,u)}.roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG italic_s ( italic_u + italic_t italic_v ) - italic_s ( italic_u ) end_ARG start_ARG italic_t end_ARG = - divide start_ARG italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_v ) + ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) , italic_v ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) end_ARG .

∎

Proof of Theorem 2.2.

From assumption (h2), E𝐸Eitalic_E is bounded from below on 𝒩𝒩\mathcal{N}caligraphic_N. Moreover, since 𝒩𝒩\mathcal{N}caligraphic_N is closed, we may apply Ekeland’s variational principle to the functional E𝐸Eitalic_E on the set 𝒩𝒩\mathcal{N}caligraphic_N. This guarantees the existence of a sequence {un}βŠ‚π’©subscript𝑒𝑛𝒩\{u_{n}\}\subset\mathcal{N}{ italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } βŠ‚ caligraphic_N such that

(2.3) E⁒(un)𝐸subscript𝑒𝑛\displaystyle E(u_{n})italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≀inf𝒩E+1n,absentsubscriptinfimum𝒩𝐸1𝑛\displaystyle\leq\inf_{\mathcal{N}}E+\frac{1}{n},≀ roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG ,
(2.4) E⁒(un)𝐸subscript𝑒𝑛\displaystyle E(u_{n})italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≀E⁒(u)+1n⁒|unβˆ’u|H⁒for all β’uβˆˆπ’©.absent𝐸𝑒1𝑛subscriptsubscript𝑒𝑛𝑒𝐻for all π‘’𝒩\displaystyle\leq E(u)+\frac{1}{n}|u_{n}-u|_{H}\,\,\text{for all }u\in\mathcal% {N}.≀ italic_E ( italic_u ) + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_u | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT for all italic_u ∈ caligraphic_N .

For each nβˆˆβ„•π‘›β„•n\in\mathbb{N}italic_n ∈ blackboard_N, consider the mapping Ο†:ℝ→H:πœ‘β†’β„π»\varphi\colon\mathbb{R}\to Hitalic_Ο† : blackboard_R β†’ italic_H given by

φ⁒(t)=unβˆ’t⁒E′⁒(un).πœ‘π‘‘subscript𝑒𝑛𝑑superscript𝐸′subscript𝑒𝑛\varphi(t)=u_{n}-tE^{\prime}(u_{n}).italic_Ο† ( italic_t ) = italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) .

Clearly, Ο†πœ‘\varphiitalic_Ο† is continuously differentiable with φ′⁒(0)=βˆ’E′⁒(un)superscriptπœ‘β€²0superscript𝐸′subscript𝑒𝑛\varphi^{\prime}(0)=-E^{\prime}(u_{n})italic_Ο† start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ). Moreover, we have φ⁒(t)∈Kπœ‘π‘‘πΎ\varphi(t)\in Kitalic_Ο† ( italic_t ) ∈ italic_K for all t∈[0,1]𝑑01t\in[0,1]italic_t ∈ [ 0 , 1 ]. Indeed, since both un∈Ksubscript𝑒𝑛𝐾u_{n}\in Kitalic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_K and N⁒(un)∈K𝑁subscript𝑒𝑛𝐾N(u_{n})\in Kitalic_N ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_K, one has

unβˆ’t⁒E′⁒(un)=(1βˆ’t)⁒un+t⁒(unβˆ’E′⁒(un))=(1βˆ’t)⁒un+t⁒N⁒(un)∈K.subscript𝑒𝑛𝑑superscript𝐸′subscript𝑒𝑛1𝑑subscript𝑒𝑛𝑑subscript𝑒𝑛superscript𝐸′subscript𝑒𝑛1𝑑subscript𝑒𝑛𝑑𝑁subscript𝑒𝑛𝐾u_{n}-tE^{\prime}(u_{n})=(1-t)u_{n}+t\left(u_{n}-E^{\prime}(u_{n})\right)=(1-t% )u_{n}+tN(u_{n})\in K.italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_t italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = ( 1 - italic_t ) italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_t ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ( 1 - italic_t ) italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_t italic_N ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_K .

Next, we define

ψ⁒(t)=s⁒(φ⁒(t))⁒φ⁒(t)βˆˆπ’©β’ for all β’t∈[0,1].πœ“π‘‘π‘ πœ‘π‘‘πœ‘π‘‘π’© for all π‘‘01\psi(t)=s(\varphi(t))\varphi(t)\in\mathcal{N}\,\,\text{ for all }t\in[0,1].italic_ψ ( italic_t ) = italic_s ( italic_Ο† ( italic_t ) ) italic_Ο† ( italic_t ) ∈ caligraphic_N for all italic_t ∈ [ 0 , 1 ] .

Choosing u=ψ⁒(t)π‘’πœ“π‘‘u=\psi(t)italic_u = italic_ψ ( italic_t ) in (2.4) yields

(2.5) E⁒(ψ⁒(0))≀E⁒(ψ⁒(t))+1n⁒|ψ⁒(t)βˆ’Οˆβ’(0)|H⁒ for all β’t∈[0,1].πΈπœ“0πΈπœ“π‘‘1𝑛subscriptπœ“π‘‘πœ“0𝐻 for all π‘‘01E(\psi(0))\leq E(\psi(t))+\frac{1}{n}|\psi(t)-\psi(0)|_{H}\,\,\text{ for all }% t\in[0,1].italic_E ( italic_ψ ( 0 ) ) ≀ italic_E ( italic_ψ ( italic_t ) ) + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | italic_ψ ( italic_t ) - italic_ψ ( 0 ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT for all italic_t ∈ [ 0 , 1 ] .

By Lemma 2.3, the mapping t↦s⁒(φ⁒(t))maps-toπ‘‘π‘ πœ‘π‘‘t\mapsto s(\varphi(t))italic_t ↦ italic_s ( italic_Ο† ( italic_t ) ) has a right derivative at zero given by

zn=E′′⁒(un)⁒(un,βˆ’E′⁒(un))βˆ’|E′⁒(un)|H2E′′⁒(un)⁒(un,un).subscript𝑧𝑛superscript𝐸′′subscript𝑒𝑛subscript𝑒𝑛superscript𝐸′subscript𝑒𝑛superscriptsubscriptsuperscript𝐸′subscript𝑒𝑛𝐻2superscript𝐸′′subscript𝑒𝑛subscript𝑒𝑛subscript𝑒𝑛z_{n}=\frac{E^{\prime\prime}(u_{n})(u_{n},-E^{\prime}(u_{n}))-|E^{\prime}(u_{n% })|_{H}^{2}}{E^{\prime\prime}(u_{n})(u_{n},u_{n})}.italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) - | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_ARG .

Thus, since φ⁒(0)=unπœ‘0subscript𝑒𝑛\varphi(0)=u_{n}italic_Ο† ( 0 ) = italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, when differentiating, we obtain

(2.6) ψ+′⁒(0)=limtβ†˜0ψ⁒(t)βˆ’Οˆβ’(0)t=zn⁒unβˆ’E′⁒(un).subscriptsuperscriptπœ“β€²0subscriptβ†˜π‘‘0πœ“π‘‘πœ“0𝑑subscript𝑧𝑛subscript𝑒𝑛superscript𝐸′subscript𝑒𝑛\psi^{\prime}_{+}(0)=\lim_{t\searrow 0}\frac{\psi(t)-\psi(0)}{t}=z_{n}\,u_{n}-% E^{\prime}(u_{n}).italic_ψ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( 0 ) = roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG italic_ψ ( italic_t ) - italic_ψ ( 0 ) end_ARG start_ARG italic_t end_ARG = italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) .

Regarding znsubscript𝑧𝑛z_{n}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, from assumption (h3) and (h4), one has

(2.7) |zn|≀C1C2⁒|un|H⁒|E′⁒(un)|H+1C2⁒|E′⁒(un)|H2.subscript𝑧𝑛subscript𝐢1subscript𝐢2subscriptsubscript𝑒𝑛𝐻subscriptsuperscript𝐸′subscript𝑒𝑛𝐻1subscript𝐢2subscriptsuperscriptsuperscript𝐸′subscript𝑒𝑛2𝐻|z_{n}|\leq\frac{C_{1}}{C_{2}}|u_{n}|_{H}|E^{\prime}(u_{n})|_{H}+\frac{1}{C_{2% }}|E^{\prime}(u_{n})|^{2}_{H}.| italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | ≀ divide start_ARG italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .

Now, dividing relation (2.5) by t>0𝑑0t>0italic_t > 0 gives

(2.8) E⁒(ψ⁒(0))βˆ’E⁒(ψ⁒(t))t≀1n⁒|ψ⁒(t)βˆ’Οˆβ’(0)t|H.πΈπœ“0πΈπœ“π‘‘π‘‘1𝑛subscriptπœ“π‘‘πœ“0𝑑𝐻\displaystyle\frac{E(\psi(0))-E(\psi(t))}{t}\leq\frac{1}{n}\left|\frac{\psi(t)% -\psi(0)}{t}\right|_{H}.divide start_ARG italic_E ( italic_ψ ( 0 ) ) - italic_E ( italic_ψ ( italic_t ) ) end_ARG start_ARG italic_t end_ARG ≀ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | divide start_ARG italic_ψ ( italic_t ) - italic_ψ ( 0 ) end_ARG start_ARG italic_t end_ARG | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .

Taking the limit as tβ†˜0β†˜π‘‘0t\searrow 0italic_t β†˜ 0, from (2.6) and (E′⁒(un),un)H=0subscriptsuperscript𝐸′subscript𝑒𝑛subscript𝑒𝑛𝐻0\left(E^{\prime}(u_{n}),u_{n}\right)_{H}=0( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0, the left-hand side of (2.8) becomes

(2.9) limtβ†˜0E⁒(ψ⁒(0))βˆ’E⁒(ψ⁒(t))tsubscriptβ†˜π‘‘0πΈπœ“0πΈπœ“π‘‘π‘‘\displaystyle\lim_{t\searrow 0}\frac{E(\psi(0))-E(\psi(t))}{t}roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG italic_E ( italic_ψ ( 0 ) ) - italic_E ( italic_ψ ( italic_t ) ) end_ARG start_ARG italic_t end_ARG =βˆ’(E′⁒(ψ⁒(0)),ψ+′⁒(0))HabsentsubscriptsuperscriptπΈβ€²πœ“0subscriptsuperscriptπœ“β€²0𝐻\displaystyle=-\left(E^{\prime}(\psi(0)),\psi^{\prime}_{+}(0)\right)_{H}= - ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ψ ( 0 ) ) , italic_ψ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( 0 ) ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
=βˆ’(E′⁒(un),zn⁒unβˆ’E′⁒(un))Habsentsubscriptsuperscript𝐸′subscript𝑒𝑛subscript𝑧𝑛subscript𝑒𝑛superscript𝐸′subscript𝑒𝑛𝐻\displaystyle=-\left(E^{\prime}(u_{n}),z_{n}u_{n}-E^{\prime}(u_{n})\right)_{H}= - ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT
=|E′⁒(un)|H2.absentsubscriptsuperscriptsuperscript𝐸′subscript𝑒𝑛2𝐻\displaystyle=|E^{\prime}(u_{n})|^{2}_{H}.= | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT .

For the right-hand side of (2.8), using (2.6) and (2.7), we obtain

(2.10) limtβ†˜01n⁒|ψ⁒(t)βˆ’Οˆβ’(0)t|H≀Cn⁒(|un|H⁒|E′⁒(un)|H+|E′⁒(un)|H2).subscriptβ†˜π‘‘01𝑛subscriptπœ“π‘‘πœ“0𝑑𝐻𝐢𝑛subscriptsubscript𝑒𝑛𝐻subscriptsuperscript𝐸′subscript𝑒𝑛𝐻subscriptsuperscriptsuperscript𝐸′subscript𝑒𝑛2𝐻\displaystyle\lim_{t\searrow 0}\frac{1}{n}\left|\frac{\psi(t)-\psi(0)}{t}% \right|_{H}\leq\frac{C}{n}\left(|u_{n}|_{H}|E^{\prime}(u_{n})|_{H}+|E^{\prime}% (u_{n})|^{2}_{H}\right).roman_lim start_POSTSUBSCRIPT italic_t β†˜ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_n end_ARG | divide start_ARG italic_ψ ( italic_t ) - italic_ψ ( 0 ) end_ARG start_ARG italic_t end_ARG | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≀ divide start_ARG italic_C end_ARG start_ARG italic_n end_ARG ( | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) .

