## Abstract

In the present note we modify a linear positive Markov process of discrete type by using so called multiplicative calculus. In this framework, a convergence property and the error of approximation are established. In the final part some numerical examples are delivered.

## Authors

**O. Agratini**

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

**H. Karsli**

Bolu Abant Izzet Baysal University, Faculty of Science and Arts, Department of Mathematics, Golkoy Bolu, Turkey

## Keywords

### References

See the expanding block below.

## Paper coordinates

O. Agratini, *Modifying an approximation process using non-Newtonian calculus, *Stud. Univ. Babes-Bolyai Math. 65 (2020) no. 2, 291–301, doi: 10.24193/subbmath.2020.2.10

## About this paper

##### Journal

Studia Univ. Babes-Bolyai, Mathematica

##### Publisher Name

Babes-Bolyai University

##### Print ISSN

##### Online ISSN

2065-961x

##### Google Scholar Profile

soon

[1] Bashirov, A.E., Kurpinar, E.M., Ozyapici, A., *Multiplicative calculus and its applications*, J. Math. Anal. Appl., 337(2008), 36-48.

[2] Cai, Q.-Bo, Zhou, G., Li, J., *Statistical approximation properties of λ-Bernstein operators based on q-integers*, Open Math., 17(2019), no. 1, 487-498

[3] Catina¸s, T., *Some classes of surfaces generated by Nielson and Marshall type operators on the triangle with one curved side*, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 3, 305-314.

[4] Filip, D.A., Piatecki, C., *A non-newtonian examination of the theory of exogenous economic growth*, Mathematica Aeterna, 4(2014), no. 2, 101-117.

[5] Grossman, M., Katz, R.,* Non-Newtonian Calculus,* Lee Press, Pigeon Cove, MA, 1972.

[6] Gupta, V., Agrawal, G.,* Approximation for link Ismail-May operators*, Ann. Funct. Anal., https://doi.org/10.1007/s43034-019-00051-y, online: 13 January 2020.

[7] Mursaleen, M., Rahman, S., Ansari, K.J., *Approximation by Jakimovski-LeviatanStancu-Durrmeyer type operators*, Filomat, 33(2019), no. 6, 1517-1530.

[8] Stanley, D., *A multiplicative calculus, Primus: Problems,* Resources, and Issues in Mathematics Undergraduate Studies, 9(1999), no. 4, 310-326.