Multiscale structure of time series revealed by the monotony spectrum

Abstract

Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.

Authors

C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Cite this paper as:

C. Vamoş, Multiscale structure of time series revealed by the monotony spectrum, Physical Review E 95 (3) (2017) 033310.
doi: 10.1103/physreve.95.033310 

References

PDF

Not available yet.

About this paper

Publisher Name
DOI
Print ISSN
Online ISSN

MR

?

ZBL

?

[1] L. F. Costa, O. Oliveira, G. Travieso, F. A. Rodrigues, P. R. V. Boas, L. Antiqueira, M. P. Viana, and L. E. C. da Rocha, Analyzing and modeling real-world phenomena with complex networks: a survey of applications, Adv. Phys. 60, 329 (2011).
CrossRef (DOI)

[2] J. Gao, Y. Cao, W. Tung, and J. Hu, Multiscale Analysis of Complex Time Series (Wiley, Hoboken, NJ, 2007).
CroosRef (DOI)

[3] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University Press, Cambridge, 2000).
CrossRef (DOI)

[4] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. London, Ser. A 454, 903 (1998).
CrossRef (DOI)

[5] L. Lin, Y. Wang, and H. Zhou, Iterative fil tering as an alternative algorithm for empirical mode decomposition  Adv. Adapt. Data Anal. 1, 543 (2009).
CrossRef (DOI)

[6] I. Daubechies, J. Lu, and H.-T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool Appl. Comput. Harmon. Anal. 30, 243 (2011).
CrossRef (DOI)

[7] T. Y. Hou and Z. Shi, Aadaptive data analysis vis sparse time-frequency representation Adv. Adapt. Data Anal. 3, 1 (2011).
CrossRef (DOI)

[8] C. Vamos and M. Craciun, Intrinsic superstatistical components of financial time series Eur. Phys. J. B 87, 301 (2014).
CrossRef (DOI)

[9] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, From time series to complex networks: The visibility graph  Proc. Natl. Acad. Sci. USA 105, 4972 (2008).
CrossRef DOI)

[10] J. Iacovacci and L. Lacasa, Sequential visibility-graph motifs Phys. Rev. E 93, 042309 (2016).
CrossRef (DOI)

[11] C. Vamos, M. Craciun, and N. Suciu, Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components Eur. Phys. J. B 88, 250 (2015).
CrossRef (DOI)

[12] P. Chaudhuri and J. S. Marron, Scale space view of curve estimation Ann. Stat. 28, 408 (2000).
CrossRef (DOI)

[13] C. Vamos and M. Craciun, Automatic Trend Estimation (Springer, Dordrecht, 2012).
CrossRef (DOI)

[14] G. Rilling and P. Flandrin, One or Two Frequencies? The Empirical Mode Decomposition Answers IEEE T. Signal Proces. 56, 85 (2008).
CrossRef (DOI)

[15] Y. Yang, J. Deng, W. Tang, C. Wu, and D. Kang, Chinese J. Electron. 18, 759 (2009).

[16] Z. Wu and N. E. Huang, Proc. R. Soc. London, Ser. A 460, 1597 (2004).

[17] P. J. Brockwell and R. A. Davies, Introduction to Time Series and Forecasting (Springer-Verlag, New York, 2003).

[18] C. Torrence and G. P. Compo, A Practical Guide to Wavelet Analysis Bull. Am. Meteorol. Soc. 79, 61 (1998).
CrossRef (DOI)

[19] C. Franzke, Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis Nonlinear Proc. Geoph. 16, 65 (2009).
CrossRef (DOI)

[20] C. Vamos and M. Craciun, Serial correlation of detrended time series Phys. Rev. E 78, 036707 (2008).
CrossRef (DOI)

[21] J. D. Hamilton, Time Series Analysis (Princeton University Press, Princeton, 1994).

[22] Z. Wu, N. E. Huang, S. E. Long, and C.-K. Peng, Proc. Natl. Acad. Sci. USA 104, 14889 (2007).

[23] B. B. Mandelbrot and J. W. V. Ness, Fractional Brownian Motions, Fractional Noises and Applications SIAM Rev. 10, 422 (1968).
CrossRef (DOI)

[24] Y. Meyer, F. Sellan, and M. S. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion, J. Fourier Anal. Appl. 5, 465 (2000).
CrossRef (DOI)

[25] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E 49, 1685 (1994).
CrossRef (DOI)

[26] K. Hu, P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, Effect of trends on detrended fluctuation analysis, Phys. Rev. E 64, 011114 (2001).
CrossRef (DOI)

[27] D. Maraun, H. W. Rust, and J. Timmer, Tempting long-memory – on the interpretation of DFA results, Nonlinear Proc. Geoph. 11, 495 (2004).
CrossRef (DOI)

[28] C. Heneghan and G. McDarby, Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes, Phys. Rev. E 62, 6103 (2000).
CrossRef (DOI)

[29] N. Suciu, C. Vamos, J. Vanderborght, H. Hardelauf, and H. Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42, W04409 (2006).
CrossRef (DOI)

[30] N. Suciu, Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69, 114 (2014).
CrossRef (DOI)

[31] N. Suciu, L. Schuler, S. Attinger, and P. Knabner, Towards a filtered density function approach for reactive transport in groundwater, Adv. Water Resour. 90, 83 (2016).
CrossRef (DOI)

[32] L. Calvet, A. Fisher, and B. Mandelbrot, technical report, Cowles Foundation Discussion Paper No. 1165, 1997.

[33] S. J. Taylor, Asset Price Dynamics, Volatility, and Prediction (Princeton University Press, Princeton, 2007).
CrossRef (DOI)

[34] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, On instantaneous frequency, Adv. Adapti. Data Anal. 1, 177 (2009).
CrossRef (DOI)

[35] E. Bedrosian, A product theorem for Hilbert transforms, Proc. IEEE 51, 868 (1963).
CrossREf (DOI)

[36] A. H. Nuttall and E. Bedrosian, On the quadrature approximation to the Hilbert transform of modulated signals, Proc. IEEE 54, 1458 (1966).
CrossRef (DOI)

[37] J. B. Ramsey and C. Lampart, The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income, Stud. Nonlinear Dyn. E. 3, 23 (1998).
CrossRef (DOI)

[38] S. D. Meyers, B. G. Kelly, and J. J. O’Brien, An introduction to Wavelet analysis in ocenography and meteorology: with application to the dispersion of Yanai Waves, Mon. Weather Rev. 121, 2858 (1993).
CrossRef (DOI)

[39] M. B. Priestley, Wavelets and time-dependent spectral analysis, J. Time Ser. Anal. 17, 85 (1996).
CrossRef (DOI)

[40] C. Goodall, in Modern Methods of Data Analysis, edited by J. Fox and J. S. Long (Sage Publications, Newbury Park, CA, 1990), pp. 126–176.

soon

2017

Related Posts