Monotone iterations for decreasing maps in ordered Banach spaces

Abstract

In this paper we propose a version of the monotone iterations method for decreasing maps in ordered Banach spaces. In some particular cses, this principle has been already applied in (3) and (4), to solve a nonlinear integral equation from biomathematics. Our thorem is new and complemnets the existing results for increasing maps (see (2, Chapter 6)).

Authors

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

ordered Banach space; increasing or decreasing map; compact map; fixed point.

Paper coordinates

R. Precup, Monotone iterations for decreasing maps in ordered Banach spaces, In: “Proceedings of the Scientific Communications Meeting of Aurel Vlaicu University, vol 14A (Arad-1996)”, Aurel Vlaicu Univ. of Arad, 1996, 105-108.

PDF

About this paper

Journal

“Proceedings of the Scientific Communications Meeting of Aurel Vlaicu University

Publisher Name

Aurel Vlaicu Univ. of Arad

DOI
Print ISSN
Online ISSN

MR: 1 667 979.

google scholar link

[1] Cristescu, R., Structuri de ordine  în spații liniare normate, Ed. Șt. Enc., București, 1983.
[2] Deimling, K., Nonlinear Functional analysis, Springer-Verlag, Berlin, 1985.
[3] Precup, R., Periodic solutions for an integral equation from biomathematics via the Leray-Schauder principle, Studia Univ. Babes-Bolyai 39 (1994), no.1, 47-58.
[4] Precup, R., Monotone technique to the initial values problem for a delay integral equation from biomathematics, Studia Univ. Babes-Bolyai 40 (1995), no.2, 63-73.

1995, 1996

Related Posts