Consequently, from (2.8), (2.9) and (2.10), we obtain

|E′⁒(un)|H≀Cn⁒(|un|H+|E′⁒(un)|H)≀Cn⁒(R+|E′⁒(un)|H),subscriptsuperscript𝐸′subscript𝑒𝑛𝐻𝐢𝑛subscriptsubscript𝑒𝑛𝐻subscriptsuperscript𝐸′subscript𝑒𝑛𝐻𝐢𝑛𝑅subscriptsuperscript𝐸′subscript𝑒𝑛𝐻|E^{\prime}(u_{n})|_{H}\leq\frac{C}{n}\left(|u_{n}|_{H}+|E^{\prime}(u_{n})|_{H% }\right)\leq\frac{C}{n}\left(R+|E^{\prime}(u_{n})|_{H}\right),| italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≀ divide start_ARG italic_C end_ARG start_ARG italic_n end_ARG ( | italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) ≀ divide start_ARG italic_C end_ARG start_ARG italic_n end_ARG ( italic_R + | italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) ,

which ensures that E′⁒(un)β†’0β†’superscript𝐸′subscript𝑒𝑛0E^{\prime}(u_{n})\to 0italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ 0 as nβ†’βˆžβ†’π‘›n\to\inftyitalic_n β†’ ∞.

∎

If we further assume a compactness condition, Theorem 2.2 leads to the following critical point principle.

Theorem 2.4.

Assume (h1)-(h4) hold true. If in addition the operator N𝑁Nitalic_N given in (2) is completely continuous, then there exists uβˆ—βˆˆπ’©superscriptπ‘’βˆ—π’©u^{\ast}\in\mathcal{N}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ caligraphic_N such that

E⁒(uβˆ—)=inf𝒩E and E′⁒(uβˆ—)=0.formulae-sequence𝐸superscriptπ‘’βˆ—subscriptinfimum𝒩𝐸 and superscript𝐸′superscriptπ‘’βˆ—0E(u^{\ast})=\inf_{\mathcal{N}}E\quad\text{ and }\quad E^{\prime}(u^{\ast})=0.italic_E ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0 .
Proof.

From assumptions (h1)-(h4), Theorem 2.2 guarantees the existence of a sequence {un}βŠ‚π’©subscript𝑒𝑛𝒩\{u_{n}\}\subset\mathcal{N}{ italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } βŠ‚ caligraphic_N such that

(2.11) E⁒(un)≀inf𝒩E+1n and E′⁒(un)β†’0.formulae-sequence𝐸subscript𝑒𝑛subscriptinfimum𝒩𝐸1𝑛 and β†’superscript𝐸′subscript𝑒𝑛0E(u_{n})\leq\inf_{\mathcal{N}}E+\frac{1}{n}\quad\text{ and }\quad E^{\prime}(u% _{n})\to 0.italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≀ roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E + divide start_ARG 1 end_ARG start_ARG italic_n end_ARG and italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ 0 .

Since N𝑁Nitalic_N is completely continuous and {un}subscript𝑒𝑛\{u_{n}\}{ italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } is bounded (recall that π’©βŠ‚Kr,R𝒩subscriptπΎπ‘Ÿπ‘…\mathcal{N}\subset K_{r,R}caligraphic_N βŠ‚ italic_K start_POSTSUBSCRIPT italic_r , italic_R end_POSTSUBSCRIPT), it follows that, after possibly passing to a subsequence, the sequence {N⁒(un)}𝑁subscript𝑒𝑛\{N(u_{n})\}{ italic_N ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) } is convergent to some uβˆ—βˆˆHsuperscriptπ‘’βˆ—π»u^{\ast}\in Hitalic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_H. Now, taking the limit in (2.11), one has that unβ†’uβˆ—β†’subscript𝑒𝑛superscriptπ‘’βˆ—u_{n}\to u^{\ast}italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT β†’ italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT, hence uβˆ—βˆˆπ’©superscriptπ‘’βˆ—π’©u^{\ast}\in\mathcal{N}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ caligraphic_N, E⁒(uβˆ—)=inf𝒩E𝐸superscriptπ‘’βˆ—subscriptinfimum𝒩𝐸E(u^{\ast})=\inf_{\mathcal{N}}Eitalic_E ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and E′⁒(uβˆ—)=0superscript𝐸′superscriptπ‘’βˆ—0E^{\prime}(u^{\ast})=0italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0. ∎

Finally, we note that Theorem 2.4 immediately yields multiplicity results if the hypotheses are satisfied for several finite or infinitely many pairs of numbers.

Remark 2.5 (Multiplicity).

Let {ri}1≀i≀msubscriptsubscriptπ‘Ÿπ‘–1π‘–π‘š\{r_{i}\}_{1\leq i\leq m}{ italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT 1 ≀ italic_i ≀ italic_m end_POSTSUBSCRIPT and {Ri}1≀i≀msubscriptsubscript𝑅𝑖1π‘–π‘š\{R_{i}\}_{1\leq i\leq m}{ italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT 1 ≀ italic_i ≀ italic_m end_POSTSUBSCRIPT be two sequences of positive real numbers satisfying

0<r1<R1<r2<R2<β‹―<rm<Rm<∞.0subscriptπ‘Ÿ1subscript𝑅1subscriptπ‘Ÿ2subscript𝑅2β‹―subscriptπ‘Ÿπ‘šsubscriptπ‘…π‘š0<r_{1}<R_{1}<r_{2}<R_{2}<\dots<r_{m}<R_{m}<\infty.0 < italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < β‹― < italic_r start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT < ∞ .

For each pair (ri,Ri)subscriptπ‘Ÿπ‘–subscript𝑅𝑖(r_{i},R_{i})( italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), we assume that condition (h⁒1)β„Ž1(h1)( italic_h 1 ) holds with si:=sassignsubscript𝑠𝑖𝑠s_{i}:=sitalic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT := italic_s. Additionally, suppose that conditions (h⁒2)β„Ž2(h2)( italic_h 2 )–(h⁒4)β„Ž4(h4)( italic_h 4 ) hold for each Nehari manifold

𝒩i={u∈Kβˆ–{0}:si⁒(u)⁒u},i=1,…,m,formulae-sequencesubscript𝒩𝑖conditional-set𝑒𝐾0subscript𝑠𝑖𝑒𝑒𝑖1β€¦π‘š\mathcal{N}_{i}=\left\{u\in K\setminus\{0\}\,:\,s_{i}(u)u\right\},\quad i=1,% \dots,m,caligraphic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = { italic_u ∈ italic_K βˆ– { 0 } : italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_u ) italic_u } , italic_i = 1 , … , italic_m ,

and that the operator N𝑁Nitalic_N is completely continuous. Then, for each i=1,…,m𝑖1β€¦π‘ši=1,\dots,mitalic_i = 1 , … , italic_m, there exists uiβˆ—βˆˆπ’©isubscriptsuperscriptπ‘’βˆ—π‘–subscript𝒩𝑖u^{\ast}_{i}\in\mathcal{N}_{i}italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT such that

E⁒(uiβˆ—)=infuβˆˆπ’©iE⁒(u)andE′⁒(uiβˆ—)=0.formulae-sequence𝐸subscriptsuperscriptπ‘’βˆ—π‘–subscriptinfimum𝑒subscript𝒩𝑖𝐸𝑒andsuperscript𝐸′subscriptsuperscriptπ‘’βˆ—π‘–0E(u^{\ast}_{i})=\inf_{u\in\mathcal{N}_{i}}E(u)\quad\text{and}\quad E^{\prime}(% u^{\ast}_{i})=0.italic_E ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = roman_inf start_POSTSUBSCRIPT italic_u ∈ caligraphic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_E ( italic_u ) and italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 0 .

3. Application

In this section, we present an application of Theorem 2.4. We aim to obtain a symmetric and positive solution for the Dirichlet problem

(3.1) {βˆ’u′′⁒(t)=g⁒(t)⁒f⁒(u⁒(t))⁒ on β’[0,1],u⁒(0)=u⁒(1)=0,casessuperscript𝑒′′𝑑𝑔𝑑𝑓𝑒𝑑 on 01otherwise𝑒0𝑒10otherwise\begin{cases}-u^{\prime\prime}\left(t\right)=g(t)f\left(u\left(t\right)\right)% \,\,\text{ on }\left[0,1\right],\\ u\left(0\right)=u\left(1\right)=0,\end{cases}{ start_ROW start_CELL - italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_t ) = italic_g ( italic_t ) italic_f ( italic_u ( italic_t ) ) on [ 0 , 1 ] , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_u ( 0 ) = italic_u ( 1 ) = 0 , end_CELL start_CELL end_CELL end_ROW

where f:ℝ→ℝ:𝑓→ℝℝf\colon\mathbb{R}\to\mathbb{R}italic_f : blackboard_R β†’ blackboard_R is continuously differentiable. In addition, we suppose that f𝑓fitalic_f is nondecreasing and positive on ℝ+subscriptℝ\mathbb{R}_{+}blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT. The function g:[0,1]→ℝ+:𝑔→01subscriptℝg\colon[0,1]\to\mathbb{R}_{+}italic_g : [ 0 , 1 ] β†’ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is assumed to be bounded, nondecreasing on [0,1/2]012[0,1/2][ 0 , 1 / 2 ] and symmetric with respect to the middle of the interval, i.e.,

g⁒(t)=g⁒(1βˆ’t) for all β’t∈[0,1/2].formulae-sequence𝑔𝑑𝑔1𝑑 for all π‘‘012g(t)=g(1-t)\quad\text{ for all }t\in[0,1/2].italic_g ( italic_t ) = italic_g ( 1 - italic_t ) for all italic_t ∈ [ 0 , 1 / 2 ] .

Note that, since g𝑔gitalic_g is nondecreasing and bounded on [0,1/2]012[0,1/2][ 0 , 1 / 2 ], it is measurable on this interval, and by symmetry, the same holds on the entire interval [0,1]01[0,1][ 0 , 1 ].
Consider the Sobolev space H=H01⁒(0,1)𝐻superscriptsubscript𝐻0101H=H_{0}^{1}(0,1)italic_H = italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) endowed with the inner product

(u,v)H01=∫01u′⁒(t)⁒v′⁒(t)⁒𝑑t,subscript𝑒𝑣superscriptsubscript𝐻01superscriptsubscript01superscript𝑒′𝑑superscript𝑣′𝑑differential-d𝑑(u,v)_{H_{0}^{1}}=\int_{0}^{1}u^{\prime}(t)v^{\prime}(t)dt,( italic_u , italic_v ) start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) italic_v start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ,

and the energetic norm

|u|H01=(u,u)H01.subscript𝑒superscriptsubscript𝐻01subscript𝑒𝑒superscriptsubscript𝐻01|u|_{H_{0}^{1}}=\sqrt{\left(u,u\right)_{H_{0}^{1}}}.| italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = square-root start_ARG ( italic_u , italic_u ) start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG .

We identify the space H01⁒(0,1)superscriptsubscript𝐻0101H_{0}^{1}(0,1)italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) with its dual Hβˆ’1⁒(0,1)superscript𝐻101H^{-1}(0,1)italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 0 , 1 ) via the mapping

J:H01⁒(0,1)β†’Hβˆ’1⁒(0,1),J⁒u=βˆ’uβ€²β€².:𝐽formulae-sequenceβ†’superscriptsubscript𝐻0101superscript𝐻101𝐽𝑒superscript𝑒′′J\colon H_{0}^{1}(0,1)\to H^{-1}(0,1),\quad Ju=-u^{\prime\prime}.italic_J : italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) β†’ italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 0 , 1 ) , italic_J italic_u = - italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT .

Clearly, J𝐽Jitalic_J is invertible and its inverse Jβˆ’1⁒vsuperscript𝐽1𝑣J^{-1}vitalic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v is the weak solution of the Dirichlet problem βˆ’u′′⁒(t)=v,u⁒(0)=u⁒(1)=0formulae-sequencesuperscript𝑒′′𝑑𝑣𝑒0𝑒10-u^{\prime\prime}(t)=v,\,u(0)=u(1)=0- italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_t ) = italic_v , italic_u ( 0 ) = italic_u ( 1 ) = 0. If v∈L2⁒(0,1)𝑣superscript𝐿201v\in L^{2}(0,1)italic_v ∈ italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 0 , 1 ), then

(Jβˆ’1⁒v)⁒(t)=∫01G⁒(t,s)⁒v⁒(s)⁒𝑑s,superscript𝐽1𝑣𝑑superscriptsubscript01𝐺𝑑𝑠𝑣𝑠differential-d𝑠(J^{-1}v)(t)=\int_{0}^{1}G(t,s)v(s)ds,( italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v ) ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_G ( italic_t , italic_s ) italic_v ( italic_s ) italic_d italic_s ,

where G𝐺Gitalic_G is the Green’s function of the differential operator J𝐽Jitalic_J with respect to the boundary conditions u⁒(0)=u⁒(1)=0𝑒0𝑒10u(0)=u(1)=0italic_u ( 0 ) = italic_u ( 1 ) = 0 (see, e.g., A. Cabada [5, Example 1.8.18]),

G⁒(t,s)={s⁒(1βˆ’t),s≀tt⁒(1βˆ’s),sβ‰₯t.𝐺𝑑𝑠cases𝑠1𝑑𝑠𝑑otherwise𝑑1𝑠𝑠𝑑otherwiseG(t,s)=\begin{cases}s\left(1-t\right),s\leq t\\ t\left(1-s\right),s\geq t.\end{cases}italic_G ( italic_t , italic_s ) = { start_ROW start_CELL italic_s ( 1 - italic_t ) , italic_s ≀ italic_t end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_t ( 1 - italic_s ) , italic_s β‰₯ italic_t . end_CELL start_CELL end_CELL end_ROW

Moreover, given the continuous embedding of H01⁒(0,1)superscriptsubscript𝐻0101H_{0}^{1}(0,1)italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) in C⁒[0,1]𝐢01C[0,1]italic_C [ 0 , 1 ], one has

(3.2) supt∈[0,1]|u⁒(t)|≀|u|H01⁒ for all β’u∈H01⁒(0,1).subscriptsupremum𝑑01𝑒𝑑subscript𝑒superscriptsubscript𝐻01 for all π‘’superscriptsubscript𝐻0101\sup_{t\in[0,1]}|u(t)|\leq|u|_{H_{0}^{1}}\,\,\text{ for all }u\in H_{0}^{1}(0,% 1).roman_sup start_POSTSUBSCRIPT italic_t ∈ [ 0 , 1 ] end_POSTSUBSCRIPT | italic_u ( italic_t ) | ≀ | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for all italic_u ∈ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) .

Additionally, the Wirtinger inequality holds [4],

(3.3) ∫01u2⁒(t)⁒𝑑t≀1Ο€2⁒|u|H012.superscriptsubscript01superscript𝑒2𝑑differential-d𝑑1superscriptπœ‹2superscriptsubscript𝑒superscriptsubscript𝐻012\int_{0}^{1}u^{2}(t)dt\leq\frac{1}{\pi^{2}}|u|_{H_{0}^{1}}^{2}.∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ≀ divide start_ARG 1 end_ARG start_ARG italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

The energy functional of the problem (3.1) is E:H01⁒(0,1)→ℝ,:𝐸→superscriptsubscript𝐻0101ℝE\colon H_{0}^{1}(0,1)\to\mathbb{R},italic_E : italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) β†’ blackboard_R ,

E⁒(u)=12⁒|u|H012βˆ’βˆ«01F⁒(u⁒(t))⁒g⁒(t)⁒𝑑t,𝐸𝑒12superscriptsubscript𝑒superscriptsubscript𝐻012superscriptsubscript01𝐹𝑒𝑑𝑔𝑑differential-d𝑑E\left(u\right)=\frac{1}{2}\left|u\right|_{H_{0}^{1}}^{2}-\int_{0}^{1}F\left(u% (t)\right)g(t)dt,italic_E ( italic_u ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_F ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_d italic_t ,

where F⁒(ΞΎ)=∫0ΞΎf⁒(s)⁒𝑑s.πΉπœ‰superscriptsubscript0πœ‰π‘“π‘ differential-d𝑠F\left(\xi\right)=\int_{0}^{\xi}f\left(s\right)ds.italic_F ( italic_ΞΎ ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΎ end_POSTSUPERSCRIPT italic_f ( italic_s ) italic_d italic_s . Clearly, the smoothness of f𝑓fitalic_f implies that E𝐸Eitalic_E is a C2superscript𝐢2C^{2}italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT functional. Its first derivative is given by

E′⁒(u)=uβˆ’N⁒(u)(u∈H01⁒(0,1)),superscript𝐸′𝑒𝑒𝑁𝑒𝑒superscriptsubscript𝐻0101E^{\prime}(u)=u-N(u)\quad\left(u\in H_{0}^{1}(0,1)\right),italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ) = italic_u - italic_N ( italic_u ) ( italic_u ∈ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) ) ,

where

N⁒(u)⁒(t)=∫01G⁒(t,s)⁒f⁒(u⁒(s))⁒g⁒(s)⁒𝑑s(u∈H01⁒(0,1)),𝑁𝑒𝑑superscriptsubscript01𝐺𝑑𝑠𝑓𝑒𝑠𝑔𝑠differential-d𝑠𝑒superscriptsubscript𝐻0101N(u)(t)=\int_{0}^{1}G(t,s)f(u(s))g(s)ds\quad(u\in H_{0}^{1}(0,1)),italic_N ( italic_u ) ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_G ( italic_t , italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s ( italic_u ∈ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) ) ,

while the second derivative is expressed by

E′′⁒(u)⁒(w1,w2)=(w1,w2)H01βˆ’βˆ«01f′⁒(u⁒(t))⁒g⁒(t)⁒w1⁒(t)⁒w2⁒(t)⁒𝑑t,superscript𝐸′′𝑒subscript𝑀1subscript𝑀2subscriptsubscript𝑀1subscript𝑀2superscriptsubscript𝐻01superscriptsubscript01superscript𝑓′𝑒𝑑𝑔𝑑subscript𝑀1𝑑subscript𝑀2𝑑differential-d𝑑E^{\prime\prime}(u)(w_{1},w_{2})=\left(w_{1},w_{2}\right)_{H_{0}^{1}}-\int_{0}% ^{1}f^{\prime}(u(t))g(t)w_{1}(t)w_{2}(t)dt,italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) italic_d italic_t ,

for u,w1,w2∈H01⁒(0,1).𝑒subscript𝑀1subscript𝑀2superscriptsubscript𝐻0101u,w_{1},w_{2}\in H_{0}^{1}(0,1).italic_u , italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) .

In H01⁒(0,1)superscriptsubscript𝐻0101H_{0}^{1}(0,1)italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ), we consider the cone

K={u∈H01(0,1):\displaystyle K=\Big{\{}u\in H_{0}^{1}(0,1)\,:italic_K = { italic_u ∈ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) : u⁒ is nondecreasing on β’[0,1/2],𝑒 is nondecreasing on 012\displaystyle u\text{ is nondecreasing on }[0,1/2],italic_u is nondecreasing on [ 0 , 1 / 2 ] ,
u(t)=u(1βˆ’t) and u(t)β‰₯Ο•(t)|u|H01 for all t∈[0,1/2]},\displaystyle u(t)=u(1-t)\text{ and }u(t)\geq\phi(t)|u|_{H_{0}^{1}}\text{ for % all }t\in[0,1/2]\Big{\}},italic_u ( italic_t ) = italic_u ( 1 - italic_t ) and italic_u ( italic_t ) β‰₯ italic_Ο• ( italic_t ) | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for all italic_t ∈ [ 0 , 1 / 2 ] } ,

where

Ο•:[0,1/2]→ℝ, Ο•⁒(t)=t⁒(1βˆ’2⁒t).:italic-Ο•β†’012ℝ Ο•⁒(t)=t⁒(1βˆ’2⁒t).\phi\colon[0,1/2]\to\mathbb{R},\text{ \quad$\phi(t)=t(1-2t)$.}italic_Ο• : [ 0 , 1 / 2 ] β†’ blackboard_R , italic_Ο• ( italic_t ) = italic_t ( 1 - 2 italic_t ) .

Note that the function u⁒(t)=sin⁑(π⁒t)π‘’π‘‘πœ‹π‘‘u(t)=\sin(\pi t)italic_u ( italic_t ) = roman_sin ( italic_Ο€ italic_t ) belongs to K𝐾Kitalic_K, so the cone K𝐾Kitalic_K is nondegenerate.

We claim that operator N𝑁Nitalic_N is invariant with respect to K𝐾Kitalic_K, i.e.,

N⁒(K)βŠ‚K.𝑁𝐾𝐾N(K)\subset K.italic_N ( italic_K ) βŠ‚ italic_K .

An important result in proving our claim is the following Harnack-type inequality obtained in [11, Lemma 3.1].

Lemma 3.1.

For every function u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K, with J⁒u∈C⁒([0,1];ℝ+)𝐽𝑒𝐢01superscriptℝJu\in C([0,1];\mathbb{R}^{+})italic_J italic_u ∈ italic_C ( [ 0 , 1 ] ; blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) nondecreasing on [0,1/2]012[0,1/2][ 0 , 1 / 2 ], one has

(3.4) u⁒(t)β‰₯ϕ⁒(t)⁒|u|H01for all β’t∈[0,1/2].formulae-sequence𝑒𝑑italic-ϕ𝑑subscript𝑒superscriptsubscript𝐻01for all π‘‘012u(t)\geq\phi(t)|u|_{H_{0}^{1}}\quad\text{for all }t\in[0,1/2].italic_u ( italic_t ) β‰₯ italic_Ο• ( italic_t ) | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT for all italic_t ∈ [ 0 , 1 / 2 ] .

Let u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K. From the definition of N𝑁Nitalic_N, one has

J⁒(N⁒(u))=g⁒(β‹…)⁒f⁒(u)∈C⁒[0,1].𝐽𝑁𝑒𝑔⋅𝑓𝑒𝐢01J(N(u))=g(\cdot)f(u)\in C[0,1].italic_J ( italic_N ( italic_u ) ) = italic_g ( β‹… ) italic_f ( italic_u ) ∈ italic_C [ 0 , 1 ] .

Simple computations show that the Green’s function satisfies

G⁒(t,s)=G⁒(1βˆ’t,1βˆ’s) and G⁒(t,1βˆ’s)=G⁒(1βˆ’t,s),formulae-sequence𝐺𝑑𝑠𝐺1𝑑1𝑠 and πΊπ‘‘1𝑠𝐺1𝑑𝑠G(t,s)=G(1-t,1-s)\quad\text{ and }\quad G(t,1-s)=G(1-t,s),\,italic_G ( italic_t , italic_s ) = italic_G ( 1 - italic_t , 1 - italic_s ) and italic_G ( italic_t , 1 - italic_s ) = italic_G ( 1 - italic_t , italic_s ) ,

for all t,s∈[0,1/2]𝑑𝑠012t,s\in[0,1/2]italic_t , italic_s ∈ [ 0 , 1 / 2 ]. Thus, from the symmetry of u𝑒uitalic_u, for any t∈[0,1/2]𝑑012t\in[0,1/2]italic_t ∈ [ 0 , 1 / 2 ], we obtain

