Abstract

The inexact secant method

\([x_{k-1},x_{k};F]s_{k}=-F(x_k) +r_k\),

\( x_{k+1}=x_k+s_k\), \( k=1,2,\ldots\), \( x_0,x_1 \in {\mathbb R}^n\) is considered for solving the nonlinear system \( F(x)=0\), where \(F:{\mathbb R}^n \rightarrow {\mathbb R}^n\) is a nonlinear mapping.

We study the similar setting of the inexact Newton method, i.e., when the linear system (involving the divided differences) at each step is not solved exactly, and an error term \(r_k\) (called residual) is considered.

Under certain standard assumptions, we characterize the superlinear convergence and the r-convergence order of the secant method in terms of the residuals. We also give a sufficient result for linear convergence.

Authors

E. Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis)

Keywords

nonlinear system of equations; secant method; r-convergence order; inexact method; residual; error term; linear convergence.

Cite this paper as:

E. Cătinaş, A note on inexact secant methods, Rev. Anal. Numér. Théor. Approx., 25 (1996) nos. 1-2, pp. 33-41.

PDF

About this paper

Print ISSN

2457-6794

Online ISSN

2501-059X

Google Scholar Profile

[1] G. Goldner, M. Balazs, Observații asupra diferențelor divizate și asupra metodei coardei, Revista de Analiza Numerica si Teoria Aproximatiei, 3 (1974) no. 1, pp. 19–30 (in Romanian).
[English title: Remarks on divided differences and method of chords]
article

[2] J.E. Dennis Jr., J.J. More, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), pp. 46–89.
CrossRef

[3] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982) 2, pp. 400–408.
CrossRef

[4] G. Goldner, M. Balazs, Asupra metodei coardei si a unei modificari a ei pentru rezolvarea ecuațiilor operationale neliniare, Stud. Cerc. Mat., 20 (1968), pp. 981–990 (in Romanian).
[English title: On the method of chord and on its modification for solving the nonlinear operator equations]

[5] I. Muntean, Analiza functionala, ”Babes-Bolyai” University, Cluj-Napoca, 1993 (in Romanian)
[English title: Functional Analysis]

[6] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
CrossRef

Paper (preprint) in HTML form

A NOTE ON INEXACT SECANT METHODS

EMIL CĂTINAS

(Cluj-Napoca)

1. INTRODUCTION

Given a nonlinear function F:nnF:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, in order to approximate a solution of the equation

F(x)=0,F(x)=0,

the classical Newton method is usually applied:

xk+1=xkF(xk)1F(xk),k=0,1,,x0𝐑n given ,x_{k+1}=x_{k}-F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right),\quad k=0,1,\ldots,\quad x_{0}\in\mathbf{R}^{n}\text{ given },

or, equivalently,

F(xk)sk=F(xk), where sk=xk+1xk.F^{\prime}\left(x_{k}\right)s_{k}=-F\left(x_{k}\right),\quad\text{ where }s_{k}=x_{k+1}-x_{k}.

But in many cases it turns out that the above linear systems are not solved exactly, so, in order to study the convergence and the convergence order of the method, an error term must be taken into account.

In the paper [3] there are considered the inexact Newton methods:

F(xk)sk=F(xk)+rkF^{\prime}\left(x_{k}\right)s_{k}=-F\left(x_{k}\right)+r_{k}

Local convergence of these methods is studied and also necessary and sufficient conditions on the magnitude of rkr_{k} are imposed for a certain convergence order to be achieved.

In the present paper we shall show how these results can be easily extended to the chord method, which has a theoretically higher efficiency index than the Newton method, since at each step for forming the linear system, only the values of FF at xkx_{k} and xk1x_{k-1} are needed. Unfortunately the chord method is not very safe for all practical cases since, for example, a too fast convergence of one component in the sequence (xk)\left(x_{k}\right) may lead to overflow errors or division by zero.

