[1] H. Amann, Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1972), 925–935. MR0320517
[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709. MR0415432
[3] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543. MR1276168
[4] R. Avery, J. Henderson and D. O’Regan, A dual of the compression-expansion fixed point theorems, Fixed Point Theory and Applications 2007 (2007), Article ID 90715, 11 pages, doi:10.1155/2007/90715. MR2358026
[5] C. Azizieh and P. Clement, A priori estimates and continuation methods for positive solutions of p–Laplace equations, J. Differential Equations 179 (2002), 213–245. MR1883743
[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. MR2759829
[7] H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, IMA Preprint Series, no. 112, 1984. cf. MR0820658
[8] D.G. de Figueiredo, Positive Solutions of Semilinear Elliptic Equations, Lecture Notes in Mathematics, vol. 957, Springer, Berlin, 1982. MR0679140
[9] L.H. Erbe. S. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640–648. MR1281534
[10] L.H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743–748. MR1204373
[11] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. MR0737190{
[12] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. MR1987179
[13] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997), 252–259. MR1440355
[14] P. Hess, Multiple solutions of some asymptotically linear elliptic boundary value problems, Lecture Notes in Mathematics 703 (1979), 145–151. MR0535334
[15] J. Jost, Partial Differential Equations, Springer, New York, 2007. MR2302683
[16] M. Kassmann, Harnack inequalities: an introduction, Boundary Value Problems 2007, Article ID 81415, 21 pages, doi:10.1155/2007/81415. MR2291922
[17] M.A. Krasnosel’ski…, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. MR0181881
[18] K. Lan and J.R.L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations 148 (1998), 407–421. MR1643199
[19] R.W. Leggett and L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688. MR0542951
[20] W.-C. Lian, F.-H. Wong and C.-C. Yeh, On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc. 124 (1996), 1117–1126. MR1328358
[21] P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24 (1982), 441–467. MR0678562
[22] M. Meehan and D. O’Regan, Positive Lp solutions of Hammerstein integral equations, Arch. Math. 76 (2001), 366–376. MR1824256
[23] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 15 (1961), 577–591. MR0159138
[24] P. Omari and F. Zanolin, An elliptic problem with arbitrarily small positive solutions, Electron. J. Differential Equations 5 (2000), 301–308. MR1799060
[25] D. O’Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Taylor and Francis, London, 2002. MR1937722
[26] D. O’Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), 383–391. MR2154122
[27] D. O’Regan and H. Wang, Positive periodic solutions of systems of second order ordinary differential equations, Positivity 10 (2006), 285–298. MR2237502
[28] R. Precup, Compression-expansion fixed point theorems in two norms, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 3 (2005), 157–163.
[29] R. Precup, Positive solutions of semi-linear elliptic problems via Krasnosel’ski… type theorems in cones and Harnack’s inequality, Mathematical Analysis and Applications, AIP Conf. Proc., vol. 835. Amer. Inst. Phys., Melville, NY, 2006, pp. 125–132. MR2258649
[30] R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal. 75 (2012), 834–851. MR2847461
[31] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus,J. Differential Equations 109 (1994), 1–7. MR1272398