N⁒(u)⁒(t)𝑁𝑒𝑑\displaystyle N(u)(t)italic_N ( italic_u ) ( italic_t ) =∫01/2G⁒(t,s)⁒f⁒(u⁒(1βˆ’s))⁒g⁒(1βˆ’s)⁒𝑑s+∫01/2G⁒(t,1βˆ’s)⁒f⁒(u⁒(s))⁒g⁒(s)⁒𝑑sabsentsuperscriptsubscript012𝐺𝑑𝑠𝑓𝑒1𝑠𝑔1𝑠differential-d𝑠superscriptsubscript012𝐺𝑑1𝑠𝑓𝑒𝑠𝑔𝑠differential-d𝑠\displaystyle=\int_{0}^{1/2}G(t,s)f(u(1-s))g(1-s)ds+\int_{0}^{1/2}G(t,1-s)f(u(% s))g(s)ds= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_G ( italic_t , italic_s ) italic_f ( italic_u ( 1 - italic_s ) ) italic_g ( 1 - italic_s ) italic_d italic_s + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_G ( italic_t , 1 - italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s
=∫1/21G⁒(1βˆ’t,s)⁒f⁒(u⁒(s))⁒g⁒(s)⁒𝑑s+∫01/2G⁒(1βˆ’t,s)⁒f⁒(u⁒(s))⁒g⁒(s)⁒𝑑sabsentsuperscriptsubscript121𝐺1𝑑𝑠𝑓𝑒𝑠𝑔𝑠differential-d𝑠superscriptsubscript012𝐺1𝑑𝑠𝑓𝑒𝑠𝑔𝑠differential-d𝑠\displaystyle=\int_{1/2}^{1}G(1-t,s)f(u(s))g(s)ds+\int_{0}^{1/2}G(1-t,s)f(u(s)% )g(s)ds= ∫ start_POSTSUBSCRIPT 1 / 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_G ( 1 - italic_t , italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_G ( 1 - italic_t , italic_s ) italic_f ( italic_u ( italic_s ) ) italic_g ( italic_s ) italic_d italic_s
=N⁒(u⁒(1βˆ’t)),absent𝑁𝑒1𝑑\displaystyle=N(u(1-t)),= italic_N ( italic_u ( 1 - italic_t ) ) ,

which proves that N⁒(u)𝑁𝑒N(u)italic_N ( italic_u ) is symmetric. Since u𝑒uitalic_u takes positive values and both f𝑓fitalic_f and g𝑔gitalic_g are nonnegative, it follows that N⁒(u)𝑁𝑒N(u)italic_N ( italic_u ) is concave, hence N⁒(u)𝑁𝑒N(u)italic_N ( italic_u ) is nondecreasing on [0,1/2]012[0,1/2][ 0 , 1 / 2 ]. Furthermore, the monotonicity of f𝑓fitalic_f on ℝ+subscriptℝ\mathbb{R}_{+}blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and of u𝑒uitalic_u and g𝑔gitalic_g on [0,1/2]012[0,1/2][ 0 , 1 / 2 ] ensures that J⁒(N⁒(u))=g⁒(β‹…)⁒f⁒(u)𝐽𝑁𝑒𝑔⋅𝑓𝑒J(N(u))=g(\cdot)f(u)italic_J ( italic_N ( italic_u ) ) = italic_g ( β‹… ) italic_f ( italic_u ) is also nondecreasing on [0,1/2]012[0,1/2][ 0 , 1 / 2 ]. Therefore, by Lemma 3.1, inequality (3.4) holds for N⁒(u)𝑁𝑒N(u)italic_N ( italic_u ). Thus, N⁒(u)∈K𝑁𝑒𝐾N(u)\in Kitalic_N ( italic_u ) ∈ italic_K, as desired.

For the sake of completeness, below we provide a proof of Lemma 3.1 shorter than the one given in [11].

Proof of Lemma 3.1.

From the hypothesis, it follows directly that both u𝑒uitalic_u and uβ€²superscript𝑒′u^{\prime}italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are positive and concave on [0,1/2]012[0,1/2][ 0 , 1 / 2 ]. Moreover, the symmetry of u𝑒uitalic_u ensures that u𝑒uitalic_u is increasing on [0,1/2]012[0,1/2][ 0 , 1 / 2 ], while uβ€²superscript𝑒′u^{\prime}italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is decreasing, with u′⁒(1/2)=0superscript𝑒′120u^{\prime}(1/2)=0italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 1 / 2 ) = 0. For any t∈(0,1/2)𝑑012t\in(0,1/2)italic_t ∈ ( 0 , 1 / 2 ), the monotonicity of uβ€²superscript𝑒′u^{\prime}italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT implies

(3.5) u⁒(t)=∫0tu′⁒(s)⁒𝑑sβ‰₯t⁒u′⁒(t),𝑒𝑑superscriptsubscript0𝑑superscript𝑒′𝑠differential-d𝑠𝑑superscript𝑒′𝑑u(t)=\int_{0}^{t}u^{\prime}(s)ds\geq tu^{\prime}(t),italic_u ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) italic_d italic_s β‰₯ italic_t italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) ,

while its concavity yields

(3.6) u′⁒(t)superscript𝑒′𝑑\displaystyle u^{\prime}(t)italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) =u′⁒(2⁒t⁒12+(1βˆ’2⁒t)⁒0)β‰₯2⁒t⁒u′⁒(12)+(1βˆ’2⁒t)⁒u′⁒(0)absentsuperscript𝑒′2𝑑1212𝑑02𝑑superscript𝑒′1212𝑑superscript𝑒′0\displaystyle=u^{\prime}\left(2t\,\frac{1}{2}+(1-2t)0\right)\geq 2tu^{\prime}% \left(\frac{1}{2}\right)+(1-2t)u^{\prime}(0)= italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 2 italic_t divide start_ARG 1 end_ARG start_ARG 2 end_ARG + ( 1 - 2 italic_t ) 0 ) β‰₯ 2 italic_t italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) + ( 1 - 2 italic_t ) italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 )
=(1βˆ’2⁒t)⁒u′⁒(0).absent12𝑑superscript𝑒′0\displaystyle=(1-2t)u^{\prime}(0).= ( 1 - 2 italic_t ) italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) .

Finally, we obtain the conclusion using (3.5), (3.6) and

|u|H012=∫01u′⁒(s)2⁒𝑑s=2⁒∫01/2u′⁒(s)2⁒𝑑s≀u′⁒(0)2.superscriptsubscript𝑒superscriptsubscript𝐻012superscriptsubscript01superscript𝑒′superscript𝑠2differential-d𝑠2superscriptsubscript012superscript𝑒′superscript𝑠2differential-d𝑠superscript𝑒′superscript02|u|_{H_{0}^{1}}^{2}=\int_{0}^{1}u^{\prime}(s)^{2}ds=2\int_{0}^{1/2}u^{\prime}(% s)^{2}ds\leq u^{\prime}(0)^{2}.| italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_s = 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_s ≀ italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

∎

Let 0<r<R<∞0π‘Ÿπ‘…0<r<R<\infty0 < italic_r < italic_R < ∞ be positive real numbers, β∈(0,1/4)𝛽014\beta\in(0,1/4)italic_Ξ² ∈ ( 0 , 1 / 4 ), and define

A~=(∫01g2⁒(t)⁒𝑑t)1/2,B~=∫0Ξ²g⁒(t)⁒𝑑t and C~=∫β1/2g⁒(t)⁒𝑑t.formulae-sequence~𝐴superscriptsuperscriptsubscript01superscript𝑔2𝑑differential-d𝑑12formulae-sequence~𝐡superscriptsubscript0𝛽𝑔𝑑differential-d𝑑 and ~𝐢superscriptsubscript𝛽12𝑔𝑑differential-d𝑑\tilde{A}=\left(\int_{0}^{1}g^{2}(t)dt\right)^{1/2},\quad\tilde{B}=\int_{0}^{% \beta}g(t)dt\quad\text{ and }\quad\tilde{C}=\int_{\beta}^{1/2}g(t)dt.over~ start_ARG italic_A end_ARG = ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT , over~ start_ARG italic_B end_ARG = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_d italic_t and over~ start_ARG italic_C end_ARG = ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_d italic_t .

In what follows, we assume

  1. (H1):

    The constants A~~𝐴\tilde{A}over~ start_ARG italic_A end_ARG and C~~𝐢\tilde{C}over~ start_ARG italic_C end_ARG are strictly positive, and moreover

    f⁒(r)r<Ο€A~andf⁒(R⁒ϕ⁒(Ξ²))R>12⁒ϕ⁒(Ξ²)⁒C~.formulae-sequenceπ‘“π‘Ÿπ‘Ÿπœ‹~𝐴and𝑓𝑅italic-ϕ𝛽𝑅12italic-ϕ𝛽~𝐢\frac{f(r)}{r}<\frac{\pi}{\tilde{A}}\quad\text{and}\quad\frac{f\left(R\phi(% \beta)\right)}{R}>\frac{1}{2\phi(\beta)\tilde{C}}.divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG < divide start_ARG italic_Ο€ end_ARG start_ARG over~ start_ARG italic_A end_ARG end_ARG and divide start_ARG italic_f ( italic_R italic_Ο• ( italic_Ξ² ) ) end_ARG start_ARG italic_R end_ARG > divide start_ARG 1 end_ARG start_ARG 2 italic_Ο• ( italic_Ξ² ) over~ start_ARG italic_C end_ARG end_ARG .

Additionally, suppose that the function f𝑓fitalic_f satisfies one of the following three conditions:

  1. (H2):

    There exists a continuous mapping ΞΈ:[0,R]→ℝ:πœƒβ†’0𝑅ℝ\theta\colon[0,R]\to\mathbb{R}italic_ΞΈ : [ 0 , italic_R ] β†’ blackboard_R such that θ⁒(t)>0πœƒπ‘‘0\theta(t)>0italic_ΞΈ ( italic_t ) > 0 for t∈(0,R]𝑑0𝑅t\in(0,R]italic_t ∈ ( 0 , italic_R ], and

    t⁒f′⁒(t)βˆ’f⁒(t)β‰₯θ⁒(t)⁒ for all β’t∈[0,R];𝑑superscriptπ‘“β€²π‘‘π‘“π‘‘πœƒπ‘‘ for all π‘‘0𝑅tf^{\prime}(t)-f(t)\geq\theta(t)\,\,\text{ for all }t\in[0,R];italic_t italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) - italic_f ( italic_t ) β‰₯ italic_ΞΈ ( italic_t ) for all italic_t ∈ [ 0 , italic_R ] ;
  1. (H3):

    There exists constants ΞΌ=μ⁒(r,R)>1πœ‡πœ‡π‘Ÿπ‘…1\mu=\mu(r,R)>1italic_ΞΌ = italic_ΞΌ ( italic_r , italic_R ) > 1 and Ξ»=λ⁒(r,R)>0πœ†πœ†π‘Ÿπ‘…0\lambda=\lambda(r,R)>0italic_Ξ» = italic_Ξ» ( italic_r , italic_R ) > 0 such that

    t⁒f′⁒(t)βˆ’ΞΌβ’f⁒(t)β‰₯0⁒ and β’f′⁒(t)β‰₯λ⁒ for all β’t∈[r⁒ϕ⁒(Ξ²),R],𝑑superscriptπ‘“β€²π‘‘πœ‡π‘“π‘‘0 and superscriptπ‘“β€²π‘‘πœ† for all π‘‘π‘Ÿitalic-ϕ𝛽𝑅tf^{\prime}(t)-\mu f(t)\geq 0\text{ and }f^{\prime}(t)\geq\lambda\,\,\text{ % for all }t\in[r\phi(\beta),R],italic_t italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) - italic_ΞΌ italic_f ( italic_t ) β‰₯ 0 and italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) β‰₯ italic_Ξ» for all italic_t ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] ,

    and

    (3.7) B~⁒f⁒(r⁒ϕ⁒(Ξ²))<λ⁒C~⁒(1βˆ’1ΞΌ)⁒r⁒ϕ⁒(Ξ²);~π΅π‘“π‘Ÿitalic-Ο•π›½πœ†~𝐢11πœ‡π‘Ÿitalic-ϕ𝛽\tilde{B}f(r\phi(\beta))<\lambda\tilde{C}\left(1-\frac{1}{\mu}\right)r\phi(% \beta);over~ start_ARG italic_B end_ARG italic_f ( italic_r italic_Ο• ( italic_Ξ² ) ) < italic_Ξ» over~ start_ARG italic_C end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r italic_Ο• ( italic_Ξ² ) ;
  1. (H4):

    The support of the function g𝑔gitalic_g is included in [Ξ²,1/2]𝛽12[\beta,1/2][ italic_Ξ² , 1 / 2 ], i.e.,

    (3.8) g⁒(t)=0 for all β’t∈[0,Ξ²].formulae-sequence𝑔𝑑0 for all π‘‘0𝛽g(t)=0\quad\text{ for all }t\in[0,\beta].italic_g ( italic_t ) = 0 for all italic_t ∈ [ 0 , italic_Ξ² ] .

    Additionally, the function f𝑓fitalic_f is of class C2superscript𝐢2C^{2}italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT on [r⁒ϕ⁒(Ξ²),R]π‘Ÿitalic-ϕ𝛽𝑅[r\phi(\beta),R][ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] with a strictly positive second derivative, that is, there exists M=M⁒(r,R)>0π‘€π‘€π‘Ÿπ‘…0M=M(r,R)>0italic_M = italic_M ( italic_r , italic_R ) > 0 with

    f′′⁒(t)β‰₯M for all β’t∈[r⁒ϕ⁒(Ξ²),R].formulae-sequencesuperscript𝑓′′𝑑𝑀 for all π‘‘π‘Ÿitalic-ϕ𝛽𝑅f^{\prime\prime}(t)\geq M\quad\text{ for all }t\in[r\phi(\beta),R].italic_f start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_t ) β‰₯ italic_M for all italic_t ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] .