DEFINITION 1.1 [4] We call the first order divided difference of FF on the distinct points x,ynx,y\in\mathbb{R}^{n}, denoted by [x,y;F][x,y;F], a linear operator belonging to (n)\mathscr{E}\left(\mathbb{R}^{n}\right) and satisfying

  1. 1.

    [x,y;F](yx)=F(y)F(x)[x,y;F](y-x)=F(y)-F(x);

  2. 2.

    If FF is Fréchet differentiable at z𝐑′′z\in\mathbf{R}^{\prime\prime} then limx,yz[x,y;F]=F(z)\lim_{x,y\rightarrow z}[x,y;F]=F^{\prime}(z).

It is known [1] that there are several ways to choose the linearly independent first order divided differences for given F,x,yF,x,y, depending on the dimension n𝐍n\in\mathbf{N}.

For example if x=(xi)i=1,n,y=(yi)i=1,n𝐑nx=\left(x_{i}\right)_{i=1,n},y=\left(y_{i}\right)_{i=1,n}\in\mathbf{R}^{n}, with xiyi,i=1,n¯x_{i}\neq y_{i},i=\overline{1,n} then we can take

[x,y;F]i,j=Fi(y1,,yj,xj+1,,xn)Fi(y1,,yj1,xj,,xn)yjxj.[x,y;F]_{i,j}=\frac{F_{i}\left(y_{1},\ldots,y_{j},x_{j+1},\ldots,x_{n}\right)-F_{i}\left(y_{1},\ldots,y_{j-1},x_{j},\ldots,x_{n}\right)}{y_{j}-x_{j}}.

The chord method is given by the iteration

xk+1=xk[xk1,xk;F]1F(xk),k=1,2,,x0,x1𝐑n given x_{k+1}=x_{k}-\left[x_{k-1},x_{k};F\right]^{-1}F\left(x_{k}\right),\quad k=1,2,\ldots,\quad x_{0},x_{1}\in\mathbf{R}^{n}\text{ given }

and it has the convergence order 1+52\frac{1+\sqrt{5}}{2}. The inexact chord method studied is

[xk1,xk;F]sk=F(xk)+rk,k=1,2,,x0,x1𝐑n given \left[x_{k-1},x_{k};F\right]s_{k}=-F\left(x_{k}\right)+r_{k},\quad k=1,2,\ldots,\quad x_{0},x_{1}\in\mathbf{R}^{n}\text{ given } (1.1)

the residual rkr_{k} satisfying rk/F(xk)ηk\left\|r_{k}\right\|/\left\|F\left(x_{k}\right)\right\|\leq\eta_{k}, where \|\cdot\| is a given norm in 𝐑n\mathbf{R}^{n}.
We shall suppose hereafter that the function FF obeys the following conditions:
C1) There exists an x𝐑nx^{*}\in\mathbf{R}^{n} such that F(x)=0F\left(x^{*}\right)=0;
C2) FF is continuously Fréchet differentiable at xx^{*};
C3) F(x)F^{\prime}\left(x^{*}\right) is nonsingular.

2. LOCAL CONVERGENCE OF INEXACT CHORD METHODS

As in the case of inexact Newton methods, when the forcing sequence (ηk)\left(\eta_{k}\right) is uniformly less than one, an attraction theorem can b. stated, i.e. for any sufficiently good initially guesses x0x_{0} and x1x_{1}, the sequence ( xkx_{k} ) converges to xx^{*}.

Lemma 2.1 If the conditions C1)-C3) hold, then for any γ>0\gamma>0 there exists ε>0\varepsilon>0 such that if x,yB(x,ε)={z𝐑nzxε}x,y\in B\left(x^{*},\varepsilon\right)=\left\{z\in\mathbf{R}^{n}\mid\left\|z-x^{*}\right\|\leq\varepsilon\right\} then [x,y;F][x,y;F] is nonsingular and

  1. 1.

    [x,y;F]F(x)γ\left|\left|[x,y;F]-F^{\prime}\left(x^{*}\right)\right|\right|\leq\gamma;

  2. 2.

