[1] L. F. Costa, O. Oliveira, G. Travieso, F. A. Rodrigues, P. R. V. Boas, L. Antiqueira, M. P. Viana, and L. E. C. da Rocha, Analyzing and modeling real-world phenomena with complex networks: a survey of applications, Adv. Phys. 60, 329 (2011).
CrossRef (DOI)
[2] J. Gao, Y. Cao, W. Tung, and J. Hu, Multiscale Analysis of Complex Time Series (Wiley, Hoboken, NJ, 2007).
CroosRef (DOI)
[3] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University Press, Cambridge, 2000).
CrossRef (DOI)
[4] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. London, Ser. A 454, 903 (1998).
CrossRef (DOI)
[5] L. Lin, Y. Wang, and H. Zhou, Iterative fil tering as an alternative algorithm for empirical mode decomposition Adv. Adapt. Data Anal. 1, 543 (2009).
CrossRef (DOI)
[6] I. Daubechies, J. Lu, and H.-T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool Appl. Comput. Harmon. Anal. 30, 243 (2011).
CrossRef (DOI)
[7] T. Y. Hou and Z. Shi, Aadaptive data analysis vis sparse time-frequency representation Adv. Adapt. Data Anal. 3, 1 (2011).
CrossRef (DOI)
[8] C. Vamos and M. Craciun, Intrinsic superstatistical components of financial time series Eur. Phys. J. B 87, 301 (2014).
CrossRef (DOI)
[9] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, From time series to complex networks: The visibility graph Proc. Natl. Acad. Sci. USA 105, 4972 (2008).
CrossRef DOI)
[10] J. Iacovacci and L. Lacasa, Sequential visibility-graph motifs Phys. Rev. E 93, 042309 (2016).
CrossRef (DOI)
[11] C. Vamos, M. Craciun, and N. Suciu, Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components Eur. Phys. J. B 88, 250 (2015).
CrossRef (DOI)
[12] P. Chaudhuri and J. S. Marron, Scale space view of curve estimation Ann. Stat. 28, 408 (2000).
CrossRef (DOI)
[13] C. Vamos and M. Craciun, Automatic Trend Estimation (Springer, Dordrecht, 2012).
CrossRef (DOI)
[14] G. Rilling and P. Flandrin, One or Two Frequencies? The Empirical Mode Decomposition Answers IEEE T. Signal Proces. 56, 85 (2008).
CrossRef (DOI)
[15] Y. Yang, J. Deng, W. Tang, C. Wu, and D. Kang, Chinese J. Electron. 18, 759 (2009).
[16] Z. Wu and N. E. Huang, Proc. R. Soc. London, Ser. A 460, 1597 (2004).
[17] P. J. Brockwell and R. A. Davies, Introduction to Time Series and Forecasting (Springer-Verlag, New York, 2003).
[18] C. Torrence and G. P. Compo, A Practical Guide to Wavelet Analysis Bull. Am. Meteorol. Soc. 79, 61 (1998).
CrossRef (DOI)
[19] C. Franzke, Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis Nonlinear Proc. Geoph. 16, 65 (2009).
CrossRef (DOI)
[20] C. Vamos and M. Craciun, Serial correlation of detrended time series Phys. Rev. E 78, 036707 (2008).
CrossRef (DOI)
[21] J. D. Hamilton, Time Series Analysis (Princeton University Press, Princeton, 1994).
[22] Z. Wu, N. E. Huang, S. E. Long, and C.-K. Peng, Proc. Natl. Acad. Sci. USA 104, 14889 (2007).
[23] B. B. Mandelbrot and J. W. V. Ness, Fractional Brownian Motions, Fractional Noises and Applications SIAM Rev. 10, 422 (1968).
CrossRef (DOI)
[24] Y. Meyer, F. Sellan, and M. S. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion, J. Fourier Anal. Appl. 5, 465 (2000).
CrossRef (DOI)
[25] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E 49, 1685 (1994).
CrossRef (DOI)
[26] K. Hu, P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, Effect of trends on detrended fluctuation analysis, Phys. Rev. E 64, 011114 (2001).
CrossRef (DOI)
[27] D. Maraun, H. W. Rust, and J. Timmer, Tempting long-memory – on the interpretation of DFA results, Nonlinear Proc. Geoph. 11, 495 (2004).
CrossRef (DOI)
[28] C. Heneghan and G. McDarby, Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes, Phys. Rev. E 62, 6103 (2000).
CrossRef (DOI)
[29] N. Suciu, C. Vamos, J. Vanderborght, H. Hardelauf, and H. Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42, W04409 (2006).
CrossRef (DOI)
[30] N. Suciu, Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69, 114 (2014).
CrossRef (DOI)
[31] N. Suciu, L. Schuler, S. Attinger, and P. Knabner, Towards a filtered density function approach for reactive transport in groundwater, Adv. Water Resour. 90, 83 (2016).
CrossRef (DOI)
[32] L. Calvet, A. Fisher, and B. Mandelbrot, technical report, Cowles Foundation Discussion Paper No. 1165, 1997.
[33] S. J. Taylor, Asset Price Dynamics, Volatility, and Prediction (Princeton University Press, Princeton, 2007).
CrossRef (DOI)
[34] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, On instantaneous frequency, Adv. Adapti. Data Anal. 1, 177 (2009).
CrossRef (DOI)
[35] E. Bedrosian, A product theorem for Hilbert transforms, Proc. IEEE 51, 868 (1963).
CrossREf (DOI)
[36] A. H. Nuttall and E. Bedrosian, On the quadrature approximation to the Hilbert transform of modulated signals, Proc. IEEE 54, 1458 (1966).
CrossRef (DOI)
[37] J. B. Ramsey and C. Lampart, The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income, Stud. Nonlinear Dyn. E. 3, 23 (1998).
CrossRef (DOI)
[38] S. D. Meyers, B. G. Kelly, and J. J. O’Brien, An introduction to Wavelet analysis in ocenography and meteorology: with application to the dispersion of Yanai Waves, Mon. Weather Rev. 121, 2858 (1993).
CrossRef (DOI)
[39] M. B. Priestley, Wavelets and time-dependent spectral analysis, J. Time Ser. Anal. 17, 85 (1996).
CrossRef (DOI)
[40] C. Goodall, in Modern Methods of Data Analysis, edited by J. Fox and J. S. Long (Sage Publications, Newbury Park, CA, 1990), pp. 126–176.