    Furthermore, there exists a continuous positive mapping ΞΈ~:[r⁒ϕ⁒(Ξ²),R]→ℝ:~πœƒβ†’π‘Ÿitalic-ϕ𝛽𝑅ℝ\tilde{\theta}\colon[r\phi(\beta),R]\to\mathbb{R}over~ start_ARG italic_ΞΈ end_ARG : [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] β†’ blackboard_R such that

    (3.9) t⁒f′⁒(t)βˆ’f⁒(t)β‰₯ΞΈ~⁒(t) for all β’t∈[r⁒ϕ⁒(Ξ²),R].formulae-sequence𝑑superscript𝑓′𝑑𝑓𝑑~πœƒπ‘‘ for all π‘‘π‘Ÿitalic-ϕ𝛽𝑅tf^{\prime}(t)-f(t)\geq\tilde{\theta}(t)\quad\text{ for all }t\in[r\phi(\beta)% ,R].italic_t italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) - italic_f ( italic_t ) β‰₯ over~ start_ARG italic_ΞΈ end_ARG ( italic_t ) for all italic_t ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] .

We show that under condition (H1) and either (H2), (H3) or (H4), conditions (h1)-(h4) are satisfied. Note that (h2) and (h3) follow directly from (3.2), Wirtinger’s inequality, and the smoothness of the function f𝑓fitalic_f.

To prove (h1), let u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }. The mapping Ξ±usubscript𝛼𝑒\alpha_{u}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT introduced in (h1) is given by

Ξ±u⁒(Ο„)=12⁒τ2⁒|u|H012βˆ’βˆ«01F⁒(τ⁒u⁒(t))⁒g⁒(t)⁒𝑑t,Ο„βˆˆ(r|u|H01,R|u|H01)formulae-sequencesubscriptπ›Όπ‘’πœ12superscript𝜏2superscriptsubscript𝑒superscriptsubscript𝐻012superscriptsubscript01πΉπœπ‘’π‘‘π‘”π‘‘differential-dπ‘‘πœπ‘Ÿsubscript𝑒superscriptsubscript𝐻01𝑅subscript𝑒superscriptsubscript𝐻01\alpha_{u}(\tau)=\frac{1}{2}\tau^{2}|u|_{H_{0}^{1}}^{2}-\int_{0}^{1}F(\tau u(t% ))g(t)dt,\quad\tau\in\left(\frac{r}{|u|_{H_{0}^{1}}},\frac{R}{|u|_{H_{0}^{1}}}\right)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_Ο„ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_Ο„ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_F ( italic_Ο„ italic_u ( italic_t ) ) italic_g ( italic_t ) italic_d italic_t , italic_Ο„ ∈ ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG )

and its derivative is

Ξ±u′⁒(Ο„)superscriptsubscriptπ›Όπ‘’β€²πœ\displaystyle\alpha_{u}^{\prime}(\tau)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ) =τ⁒|u|H012βˆ’βˆ«01f⁒(τ⁒u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑t.absent𝜏superscriptsubscript𝑒superscriptsubscript𝐻012superscriptsubscript01π‘“πœπ‘’π‘‘π‘”π‘‘π‘’π‘‘differential-d𝑑\displaystyle=\tau|u|_{H_{0}^{1}}^{2}-\int_{0}^{1}f(\tau u(t))g(t)u(t)dt.= italic_Ο„ | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Ο„ italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t .

First, we show that

(3.10) Ξ±u′⁒(r|u|H01)>0 and Ξ±u′⁒(R|u|H01)<0.Ξ±u′⁒(r|u|H01)>0 and Ξ±u′⁒(R|u|H01)<0\text{$\alpha_{u}^{\prime}\left(\frac{r}{|u|_{H_{0}^{1}}}\right)>0$ \quad and % \quad$\alpha_{u}^{\prime}\left(\frac{R}{|u|_{H_{0}^{1}}}\right)<0$}.italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) > 0 and italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) < 0 .

Denote

v⁒(t)=u⁒(t)|u|H01∈Kβˆ–{0},𝑣𝑑𝑒𝑑subscript𝑒superscriptsubscript𝐻01𝐾0v(t)=\frac{u(t)}{|u|_{H_{0}^{1}}}\in K\setminus\{0\},italic_v ( italic_t ) = divide start_ARG italic_u ( italic_t ) end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ∈ italic_K βˆ– { 0 } ,

so |v|H01=1subscript𝑣superscriptsubscript𝐻011|v|_{H_{0}^{1}}=1| italic_v | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = 1. Then, we have

Ξ±u′⁒(Ο„|u|H01)=τ⁒|u|H01⁒(1βˆ’βˆ«011τ⁒f⁒(τ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t).superscriptsubscriptπ›Όπ‘’β€²πœsubscript𝑒superscriptsubscript𝐻01𝜏subscript𝑒superscriptsubscript𝐻011superscriptsubscript011πœπ‘“πœπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle\alpha_{u}^{\prime}\left(\frac{\tau}{|u|_{H_{0}^{1}}}\right)=\tau% |u|_{H_{0}^{1}}\left(1-\int_{0}^{1}\frac{1}{\tau}f\left(\tau v(t)\right)g(t)v(% t)dt\right).italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( divide start_ARG italic_Ο„ end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) = italic_Ο„ | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( 1 - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_Ο„ end_ARG italic_f ( italic_Ο„ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t ) .

From (3.2), (H1) and both Wirtinger and HΓΆlder inequalities, one has

∫011r⁒f⁒(r⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑tβ‰€βˆ«01f⁒(r)r⁒g⁒(t)⁒v⁒(t)⁒𝑑tsuperscriptsubscript011π‘Ÿπ‘“π‘Ÿπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑superscriptsubscript01π‘“π‘Ÿπ‘Ÿπ‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle\int_{0}^{1}\frac{1}{r}f\left(rv(t)\right)g(t)v(t)dt\leq\int_{0}^% {1}\frac{f\left(r\right)}{r}g(t)v(t)dt∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_f ( italic_r italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t ≀ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
≀f⁒(r)r⁒(∫01g2⁒(t)⁒𝑑t)1/2⁒(∫01v2⁒(t)⁒𝑑t)1/2absentπ‘“π‘Ÿπ‘Ÿsuperscriptsuperscriptsubscript01superscript𝑔2𝑑differential-d𝑑12superscriptsuperscriptsubscript01superscript𝑣2𝑑differential-d𝑑12\displaystyle\leq\frac{f(r)}{r}\left(\int_{0}^{1}g^{2}(t)dt\right)^{1/2}\left(% \int_{0}^{1}v^{2}(t)dt\right)^{1/2}≀ divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT
≀f⁒(r)r⁒A~π⁒|v|H01=f⁒(r)r⁒A~Ο€<1,absentπ‘“π‘Ÿπ‘Ÿ~π΄πœ‹subscript𝑣superscriptsubscript𝐻01π‘“π‘Ÿπ‘Ÿ~π΄πœ‹1\displaystyle\leq\frac{f(r)}{r}\frac{\tilde{A}}{\pi}|v|_{H_{0}^{1}}=\frac{f(r)% }{r}\frac{\tilde{A}}{\pi}<1,≀ divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG divide start_ARG over~ start_ARG italic_A end_ARG end_ARG start_ARG italic_Ο€ end_ARG | italic_v | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_f ( italic_r ) end_ARG start_ARG italic_r end_ARG divide start_ARG over~ start_ARG italic_A end_ARG end_ARG start_ARG italic_Ο€ end_ARG < 1 ,

which proves the first inequality in (3.10). For the second one, using the monotonicity of v𝑣vitalic_v and the Harnack inequality, we see that

(3.11) v⁒(t)β‰₯ϕ⁒(Ξ²) for all β’t∈[Ξ²,1/2].formulae-sequence𝑣𝑑italic-ϕ𝛽 for all π‘‘𝛽12v(t)\geq\phi(\beta)\quad\text{ for all }t\in[\beta,1/2].italic_v ( italic_t ) β‰₯ italic_Ο• ( italic_Ξ² ) for all italic_t ∈ [ italic_Ξ² , 1 / 2 ] .

Therefore, from (H1), the symmetry of v𝑣vitalic_v and (3.11), we obtain

∫01f⁒(R⁒v⁒(t))R⁒g⁒(t)⁒v⁒(t)⁒𝑑tsuperscriptsubscript01𝑓𝑅𝑣𝑑𝑅𝑔𝑑𝑣𝑑differential-d𝑑\displaystyle\int_{0}^{1}\frac{f\left(Rv(t)\right)}{R}g(t)v(t)dt∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_v ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t =2⁒∫01/2f⁒(R⁒v⁒(t))R⁒g⁒(t)⁒v⁒(t)⁒𝑑tβ‰₯2⁒∫β1/2f⁒(R⁒v⁒(t))R⁒g⁒(t)⁒v⁒(t)⁒𝑑tabsent2superscriptsubscript012𝑓𝑅𝑣𝑑𝑅𝑔𝑑𝑣𝑑differential-d𝑑2superscriptsubscript𝛽12𝑓𝑅𝑣𝑑𝑅𝑔𝑑𝑣𝑑differential-d𝑑\displaystyle=2\int_{0}^{1/2}\frac{f(Rv(t))}{R}g(t)v(t)dt\geq 2\int_{\beta}^{1% /2}\frac{f(Rv(t))}{R}g(t)v(t)dt= 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_v ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t β‰₯ 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_v ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
β‰₯2⁒∫β1/2f⁒(R⁒ϕ⁒(t))R⁒g⁒(t)⁒ϕ⁒(t)⁒𝑑tβ‰₯2⁒ϕ⁒(Ξ²)⁒C~⁒f⁒(R⁒ϕ⁒(Ξ²))R>1,absent2superscriptsubscript𝛽12𝑓𝑅italic-ϕ𝑑𝑅𝑔𝑑italic-ϕ𝑑differential-d𝑑2italic-ϕ𝛽~𝐢𝑓𝑅italic-ϕ𝛽𝑅1\displaystyle\geq 2\int_{\beta}^{1/2}\frac{f(R\phi(t))}{R}g(t)\phi(t)dt\geq 2% \phi(\beta)\tilde{C}\frac{f\left(R\phi(\beta)\right)}{R}>1,β‰₯ 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_R italic_Ο• ( italic_t ) ) end_ARG start_ARG italic_R end_ARG italic_g ( italic_t ) italic_Ο• ( italic_t ) italic_d italic_t β‰₯ 2 italic_Ο• ( italic_Ξ² ) over~ start_ARG italic_C end_ARG divide start_ARG italic_f ( italic_R italic_Ο• ( italic_Ξ² ) ) end_ARG start_ARG italic_R end_ARG > 1 ,

whence relation (3.10) holds.

Define Οƒ=τ⁒|u|H01𝜎𝜏subscript𝑒superscriptsubscript𝐻01\sigma=\tau|u|_{H_{0}^{1}}italic_Οƒ = italic_Ο„ | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and the functions h,h~:[r,R]→ℝ:β„Ž~β„Žβ†’π‘Ÿπ‘…β„h,\tilde{h}\colon[r,R]\to\mathbb{R}italic_h , over~ start_ARG italic_h end_ARG : [ italic_r , italic_R ] β†’ blackboard_R,

h⁒(Οƒ)=1βˆ’βˆ«01f⁒(σ⁒v⁒(t))σ⁒g⁒(t)⁒v⁒(t)⁒𝑑t,β„ŽπœŽ1superscriptsubscript01π‘“πœŽπ‘£π‘‘πœŽπ‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle h(\sigma)=1-\int_{0}^{1}\frac{f(\sigma v(t))}{\sigma}g(t)v(t)dt,italic_h ( italic_Οƒ ) = 1 - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_f ( italic_Οƒ italic_v ( italic_t ) ) end_ARG start_ARG italic_Οƒ end_ARG italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t ,
h~⁒(Οƒ)=Οƒβˆ’βˆ«01f⁒(σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t.~β„ŽπœŽπœŽsuperscriptsubscript01π‘“πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle\tilde{h}(\sigma)=\sigma-\int_{0}^{1}f(\sigma v(t))g(t)v(t)dt.over~ start_ARG italic_h end_ARG ( italic_Οƒ ) = italic_Οƒ - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .

Clearly, hβ„Žhitalic_h and h~~β„Ž\tilde{h}over~ start_ARG italic_h end_ARG are dependent on the chosen u𝑒uitalic_u, so one should write husubscriptβ„Žπ‘’h_{u}italic_h start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT and h~usubscript~β„Žπ‘’\tilde{h}_{u}over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT, respectively. However, for simplicity, we omit the subscript in the following analysis, as the dependence on u𝑒uitalic_u is clear from the context.