    [x,y;F]1F(x)1γ\left\|[x,y;F]^{-1}-F^{\prime}\left(x^{*}\right)^{-1}\right\|\leq\gamma.

Lemma 2.2 If FF is differentiable at xx^{*}, then for any γ>0\gamma>0 there exists ε>0\varepsilon>0 such that

F(y)F(x)F(x)(yx)γyx,\left\|F(y)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(y-x^{*}\right)\right\|\leq\gamma\left\|y-x^{*}\right\|,

if yxε\left\|y-x^{*}\right\|\leq\varepsilon.
The lemmas are immediate consequences of Definition 1.1, respectively of the definition of F(x)F^{\prime}\left(x^{*}\right).

THEOREM 2.3 Suppose that ηkη¯<q<1\eta_{k}\leq\bar{\eta}<q<1 for all k𝐍k\in\mathbf{N} and write μ=max{F(x),F(x)1}\mu=\max\left\{\left\|F^{\prime}\left(x^{*}\right)\right\|,\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|\right\}. Then there exists ε0\varepsilon\geq 0 such that if x0x1B(x,ε)x_{0}x_{1}\in B\left(x^{*},\varepsilon\right) are chosen to satisfy x1xqμ2x0x\left\|x_{1}-x^{*}\right\|\leq\frac{q}{\mu^{2}}\left\|x_{0}-x^{*}\right\| then the sequence (xk)\left(x_{k}\right) given by (1.1) converges to xx^{*}, and, moreover, the following inequalities hold:

xk+1xqxkx,k0,\left\|x_{k+1}-x^{*}\right\|_{*}\leq q\left\|x_{k}-x^{*}\right\|_{*},\quad k\geq 0, (2.1)

where y=F(x)y\|y\|_{*}=\left\|F^{\prime}\left(x^{*}\right)y\right\|.
Proof. From the definition of μ\mu we get

1μyyμy, for all y𝐑n\frac{1}{\mu}\|y\|\leq\|y\|_{*}\leq\mu\|y\|,\text{ for all }y\in\mathbf{R}^{n} (2.2)

Since η¯q\bar{\eta}\leq q, there exists γ>0\gamma>0 sufficiently small that

(1+γμ)(η¯(1+γμ)+2γμ)q.(1+\gamma\mu)(\bar{\eta}(1+\gamma\mu)+2\gamma\mu)\leq q.

Now, by Lemmas 2.1 and 2.2, choose ε0\varepsilon\geq 0 sufficiently small that

[x,y;F]F(x)γ\displaystyle\left\|[x,y;F]-F^{\prime}\left(x^{*}\right)\right\|\leq\gamma (2.3)
[x,y;F]1F(x)1γ\displaystyle\left\|[x,y;F]^{-1}-F^{\prime}\left(x^{*}\right)^{-1}\right\|\leq\gamma (2.4)
F(y)F(x)F(x)(yx)γyx,\displaystyle\left\|F(y)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(y-x^{*}\right)\right\|\leq\gamma\left\|y-x^{*}\right\|, (2.5)

for xxμ2ε\left\|x-x^{*}\right\|\leq\mu^{2}\varepsilon and yxμ2ε\left\|y-x^{*}\right\|\leq\mu^{2}\varepsilon.
We prove (2.1) by induction.
For k=0k=0, by (2.2) we get

1μx1xx1xqμ2x0xqμx0x\frac{1}{\mu}\left\|x_{1}-x^{*}\right\|_{*}\leq\left\|x_{1}-x^{*}\right\|\leq\frac{q}{\mu^{2}}\left\|x_{0}-x^{*}\right\|\leq\frac{q}{\mu}\left\|x_{0}-x^{*}\right\|_{*}

i.e. (2.1) hold.

Supposing now that it holds for i=0,1,,k1i=0,1,\ldots,k-1, it follows that

xkxμxkxμqkx0xμ2qkx0x<μ2ε\left\|x_{k}-x^{*}\right\|\leq\mu\left\|x_{k}-x^{*}\right\|_{*}\leq\mu q^{k}\left\|x_{0}-x^{*}\right\|_{*}\leq\mu^{2}q^{k}\left\|x_{0}-x^{*}\right\|<\mu^{2}\varepsilon

so that (2.3)-(2.5) hold for x=xk1x=x_{k-1} and y=xky=x_{k}.
By Lemma 2.1 we have now from (1.1) that xk+1x_{k+1} exists. Moreover, since

F(x)(xk+1x)=(I+F(x)([xk1,xk;F]1F(x)1))\displaystyle\qquad F^{\prime}\left(x^{*}\right)\left(x_{k+1}-x^{*}\right)=\left(I+F^{\prime}\left(x^{*}\right)\left(\left[x_{k-1},x_{k};F\right]^{-1}-F^{\prime}\left(x^{*}\right)^{-1}\right)\right)
(rk+([xk1,xk;F]F(x))(xkx)(F(xk)F(x)F(x)(xkx)))\displaystyle\left(r_{k}+\left(\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right)\left(x_{k}-x^{*}\right)-\left(F\left(x_{k}\right)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right)\right)
F(xk)=F(x)(xkx)+(F(xk)F(x)F(x)(xkx)),F\left(x_{k}\right)=F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)+\left(F\left(x_{k}\right)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right),

taking norms, using (2.3)-(2.5) and the choice of γ\gamma we obtain

xk+1x(1+F(x)[xk1,xk;F]1F(x)1)(rk+[xk1,xk;F]F(x)xkx++F(xk)F(x)F(x)(xkx)(1+γμ)(ηkF(xk)+γxkx+γxkx)(1+γμ)(ηk(xkx+γxkx)+2γxkx)(1+γμ)(η¯(1+γμ)+2γμ)xkxqxkx\begin{gathered}\left\|x_{k+1}-x^{*}\right\|*\leq\left(1+\left\|F^{\prime}\left(x^{*}\right)\right\|\left\|\left[x_{k-1},x_{k};F\right]^{-1}-F^{\prime}\left(x^{*}\right)^{-1}\right\|\right)\\ \cdot\left(\left\|r_{k}\right\|+\left\|\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right\|\cdot\left\|x_{k}-x^{*}\right\|+\right.\\ +\left\|F\left(x_{k}\right)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right\|\leq\\ \leq(1+\gamma\mu)\left(\eta_{k}\left\|F\left(x_{k}\right)\right\|+\gamma\left\|x_{k}-x^{*}\right\|+\gamma\left\|x_{k}-x^{*}\right\|\right)\leq\\ \leq(1+\gamma\mu)\left(\eta_{k}\left(\left\|x_{k}-x^{*}\right\|_{*}+\gamma\left\|x_{k}-x^{*}\right\|\right)+2\gamma\left\|x_{k}-x^{*}\right\|\right)\leq\\ \leq(1+\gamma\mu)(\bar{\eta}(1+\gamma\mu)+2\gamma\mu)\left\|x_{k}-x^{*}\right\|\left\|{}_{*}\leq q\right\|x_{k}-x^{*}\|_{*}\end{gathered}

which proves the linear convergence of (xk)\left(x_{k}\right).

3. RATE OF CONVERGENCE OF INEXACT CHORD METHODS

In this section the convergence order of inexact chord methods is characterized in terms of the rate of convergence of the relative residuals and of residuals.