We now show that the function hβ„Žhitalic_h is decreasing under either (H2) or (H3), while the function h~~β„Ž\tilde{h}over~ start_ARG italic_h end_ARG is concave under (H4).

(a) In case (H2) holds, the mapping

t↦f⁒(t)t⁒ is increasing on β’(0,R].maps-to𝑑𝑓𝑑𝑑 is increasing on 0𝑅t\mapsto\frac{f(t)}{t}\,\text{ is increasing on }(0,R].italic_t ↦ divide start_ARG italic_f ( italic_t ) end_ARG start_ARG italic_t end_ARG is increasing on ( 0 , italic_R ] .

The conclusion now follows directly, as σ⁒v⁒(t)∈[0,R]πœŽπ‘£π‘‘0𝑅\sigma v(t)\in[0,R]italic_Οƒ italic_v ( italic_t ) ∈ [ 0 , italic_R ] for all t∈[0,1]𝑑01t\in[0,1]italic_t ∈ [ 0 , 1 ] and Οƒβˆˆ[r,R]πœŽπ‘Ÿπ‘…\sigma\in[r,R]italic_Οƒ ∈ [ italic_r , italic_R ].

(b) Under condition (H3), we prove that h′⁒(Οƒ)<0superscriptβ„Žβ€²πœŽ0h^{\prime}(\sigma)<0italic_h start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) < 0 for all Οƒβˆˆ[r,R]πœŽπ‘Ÿπ‘…\sigma\in[r,R]italic_Οƒ ∈ [ italic_r , italic_R ]. Using the symmetry of v𝑣vitalic_v, a straightforward computation yields

h′⁒(Οƒ)=2Οƒ2⁒∫01/2(f⁒(σ⁒v⁒(t))βˆ’f′⁒(σ⁒v⁒(t))⁒σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t.superscriptβ„Žβ€²πœŽ2superscript𝜎2superscriptsubscript012π‘“πœŽπ‘£π‘‘superscriptπ‘“β€²πœŽπ‘£π‘‘πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑h^{\prime}(\sigma)=\frac{2}{\sigma^{2}}\int_{0}^{1/2}\left(f(\sigma v(t))-f^{% \prime}(\sigma v(t))\sigma v(t)\right)g(t)v(t)dt.italic_h start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) = divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( italic_f ( italic_Οƒ italic_v ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ italic_v ( italic_t ) ) italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .

Let ℬℬ\mathcal{B}caligraphic_B denote the set

ℬ={t∈[0,1/2]:σ⁒v⁒(t)≀r⁒ϕ⁒(Ξ²)}.ℬconditional-set𝑑012πœŽπ‘£π‘‘π‘Ÿitalic-ϕ𝛽\mathcal{B}=\{t\in[0,1/2]\,:\,\sigma v(t)\leq r\phi(\beta)\}.caligraphic_B = { italic_t ∈ [ 0 , 1 / 2 ] : italic_Οƒ italic_v ( italic_t ) ≀ italic_r italic_Ο• ( italic_Ξ² ) } .

From (3.11), it follows that

(3.12) β„¬βŠ‚[0,Ξ²] and [Ξ²,1/2]βŠ‚[0,1/2]βˆ–β„¬.formulae-sequenceℬ0𝛽 and π›½12012ℬ\mathcal{B}\subset[0,\beta]\quad\text{ and }\quad[\beta,1/2]\subset[0,1/2]% \setminus\mathcal{B}.caligraphic_B βŠ‚ [ 0 , italic_Ξ² ] and [ italic_Ξ² , 1 / 2 ] βŠ‚ [ 0 , 1 / 2 ] βˆ– caligraphic_B .

Since the derivative of f𝑓fitalic_f is nonnegative, one has

2Οƒ2β’βˆ«β„¬(f⁒(σ⁒v⁒(t))βˆ’f′⁒(σ⁒v⁒(t))⁒σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t2superscript𝜎2subscriptβ„¬π‘“πœŽπ‘£π‘‘superscriptπ‘“β€²πœŽπ‘£π‘‘πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle\frac{2}{\sigma^{2}}\int_{\mathcal{B}}\left(f(\sigma v(t))-f^{% \prime}(\sigma v(t))\sigma v(t)\right)g(t)v(t)dtdivide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT ( italic_f ( italic_Οƒ italic_v ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ italic_v ( italic_t ) ) italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t ≀2Οƒ2β’βˆ«β„¬f⁒(σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t.absent2superscript𝜎2subscriptβ„¬π‘“πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle\leq\frac{2}{\sigma^{2}}\int_{\mathcal{B}}f(\sigma v(t))g(t)v(t)dt.≀ divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT italic_f ( italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .

Now, using the monotonicity of v𝑣vitalic_v and f𝑓fitalic_f, along with (3.11) and (3.12), we obtain

(3.13) 2Οƒ2β’βˆ«β„¬f⁒(σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t=2Οƒ3β’βˆ«β„¬f⁒(σ⁒v⁒(t))⁒g⁒(t)⁒σ⁒v⁒(t)⁒𝑑t≀2⁒B~Οƒ3⁒f⁒(r⁒ϕ⁒(Ξ²))⁒r⁒ϕ⁒(Ξ²).2superscript𝜎2subscriptβ„¬π‘“πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑2superscript𝜎3subscriptβ„¬π‘“πœŽπ‘£π‘‘π‘”π‘‘πœŽπ‘£π‘‘differential-d𝑑2~𝐡superscript𝜎3π‘“π‘Ÿitalic-Ο•π›½π‘Ÿitalic-ϕ𝛽\frac{2}{\sigma^{2}}\int_{\mathcal{B}}f(\sigma v(t))g(t)v(t)dt=\frac{2}{\sigma% ^{3}}\int_{\mathcal{B}}f(\sigma v(t))g(t)\sigma v(t)dt\leq\frac{2\tilde{B}}{% \sigma^{3}}f(r\phi(\beta))r\phi(\beta).divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT italic_f ( italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t = divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT italic_f ( italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_Οƒ italic_v ( italic_t ) italic_d italic_t ≀ divide start_ARG 2 over~ start_ARG italic_B end_ARG end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_f ( italic_r italic_Ο• ( italic_Ξ² ) ) italic_r italic_Ο• ( italic_Ξ² ) .

On the other hand, from (H3), since σ⁒v⁒(t)∈[r⁒ϕ⁒(Ξ²),R]πœŽπ‘£π‘‘π‘Ÿitalic-ϕ𝛽𝑅\sigma v(t)\in[r\phi(\beta),R]italic_Οƒ italic_v ( italic_t ) ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] for all t∈[0,1/2]βˆ–β„¬π‘‘012ℬt\in[0,1/2]\setminus\mathcal{B}italic_t ∈ [ 0 , 1 / 2 ] βˆ– caligraphic_B, we derive

(3.14) 2Οƒ2⁒∫[0,1/2]βˆ–β„¬(f′⁒(σ⁒v⁒(t))⁒σ⁒v⁒(t)βˆ’f⁒(σ⁒v⁒(t)))⁒g⁒(t)⁒v⁒(t)⁒𝑑t2superscript𝜎2subscript012ℬsuperscriptπ‘“β€²πœŽπ‘£π‘‘πœŽπ‘£π‘‘π‘“πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑\displaystyle\frac{2}{\sigma^{2}}\int_{[0,1/2]\setminus\mathcal{B}}\left(f^{% \prime}(\sigma v(t))\sigma v(t)-f(\sigma v(t))\right)g(t)v(t)dtdivide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT [ 0 , 1 / 2 ] βˆ– caligraphic_B end_POSTSUBSCRIPT ( italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ italic_v ( italic_t ) ) italic_Οƒ italic_v ( italic_t ) - italic_f ( italic_Οƒ italic_v ( italic_t ) ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t
β‰₯2Οƒ3⁒(1βˆ’1ΞΌ)⁒∫[0,1/2]βˆ–β„¬g⁒(t)⁒f′⁒(σ⁒v⁒(t))⁒σ2⁒v⁒(t)2⁒𝑑tabsent2superscript𝜎311πœ‡subscript012ℬ𝑔𝑑superscriptπ‘“β€²πœŽπ‘£π‘‘superscript𝜎2𝑣superscript𝑑2differential-d𝑑\displaystyle\geq\frac{2}{\sigma^{3}}\left(1-\frac{1}{\mu}\right)\int_{[0,1/2]% \setminus\mathcal{B}}g(t)f^{\prime}(\sigma v(t))\sigma^{2}v(t)^{2}dtβ‰₯ divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) ∫ start_POSTSUBSCRIPT [ 0 , 1 / 2 ] βˆ– caligraphic_B end_POSTSUBSCRIPT italic_g ( italic_t ) italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ italic_v ( italic_t ) ) italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β‰₯2Οƒ3⁒(1βˆ’1ΞΌ)⁒∫β1/2βˆ’Ξ²g⁒(t)⁒f′⁒(σ⁒v⁒(t))⁒σ2⁒v⁒(t)2⁒𝑑tabsent2superscript𝜎311πœ‡superscriptsubscript𝛽12𝛽𝑔𝑑superscriptπ‘“β€²πœŽπ‘£π‘‘superscript𝜎2𝑣superscript𝑑2differential-d𝑑\displaystyle\geq\frac{2}{\sigma^{3}}\left(1-\frac{1}{\mu}\right)\int_{\beta}^% {1/2-\beta}g(t)f^{\prime}(\sigma v(t))\sigma^{2}v(t)^{2}dtβ‰₯ divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 - italic_Ξ² end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ italic_v ( italic_t ) ) italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β‰₯2Οƒ3⁒λ⁒(1βˆ’1ΞΌ)⁒∫β1/2βˆ’Ξ²g⁒(t)⁒σ2⁒v⁒(t)2⁒𝑑tβ‰₯2⁒C~Οƒ3⁒λ⁒(1βˆ’1ΞΌ)⁒r2⁒ϕ⁒(Ξ²)2.absent2superscript𝜎3πœ†11πœ‡superscriptsubscript𝛽12𝛽𝑔𝑑superscript𝜎2𝑣superscript𝑑2differential-d𝑑2~𝐢superscript𝜎3πœ†11πœ‡superscriptπ‘Ÿ2italic-Ο•superscript𝛽2\displaystyle\geq\frac{2}{\sigma^{3}}\lambda\left(1-\frac{1}{\mu}\right)\int_{% \beta}^{1/2-\beta}g(t)\sigma^{2}v(t)^{2}dt\geq\frac{2\tilde{C}}{\sigma^{3}}% \lambda\left(1-\frac{1}{\mu}\right)r^{2}\phi(\beta)^{2}.β‰₯ divide start_ARG 2 end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_Ξ» ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 - italic_Ξ² end_POSTSUPERSCRIPT italic_g ( italic_t ) italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t β‰₯ divide start_ARG 2 over~ start_ARG italic_C end_ARG end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_Ξ» ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Ο• ( italic_Ξ² ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

Whence, the above two inequalities (3.13) and (3.14), together with (3.7), yield

h′⁒(Οƒ)≀2⁒B~Οƒ3⁒f⁒(r⁒ϕ⁒(Ξ²))⁒r⁒ϕ⁒(Ξ²)βˆ’2⁒C~Οƒ3⁒λ⁒(1βˆ’1ΞΌ)⁒r2⁒ϕ⁒(Ξ²)2<0,superscriptβ„Žβ€²πœŽ2~𝐡superscript𝜎3π‘“π‘Ÿitalic-Ο•π›½π‘Ÿitalic-ϕ𝛽2~𝐢superscript𝜎3πœ†11πœ‡superscriptπ‘Ÿ2italic-Ο•superscript𝛽20h^{\prime}(\sigma)\leq\frac{2\tilde{B}}{\sigma^{3}}f(r\phi(\beta))r\phi(\beta)% -\frac{2\tilde{C}}{\sigma^{3}}\lambda\left(1-\frac{1}{\mu}\right)r^{2}\phi(% \beta)^{2}<0,italic_h start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) ≀ divide start_ARG 2 over~ start_ARG italic_B end_ARG end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_f ( italic_r italic_Ο• ( italic_Ξ² ) ) italic_r italic_Ο• ( italic_Ξ² ) - divide start_ARG 2 over~ start_ARG italic_C end_ARG end_ARG start_ARG italic_Οƒ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_Ξ» ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Ο• ( italic_Ξ² ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < 0 ,

as expected.

(c) Assume that (H4) holds, and let Οƒβˆˆ[r,R]πœŽπ‘Ÿπ‘…\sigma\in[r,R]italic_Οƒ ∈ [ italic_r , italic_R ]. Given this assumption and the symmetry of v𝑣vitalic_v, we obtain

h~⁒(Οƒ)=Οƒβˆ’2⁒∫β1/2f⁒(σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)⁒𝑑t.~β„ŽπœŽπœŽ2superscriptsubscript𝛽12π‘“πœŽπ‘£π‘‘π‘”π‘‘π‘£π‘‘differential-d𝑑\widetilde{h}(\sigma)=\sigma-2\int_{\beta}^{1/2}f(\sigma v(t))g(t)v(t)\,dt.over~ start_ARG italic_h end_ARG ( italic_Οƒ ) = italic_Οƒ - 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) italic_d italic_t .

Since σ⁒v⁒(t)∈[r⁒ϕ⁒(Ξ²),R]πœŽπ‘£π‘‘π‘Ÿitalic-ϕ𝛽𝑅\sigma v(t)\in[r\phi(\beta),R]italic_Οƒ italic_v ( italic_t ) ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] for all t∈[Ξ²,1/2]𝑑𝛽12t\in[\beta,1/2]italic_t ∈ [ italic_Ξ² , 1 / 2 ] by (3.11), it follows that h~~β„Ž\widetilde{h}over~ start_ARG italic_h end_ARG is of class C2⁒[r,R]superscript𝐢2π‘Ÿπ‘…C^{2}[r,R]italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ italic_r , italic_R ]. From (H4), one has

h~′′⁒(Οƒ)=βˆ’2⁒∫β1/2f′′⁒(σ⁒v⁒(t))⁒g⁒(t)⁒v⁒(t)3⁒𝑑tβ‰€βˆ’2⁒C~⁒ϕ⁒(Ξ²)3⁒min[r⁒ϕ⁒(Ξ²),R]⁑f′′⁒(β‹…)<0,superscript~β„Žβ€²β€²πœŽ2superscriptsubscript𝛽12superscriptπ‘“β€²β€²πœŽπ‘£π‘‘π‘”π‘‘π‘£superscript𝑑3differential-d𝑑2~𝐢italic-Ο•superscript𝛽3subscriptπ‘Ÿitalic-ϕ𝛽𝑅superscript𝑓′′⋅0\widetilde{h}^{\prime\prime}(\sigma)=-2\int_{\beta}^{1/2}f^{\prime\prime}(% \sigma v(t))g(t)v(t)^{3}\,dt\leq-2\widetilde{C}\phi(\beta)^{3}\min_{[r\phi(% \beta),R]}f^{\prime\prime}(\cdot)<0,over~ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_Οƒ ) = - 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_Οƒ italic_v ( italic_t ) ) italic_g ( italic_t ) italic_v ( italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_d italic_t ≀ - 2 over~ start_ARG italic_C end_ARG italic_Ο• ( italic_Ξ² ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_min start_POSTSUBSCRIPT [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( β‹… ) < 0 ,

which shows that h~~β„Ž\widetilde{h}over~ start_ARG italic_h end_ARG is strictly concave on [r,R]π‘Ÿπ‘…[r,R][ italic_r , italic_R ].

Consequently, in all three cases, from (3.10), it follows immediately that Ξ±u′⁒(Ο„)superscriptsubscriptπ›Όπ‘’β€²πœ\alpha_{u}^{\prime}(\tau)italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο„ ) has exactly one zero within the interval (r|u|H01,R|u|H01)π‘Ÿsubscript𝑒superscriptsubscript𝐻01𝑅subscript𝑒superscriptsubscript𝐻01\left(\frac{r}{|u|_{H_{0}^{1}}},\frac{R}{|u|_{H_{0}^{1}}}\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ). Moreover, Ξ±uβ€²superscriptsubscript𝛼𝑒′\alpha_{u}^{\prime}italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is positive on (r|u|H01,s⁒(u))π‘Ÿsubscript𝑒superscriptsubscript𝐻01𝑠𝑒\left(\frac{r}{|u|_{H_{0}^{1}}},s(u)\right)( divide start_ARG italic_r end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG , italic_s ( italic_u ) ), while Ξ±uβ€²subscriptsuperscript𝛼′𝑒\alpha^{\prime}_{u}italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT is negative on (s⁒(u),R|u|H01)𝑠𝑒𝑅subscript𝑒superscriptsubscript𝐻01\left(s(u),\frac{R}{|u|_{H_{0}^{1}}}\right)( italic_s ( italic_u ) , divide start_ARG italic_R end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ), so condition (h1) is verified.
To prove the last assertion (h4), assume uβˆˆπ’©π‘’π’©u\in\mathcal{N}italic_u ∈ caligraphic_N. Thus, r<|u|H01<Rπ‘Ÿsubscript𝑒superscriptsubscript𝐻01𝑅r<|u|_{H_{0}^{1}}<Ritalic_r < | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT < italic_R and

|u|H012=∫01f⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑t.superscriptsubscript𝑒superscriptsubscript𝐻012superscriptsubscript01𝑓𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑|u|_{H_{0}^{1}}^{2}=\int_{0}^{1}f(u(t))g(t)u(t)dt.| italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t .

(a)’ In case that (H2) holds, since u⁒(t)β‰₯ϕ⁒(Ξ²)⁒|u|H01β‰₯r⁒ϕ⁒(Ξ²)𝑒𝑑italic-ϕ𝛽subscript𝑒superscriptsubscript𝐻01π‘Ÿitalic-ϕ𝛽u(t)\geq\phi(\beta)|u|_{H_{0}^{1}}\geq r\phi(\beta)italic_u ( italic_t ) β‰₯ italic_Ο• ( italic_Ξ² ) | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT β‰₯ italic_r italic_Ο• ( italic_Ξ² ) by (3.11), we compute

E′′⁒(u)⁒(u,u)superscript𝐸′′𝑒𝑒𝑒\displaystyle E^{\prime\prime}(u)(u,u)italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) =|u|H012βˆ’βˆ«01f′⁒(u⁒(t))⁒g⁒(t)⁒u2⁒(t)⁒𝑑tabsentsubscriptsuperscript𝑒2superscriptsubscript𝐻01superscriptsubscript01superscript𝑓′𝑒𝑑𝑔𝑑superscript𝑒2𝑑differential-d𝑑\displaystyle=|u|^{2}_{H_{0}^{1}}-\int_{0}^{1}f^{\prime}(u(t))g(t)u^{2}(t)dt= | italic_u | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t
=∫01f⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑tβˆ’βˆ«01f′⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)2⁒𝑑tabsentsuperscriptsubscript01𝑓𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑superscriptsubscript01superscript𝑓′𝑒𝑑𝑔𝑑𝑒superscript𝑑2differential-d𝑑\displaystyle=\int_{0}^{1}f(u(t))g(t)u(t)dt-\int_{0}^{1}f^{\prime}(u(t))g(t)u(% t)^{2}dt= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
β‰€βˆ’2⁒∫01/2θ⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑tabsent2superscriptsubscript012πœƒπ‘’π‘‘π‘”π‘‘π‘’π‘‘differential-d𝑑\displaystyle\leq-2\int_{0}^{1/2}\theta(u(t))g(t)u(t)dt≀ - 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_ΞΈ ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t
β‰€βˆ’2⁒r⁒ϕ⁒(Ξ²)⁒∫β1/2θ⁒(u⁒(t))⁒g⁒(t)⁒𝑑tabsent2π‘Ÿitalic-ϕ𝛽superscriptsubscript𝛽12πœƒπ‘’π‘‘π‘”π‘‘differential-d𝑑\displaystyle\leq-2r\phi(\beta)\int_{\beta}^{1/2}\theta(u(t))g(t)dt≀ - 2 italic_r italic_Ο• ( italic_Ξ² ) ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_ΞΈ ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_d italic_t
β‰€βˆ’2⁒C~⁒r⁒ϕ⁒(Ξ²)⁒min[r⁒ϕ⁒(Ξ²),R]⁑θ⁒(β‹…)<0.absent2~πΆπ‘Ÿitalic-ϕ𝛽subscriptπ‘Ÿitalic-Ο•π›½π‘…πœƒβ‹…0\displaystyle\leq-2\tilde{C}r\phi(\beta)\min_{[r\phi(\beta),R]}\theta(\cdot)<0.≀ - 2 over~ start_ARG italic_C end_ARG italic_r italic_Ο• ( italic_Ξ² ) roman_min start_POSTSUBSCRIPT [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT italic_ΞΈ ( β‹… ) < 0 .

(b)’ Assume (H3) is satisfied. Then, taking Οƒ=|u|H01𝜎subscript𝑒superscriptsubscript𝐻01\sigma=|u|_{H_{0}^{1}}italic_Οƒ = | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and performing the same computations as in the estimates for the derivative of hβ„Žhitalic_h in (b), we have

E′′⁒(u)⁒(u,u)superscript𝐸′′𝑒𝑒𝑒\displaystyle E^{\prime\prime}(u)(u,u)italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) =2⁒∫01/2(f⁒(u⁒(t))βˆ’f′⁒(u⁒(t))⁒u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑tabsent2superscriptsubscript012𝑓𝑒𝑑superscript𝑓′𝑒𝑑𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑\displaystyle=2\int_{0}^{1/2}\left(f(u(t))-f^{\prime}(u(t))u(t)\right)g(t)u(t)dt= 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( italic_f ( italic_u ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t
≀2⁒∫0Ξ²f⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑t+2⁒∫β1/2(f⁒(u⁒(t))βˆ’f′⁒(u⁒(t))⁒u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑tabsent2superscriptsubscript0𝛽𝑓𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑2superscriptsubscript𝛽12𝑓𝑒𝑑superscript𝑓′𝑒𝑑𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑\displaystyle\leq 2\int_{0}^{\beta}f(u(t))g(t)u(t)dt+2\int_{\beta}^{1/2}\left(% f(u(t))-f^{\prime}(u(t))u(t)\right)g(t)u(t)dt≀ 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t + 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( italic_f ( italic_u ( italic_t ) ) - italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t
≀2⁒∫0Ξ²f⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑tβˆ’2⁒(1βˆ’1ΞΌ)⁒∫β1/2f′⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)2⁒𝑑tabsent2superscriptsubscript0𝛽𝑓𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑211πœ‡superscriptsubscript𝛽12superscript𝑓′𝑒𝑑𝑔𝑑𝑒superscript𝑑2differential-d𝑑\displaystyle\leq 2\int_{0}^{\beta}f(u(t))g(t)u(t)dt-2\left(1-\frac{1}{\mu}% \right)\int_{\beta}^{1/2}f^{\prime}(u(t))g(t)u(t)^{2}dt≀ 2 ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t - 2 ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
≀2⁒r⁒ϕ⁒(Ξ²)⁒(B~⁒f⁒(r⁒ϕ⁒(Ξ²))βˆ’Ξ»β’C~⁒(1βˆ’1ΞΌ)⁒r⁒ϕ⁒(Ξ²))<0,absent2π‘Ÿitalic-ϕ𝛽~π΅π‘“π‘Ÿitalic-Ο•π›½πœ†~𝐢11πœ‡π‘Ÿitalic-ϕ𝛽0\displaystyle\leq 2r\phi(\beta)\left(\tilde{B}f(r\phi(\beta))-\lambda\tilde{C}% \left(1-\frac{1}{\mu}\right){r\phi(\beta)}\right)<0,≀ 2 italic_r italic_Ο• ( italic_Ξ² ) ( over~ start_ARG italic_B end_ARG italic_f ( italic_r italic_Ο• ( italic_Ξ² ) ) - italic_Ξ» over~ start_ARG italic_C end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG italic_ΞΌ end_ARG ) italic_r italic_Ο• ( italic_Ξ² ) ) < 0 ,

where the latter inequality follows from (3.7).
(c)’ For the last case, using (3.8) from (H4) and the symmetry of v𝑣vitalic_v, we see that

E′′⁒(u)⁒(u,u)superscript𝐸′′𝑒𝑒𝑒\displaystyle E^{\prime\prime}(u)(u,u)italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) =|u|H012βˆ’2⁒∫β1/2f′⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)2⁒𝑑tabsentsubscriptsuperscript𝑒2superscriptsubscript𝐻012superscriptsubscript𝛽12superscript𝑓′𝑒𝑑𝑔𝑑𝑒superscript𝑑2differential-d𝑑\displaystyle=|u|^{2}_{H_{0}^{1}}-2\int_{\beta}^{1/2}f^{\prime}(u(t))g(t)u(t)^% {2}dt= | italic_u | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t
=2⁒∫β1/2f⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)⁒𝑑tβˆ’2⁒∫β1/2f′⁒(u⁒(t))⁒g⁒(t)⁒u⁒(t)2⁒𝑑t.absent2superscriptsubscript𝛽12𝑓𝑒𝑑𝑔𝑑𝑒𝑑differential-d𝑑2superscriptsubscript𝛽12superscript𝑓′𝑒𝑑𝑔𝑑𝑒superscript𝑑2differential-d𝑑\displaystyle=2\int_{\beta}^{1/2}f(u(t))g(t)u(t)dt-2\int_{\beta}^{1/2}f^{% \prime}(u(t))g(t)u(t)^{2}dt.= 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) italic_d italic_t - 2 ∫ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u ( italic_t ) ) italic_g ( italic_t ) italic_u ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t .