DEFINITION 3.1 [3] Let (xk)\left(x_{k}\right) be a sequence which converges to xx^{*}. Then 1. the sequence (xk)\left(x_{k}\right) converges to xx^{*} superlinearly if

xk+1x=o(xkx) as k;\left\|x_{k+1}-x^{*}\right\|=o\left(\left\|x_{k}-x^{*}\right\|\right)\text{ as }k\rightarrow\infty;
  1. 2.

    the sequence (xk)\left(x_{k}\right) converges to xx^{*} with weak order at least q(q>1)q(q>1) if

lim supkxkx1/qk<1\limsup_{k\rightarrow\infty}\left\|x_{k}-x^{*}\right\|^{1/q^{k}}<1

LEMMA 3.2[3]Let α=max{F(x)+12β,2β}\alpha=\max\left\{\left\|F^{\prime}\left(x^{*}\right)\right\|+\frac{1}{2\beta},2\beta\right\}, where β=F(x)1\beta=\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|.
Then the following inequalities hold:

1αyxF(y)αyx,\frac{1}{\alpha}\left\|y-x^{*}\right\|\leq\|F(y)\|\leq\alpha\left\|y-x^{*}\right\|,

for yx\left\|y-x^{*}\right\| sufficiently small.
THEOREM 3.3 Assume that the sequence (xk)\left(x_{k}\right) given by (1.1) converges to xx^{*}. Then xkxx_{k}\rightarrow x^{*} superlinearly if and only if

rk=o(F(xk)), as k.\left\|r_{k}\right\|=o\left(\left\|F\left(x_{k}\right)\right\|\right),\text{ as }k\rightarrow\infty.

Proof. Assume that xkxx_{k}\rightarrow x^{*} superlinearly. Since

rk=(F(xk)\displaystyle r_{k}=\left(F\left(x_{k}\right)-\right. F(x)F(x)(xkx))([xk1,xk;F]F(x))(xkx)+\displaystyle\left.F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right)-\left(\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right)\left(x_{k}-x^{*}\right)+
+(F(x)+([xk1,xk;F]F(x)))(xk+1x),\displaystyle+\left(F^{\prime}\left(x^{*}\right)+\left(\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right)\right)\left(x_{k+1}-x^{*}\right),

taking norms,

rkF(xk)F(x)F(x)(xkx)+[xk1,xk;F]F(x)xkx+(F(x)+[xk1,xk;F]F(x))xk+1x==o(xkx)+o(1)xkx+(F(x)+o(1))o(xkx)==o(xkx)=o(F(xk)), as k,\begin{gathered}\left\|r_{k}\right\|\leq\left\|F\left(x_{k}\right)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right\|+\left\|\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right\|\\ \left\|x_{k}-x^{*}\right\|+\left(\left\|F^{\prime}\left(x^{*}\right)\right\|+\left\|\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right\|\right)\left\|x_{k+1}-x^{*}\right\|=\\ =o\left(\left\|x_{k}-x^{*}\right\|\right)+o(1)\left\|x_{k}-x^{*}\right\|+\left(\left\|F^{\prime}\left(x^{*}\right)\right\|+o(1)\right)o\left(\left\|x_{k}-x^{*}\right\|\right)=\\ =o\left(\left\|x_{k}-x^{*}\right\|\right)=o\left(\left\|F\left(x_{k}\right)\right\|\right),\text{ as }k\rightarrow\infty,\end{gathered}

by Lemmas 2.1, 2.2 and 3.2.
Conversely, assume that rk=o(F(xk))\left\|r_{k}\right\|=o\left(\left\|F\left(x_{k}\right)\right\|\right). As in the proof of theorem 2.3,

xk+1x(F(x)1+[xk1,xk;F]1F(x)1)(rk++[xk1,xk;F]F(x)xkx+F(xk)F(x)F(x)(xkx))==(F(x)1+o(1))(o(F(xk))+o(1)xkx+o(xkx))==o(F(xk))+o(xkx)=o(xkx) as k,\begin{gathered}\left\|x_{k+1}-x^{*}\right\|\leq\left(\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|+\left\|\left[x_{k-1},x_{k};F\right]^{-1}-F^{\prime}\left(x^{*}\right)^{-1}\right\|\right)\left(\left\|r_{k}\right\|+\right.\\ \left.+\left\|\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right\|\left\|x_{k}-x^{*}\right\|+\left\|F\left(x_{k}\right)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right\|\right)=\\ =\left(\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|+o(1)\right)\left(o\left(\left\|F\left(x_{k}\right)\right\|\right)+o(1)\left\|x_{k}-x^{*}\right\|+o\left(\left\|x_{k}-x^{*}\right\|\right)\right)=\\ =o\left(\left\|F\left(x_{k}\right)\right\|\right)+o\left(\left\|x_{k}-x^{*}\right\|\right)=o\left(\left\|x_{k}-x^{*}\right\|\right)\text{ as }k\rightarrow\infty,\end{gathered}

again by Lemmas 2.1, 2.2 and 3.2.

Definition 3.4 [4] Given the distinct points x,y,z𝐑nx,y,z\in\mathbf{R}^{n}, the second order divided difference of FF on x,yx,y and zz is a linear operator [x,y,z;F](𝐑n,𝒫(𝐑n))[x,y,z;F]\in\mathscr{L}\left(\mathbf{R}^{n},\mathscr{P}\left(\mathbf{R}^{n}\right)\right) such that

  1. 1.

    [x,y,z;F](zx)=[y,z;F][x,y;F][x,y,z;F](z-x)=[y,z;F]-[x,y;F] and

  2. 2.

    if FF is twice differentiable at u𝐑nu\in\mathbf{R}^{n} then

limx,y,zu[x,y,z;F]=12F′′(u)\lim_{x,y,z\rightarrow u}[x,y,z;F]=\frac{1}{2}F^{\prime\prime}(u)

\square

Lemma 3.5 If there exist ε>0\varepsilon>0 and K0K\geq 0 such that for all x,yB(x,ε)x,y\in B\left(x^{*},\varepsilon\right) we have
then

[x,x,y;F]K\left\|\left[x^{*},x,y;F\right]\right\|\leq K
[x,y;F]F(x)K(xx+yx) for all x,yB(x,ε).\left\|[x,y;F]-F^{\prime}\left(x^{*}\right)\right\|\leq K\left(\left\|x-x^{*}\right\|+\left\|y-x^{*}\right\|\right)\quad\text{ for all }x,y\in B\left(x^{*},\varepsilon\right).

Proof. By Definition 3.4 we have

[x,y;F]F(x)=[x,y;F][x,x;F]==[x,y;F][x,x;F]+[x,x;F][x,x;F]==[x,x,y;F](yx)+[x,x,x;F](xx)K(yx+xx)\begin{gathered}\left\|[x,y;F]-F^{\prime}\left(x^{*}\right)\right\|=\left\|[x,y;F]-\left[x^{*},x^{*};F\right]\right\|=\\ =\left\|[x,y;F]-\left[x^{*},x;F\right]+\left[x^{*},x;F\right]-\left[x^{*},x^{*};F\right]\right\|=\\ =\left\|\left[x^{*},x,y;F\right]\left(y-x^{*}\right)+\left[x^{*},x^{*},x;F\right]\left(x-x^{*}\right)\right\|\leq K\left(\left\|y-x^{*}\right\|+\left\|x-x^{*}\right\|\right)\end{gathered}

\square

Remark 3.6 The condition imposed in the above Lemma holds, for example, when FF is twice continuously differentiable at xx^{*}.

Definition 3.7 [6] The mapping FF^{\prime} is Hölder continuous with exponent p(0<p1)p(0<p\leq 1) at xx^{*} if there exists L0L\geq 0 such that

F(y)F(x)Lyxp\left\|F^{\prime}(y)-F^{\prime}\left(x^{*}\right)\right\|\leq L\left\|y-x^{*}\right\|^{p}

for px\left\|p-x^{*}\right\| sufficiently small. \square

Lemma 3.8 [6] If FF ’ is Hölder continuous with exponent pp at xx^{*}, then there exists L0L^{\prime}\geq 0 such that

F(y)F(x)F(x)(yx)Lyxl+p\left\|F(y)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(y-x^{*}\right)\right\|\leq L^{\prime}\left\|y-x^{*}\right\|^{l+p}

by (3.1),
THEOREM 3.9 Assume that the sequence (xk)\left(x_{k}\right) given by (1.1) converges to xx^{*}, FF^{\prime} is Hölder continuous with exponent p0p_{0} at xx^{*}, where 1+p0=1+521+p_{0}=\frac{1+\sqrt{5}}{2}.