Since u⁒(t)∈[r⁒ϕ⁒(Ξ²),R]π‘’π‘‘π‘Ÿitalic-ϕ𝛽𝑅u(t)\in[r\phi(\beta),R]italic_u ( italic_t ) ∈ [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] for all t∈[Ξ²,1/2]𝑑𝛽12t\in[\beta,1/2]italic_t ∈ [ italic_Ξ² , 1 / 2 ], the conclusion follows immediately by an argument similar to that in (a)’ , that is,

E′′⁒(u)⁒(u,u)β‰€βˆ’2⁒C~⁒r⁒ϕ⁒(Ξ²)⁒min[r⁒ϕ⁒(Ξ²),R]⁑θ~⁒(β‹…)<0.superscript𝐸′′𝑒𝑒𝑒2~πΆπ‘Ÿitalic-ϕ𝛽subscriptπ‘Ÿitalic-ϕ𝛽𝑅~πœƒβ‹…0E^{\prime\prime}(u)(u,u)\leq-2\tilde{C}r\phi(\beta)\min_{[r\phi(\beta),R]}% \tilde{\theta}(\cdot)<0.italic_E start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_u ) ( italic_u , italic_u ) ≀ - 2 over~ start_ARG italic_C end_ARG italic_r italic_Ο• ( italic_Ξ² ) roman_min start_POSTSUBSCRIPT [ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ] end_POSTSUBSCRIPT over~ start_ARG italic_ΞΈ end_ARG ( β‹… ) < 0 .

Therefore, in all three cases, condition (h4) is verified. Summing up, we have the following result.

Theorem 3.2.

Assume (H1) and either (H2), (H3) or (H4) hold true. Then, problem (3.1) has a solution uβˆ—βˆˆKsuperscriptπ‘’βˆ—πΎu^{\ast}\in Kitalic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_K such that r<|uβˆ—|H01<Rπ‘Ÿsubscriptsuperscriptπ‘’βˆ—superscriptsubscript𝐻01𝑅r<|u^{\ast}|_{H_{0}^{1}}<Ritalic_r < | italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT < italic_R.

Proof.

As established above, assumptions (h1)-(h4) are verified, thus Theorem 2.2 guarantees the existence of a sequence unβˆˆπ’©subscript𝑒𝑛𝒩u_{n}\in\mathcal{N}italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ caligraphic_N such that

E⁒(un)β†’inf𝒩E and E′⁒(un)β†’0.formulae-sequence→𝐸subscript𝑒𝑛subscriptinfimum𝒩𝐸 and β†’superscript𝐸′subscript𝑒𝑛0E(u_{n})\to\inf_{\mathcal{N}}E\quad\text{ and }\quad E^{\prime}(u_{n})\to 0.italic_E ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ roman_inf start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT italic_E and italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_u start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) β†’ 0 .

Since L2⁒(0,1)superscript𝐿201L^{2}(0,1)italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 0 , 1 ) embeds compactly into Hβˆ’1⁒(0,1)superscript𝐻101H^{-1}(0,1)italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 0 , 1 ), the operator N𝑁Nitalic_N is completely continuous from H01⁒(0,1)superscriptsubscript𝐻0101H_{0}^{1}(0,1)italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , 1 ) into itself (see, e.g., [18]); therefore Theorem 2.4 applies and gives the conclusion. ∎

It is worth providing some commentaries on the conditions (H2), (H3), and (H4).

(i):

The first condition, (H2), naturally extends the standard condition obtained via the Nehari manifold method over the entire domain. For instance, let a>0π‘Ž0a>0italic_a > 0, p>1𝑝1p>1italic_p > 1, g≑1𝑔1g\equiv 1italic_g ≑ 1 and choose 0<r<R<∞0π‘Ÿπ‘…0<r<R<\infty0 < italic_r < italic_R < ∞ such that

(3.15) a<Ο€rpanda>1Rpβˆ’1⁒βp+1⁒(1βˆ’2⁒β)p+2,formulae-sequenceπ‘Žπœ‹superscriptπ‘Ÿπ‘andπ‘Ž1superscript𝑅𝑝1superscript𝛽𝑝1superscript12𝛽𝑝2a<\frac{\pi}{r^{p}}\quad\text{and}\quad a>\frac{1}{R^{p-1}\beta^{p+1}(1-2\beta% )^{p+2}},italic_a < divide start_ARG italic_Ο€ end_ARG start_ARG italic_r start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_ARG and italic_a > divide start_ARG 1 end_ARG start_ARG italic_R start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT italic_Ξ² start_POSTSUPERSCRIPT italic_p + 1 end_POSTSUPERSCRIPT ( 1 - 2 italic_Ξ² ) start_POSTSUPERSCRIPT italic_p + 2 end_POSTSUPERSCRIPT end_ARG ,

for some β∈(0,1/4)𝛽014\beta\in(0,1/4)italic_Ξ² ∈ ( 0 , 1 / 4 ). Then, the function f⁒(t)=a⁒tpπ‘“π‘‘π‘Žsuperscript𝑑𝑝f(t)=at^{p}italic_f ( italic_t ) = italic_a italic_t start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT satisfies (H1) and (H2). Indeed, conditions (3.15) ensure (H1), while (H2) follows directly since

t⁒f′⁒(t)βˆ’f⁒(t)=a⁒(pβˆ’1)⁒tp.𝑑superscriptπ‘“β€²π‘‘π‘“π‘‘π‘Žπ‘1superscript𝑑𝑝tf^{\prime}(t)-f(t)=a(p-1)t^{p}.italic_t italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) - italic_f ( italic_t ) = italic_a ( italic_p - 1 ) italic_t start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .

However, it is not difficult to see that this setup does not lead to multiplicity. To see this, suppose (H2) holds for two pairs of points (r1,R1)subscriptπ‘Ÿ1subscript𝑅1(r_{1},R_{1})( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and (r2,R2)subscriptπ‘Ÿ2subscript𝑅2(r_{2},R_{2})( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) with r1<R1<r2<R2subscriptπ‘Ÿ1subscript𝑅1subscriptπ‘Ÿ2subscript𝑅2r_{1}<R_{1}<r_{2}<R_{2}italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Then, as the map f⁒(t)/t𝑓𝑑𝑑f(t)/titalic_f ( italic_t ) / italic_t is increasing on [0,r2]0subscriptπ‘Ÿ2[0,r_{2}][ 0 , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] (see (a)), we have

f⁒(R1)R1<f⁒(r2)r2<Ο€A~,𝑓subscript𝑅1subscript𝑅1𝑓subscriptπ‘Ÿ2subscriptπ‘Ÿ2πœ‹~𝐴\frac{f(R_{1})}{R_{1}}<\frac{f(r_{2})}{r_{2}}<\frac{\pi}{\tilde{A}},divide start_ARG italic_f ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG < divide start_ARG italic_f ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG < divide start_ARG italic_Ο€ end_ARG start_ARG over~ start_ARG italic_A end_ARG end_ARG ,

which implies Ξ±u⁒(R1|u|H01)>0subscript𝛼𝑒subscript𝑅1subscript𝑒superscriptsubscript𝐻010\alpha_{u}\left(\frac{R_{1}}{|u|_{H_{0}^{1}}}\right)>0italic_Ξ± start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( divide start_ARG italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG | italic_u | start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) > 0 for all u∈Kβˆ–{0}𝑒𝐾0u\in K\setminus\{0\}italic_u ∈ italic_K βˆ– { 0 }, contrary to (3.10).

(ii):

Conditions (H3) and (H4) may lead to multiplicity, as they impose restrictions intrinsically linked to the values of rπ‘Ÿritalic_r and R𝑅Ritalic_R. Both conditions require an Ambrosetti-Rabinowitz-type assumption, which is often encountered in the study of the existence of solutions for nonlinear equations.

Additionally, (H3) includes an extra requirement on the derivative of f𝑓fitalic_f and the associated coefficients, while (H4) assumes that the function g𝑔gitalic_g vanishes on a small interval starting from 0 and that the function f𝑓fitalic_f is strictly convex on the interval [r⁒ϕ⁒(Ξ²),R]π‘Ÿitalic-ϕ𝛽𝑅[r\phi(\beta),R][ italic_r italic_Ο• ( italic_Ξ² ) , italic_R ]. We also remark that the three conditions (H2), (H3), and (H4) can be applied independently to different pairs (ri,Ri)subscriptπ‘Ÿπ‘–subscript𝑅𝑖(r_{i},R_{i})( italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). However, it is important to note that if (H2) is used, it should only be applied to the first pair (r1,R1)subscriptπ‘Ÿ1subscript𝑅1(r_{1},R_{1})( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), as remark (i) shows.

Acknowledgements

The author expresses gratitude to Prof. Radu Precup for his valuable insights on the subject and thorough verification of the paper.

References

  • [1] Agarwal, R., Meehan, M., O’Regan, D., Precup, R.: Location of nonnegative solutions for differential equations on finite and semi-infinite intervals. Dynam. Systems Appl. 12(3-4), 323–331 (2003)
  • [2] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press (2007)
  • [3] Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267(1), 1-32 (1981)
  • [4] Brezis, H: Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer, New York (2011)
  • [5] Cabada, A.: Green’s Functions in the Theory of Ordinary Differential Equations. Springer, NY (2014)
  • [6] Drabek, P., Pohozaev, S.I.: Positive solutions for the p-Laplacian: application of the fibering method. Proc. Royal Soc. Edinb. A 127(1), 703-726 (1997).
  • [7] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47(2), 324-353 (1974)
  • [8] Figueiredo, D. G.: Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989)
  • [9] Figueiredo, G.M., Ramos Quoirin, H., Silva, K.: Ground states of elliptic problems over cones. Calc. Var. Partial Differ. Equ. 60(1), 189 (2021)
  • [10] Galewski, M.: Localization properties for nonlinear equations involving monotone operators. Math. Meth. Appl. Sci. 43(1), 9776–9789 (2020)
  • [11] Lisei, H., Precup, R., Varga, C.: A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete Contin. Dyn. Syst. 36(7), 3775–3789 (2016)
  • [12] McLaughlin, D.P., Poliquin, R.A., Vanderwerff, J.D., Zizler, V. E.: Second-order GΓ’teaux differentiable bump functions and approximations in Banach spaces. Can. J. Math. 45(3), 612-625 (1993)
  • [13] Nehari, Z.: On a class of nonlinear second-order differential equations. Trans. Amer. Math. Soc. 95(1), 101–123 (1960)
  • [14] Nehari, Z.: Characteristic values associated with a class of nonlinear second-order differential equations. Acta Math. 105(1), 141–175 (1961)
  • [15] Szulkin, A., Weth, T.: The method of Nehari manifold. Handbook of nonconvex analysis and applications, pp. 597-632. Int. Press, Somerville, MA (2010)
  • [16] Precup, R.: Critical point localization theorems via Ekeland’s variational principle. Dynam. Systems Appl. 22(1), 355-370 (2013)
  • [17] Precup. R.: On a bounded critical point theorem of Schechter. Stud. Univ. Babeş-Bolyai Math. 58(1), 87-95 (2013)
  • [18] Precup, R.: Linear and Semilinear Partial Differential Equations: An Introduction. Berlin, Boston: De Gruyter (2013)
  • [19] Precup, R., Pucci, P., Varga, C.: A three critical points result in a bounded domain of a Banach space and applications. Differ. Integral Equ. 30(1), 555–568 (2017)
  • [20] Schechter, M.: Linking Methods in Critical Point Theory. BirkhΓ€user, Basel (1999)
  • [21] Willem, M.: Minimax Theorems. BirkhΓ€user, Boston (1996)

Related Posts

No results found.