If xkxx_{k}\rightarrow x^{*} with weak order at least 1+p01+p_{0} then rk0r_{k}\rightarrow 0 with weak order at least 1+p01+p_{0}.

If rk0r_{k}\rightarrow 0 with weak order at least 1+p0,F1+p_{0},F satisfies the condition of Lemma 3.5 and there exists k1𝐍k_{1}\in\mathbf{N} sufficiently large such that xk1xcγ\left\|x_{k_{1}}-x^{*}\right\|\leq c\gamma and xk1+1xcγ1+p0\left\|x_{k_{1}+1}-x^{*}\right\|\leq c\gamma^{1+p_{0}}, with c,γc,\gamma given below by the weak convergence of rkr_{k}, then xkxx_{k}\rightarrow x^{*} with weak order at least 1+p01+p_{0}.

Proof. Let LL be the Hölder constant and let α\alpha and LL^{\prime} be the constants given in Lemma 3.2 and Lemma 3.8 respectively. Pick ε>0\varepsilon>0 sufficiently small that for all x,yB(x,ε)x,y\in B\left(x^{*},\varepsilon\right), there exists [x,y;F]1[x,y;F]^{-1} and

F(y)αyx[x,y;F]1αF(y)F(x)Lyxp0F(y)F(x)F(x)(yx)Lyx1+p0\begin{gathered}\|F(y)\|\leq\alpha\left\|y-x^{*}\right\|\\ \left\|[x,y;F]^{-1}\right\|\leq\alpha\\ \left\|F^{\prime}(y)-F^{\prime}\left(x^{*}\right)\right\|\leq L\left\|y-x^{*}\right\|^{p_{0}}\\ \left\|F(y)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(y-x^{*}\right)\right\|\leq L^{\prime}\left\|y-x^{*}\right\|^{1+p_{0}}\end{gathered}

Such an ε\varepsilon exists by Lemma 3.2, the continuity and the Hölder continuity of FF^{\prime} at xx^{*} and Lemma 3.8.

Asume that xkxx_{k}\rightarrow x^{*} with weak order at least 1+p01+p_{0}. Then there exist constants 0γ<10\leq\gamma<1 and k00k_{0}\geq 0 such that

xkxγ(1+p0)k for kk0\left\|x_{k}-x^{*}\right\|\leq\gamma^{\left(1+p_{0}\right)^{k}}\text{ for }k\geq k_{0} (3.1)

Now choose k1k0k_{1}\geq k_{0} sufficiently large that

xkxε for kk1\left\|x_{k}-x^{*}\right\|\leq\varepsilon\text{ for }k\geq k_{1}

From the definition of rkr_{k},

rk[xk1,xk;F]xk+1xk+F(xk)\displaystyle\left\|r_{k}\right\|\leq\left\|\left[x_{k-1},x_{k};F\right]\right\|\cdot\left\|x_{k+1}-x_{k}\right\|+\left\|F\left(x_{k}\right)\right\|\leq
α(xk+1x+xkx)+αxkx\displaystyle\quad\leq\alpha\left(\left\|x_{k+1}-x^{*}\right\|+\left\|x_{k}-x^{*}\right\|\right)+\alpha\left\|x_{k}-x^{*}\right\|

for yx\left\|y-x^{*}\right\| sufficiently small.

rkα(γ(1+p0)k+1+γ(1+p0)k)+αγ(1+p0)k=(αγp0(1+p0)k+2α)γ(1+p0)k\left\|r_{k}\right\|\leq\alpha\left(\gamma^{\left(1+p_{0}\right)^{k+1}}+\gamma^{\left(1+p_{0}\right)^{k}}\right)+\alpha\gamma^{\left(1+p_{0}\right)^{k}}=\left(\alpha\gamma^{p_{0}\left(1+p_{0}\right)^{k}}+2\alpha\right)\gamma^{\left(1+p_{0}\right)^{k}}

so that

rk3αγ(1+p0)k for kk1.\left\|r_{k}\right\|\leq 3\alpha\gamma^{\left(1+p_{0}\right)^{k}}\quad\text{ for }\quad k\geq k_{1}.

The result now follows immediately from the definition of weak order of convergence.

Conversely, assume that rk0\left\|r_{k}\right\|\rightarrow 0 with weak order at least 1+p0=1+521+p_{0}=\frac{1+\sqrt{5}}{2}. Then there exist constants 0γ<10\leq\gamma<1 and k00k_{0}\geq 0 such that

rkγ(1+p0)k for kk0.\left\|r_{k}\right\|\leq\gamma^{\left(1+p_{0}\right)^{k}}\quad\text{ for }\quad k\geq k_{0}.

Suppose also that [x,x,y,F]K\left\|\left[x^{*},x,y,F\right]\right\|\leq K for x,yB(x,ε)x,y\in B\left(x^{*},\varepsilon\right).

c=(2α(2K+L))1, if (2α(2K+L))1>1c=\left(2\alpha\left(2K+L^{\prime}\right)\right)^{-1},\quad\text{ if }\quad\left(2\alpha\left(2K+L^{\prime}\right)\right)^{-1}>1

Let

c=(2α(2K+L))1/p0, if (2α(2K+L))11c=\left(2\alpha\left(2K+L^{\prime}\right)\right)^{-1/p_{0}}\text{, if }\left(2\alpha\left(2K+L^{\prime}\right)\right)^{-1}\leq 1\text{, }

and

xkxmin{ε,cγ} for kk1,xk1+1xcγ1+pθ\left\|x_{k}-x^{*}\right\|\leq\min\{\varepsilon,c\gamma\}\text{ for }k\geq k_{1},\left\|x_{k_{1}+1}-x^{*}\right\|\leq c\gamma^{1+p_{\theta}}

and admit that k1k0k_{1}\geq k_{0} is sufficiently large that
and

αcγ(1+p0)k[1(1+p0)1k1]12 for kk1.\frac{\alpha}{c}\gamma^{\left(1+p_{0}\right)^{k}\left[1-\left(1+p_{0}\right)^{1-k_{1}}\right]}\leq\frac{1}{2}\quad\text{ for }\quad k\geq k_{1}.
xkxcγ(1+p0)kk1, for kk1\left\|x_{k}-x^{*}\right\|\leq c\gamma^{\left(1+p_{0}\right)^{k-k_{1}}},\text{ for }k\geq k_{1}

From the definition of weak of convergence if suffices to prove that
The proof is by induction. When k=k1k=k_{1} it follows from the assumption

xk1xcγ and xk1+1xcγ1+p0.\left\|x_{k_{1}}-x^{*}\right\|\leq c\gamma\text{ and }\left\|x_{k_{1}+1}-x^{*}\right\|\leq c\gamma^{1+p_{0}}.

on k1k_{1} that

xk+1x[xk1,xk;F]1(rk+[xk1,xk;F]F(x)xkx++F(xk)F(x)F(x)(xkx))α(rk+K(xkx+xk1x)xkx+Lxkx1+p0)\begin{gathered}\left\|x_{k+1}-x^{*}\right\|\leq\left\|\left[x_{k-1},x_{k};F\right]^{-1}\right\|\left(\left\|r_{k}\right\|+\left\|\left[x_{k-1},x_{k};F\right]-F^{\prime}\left(x^{*}\right)\right\|\cdot\left\|x_{k}-x^{*}\right\|+\right.\\ \left.+\left\|F\left(x_{k}\right)-F\left(x^{*}\right)-F^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right\|\right)\leq\\ \leq\alpha\left(\left\|r_{k}\right\|+K\left(\left\|x_{k}-x^{*}\right\|+\left\|x_{k-1}-x^{*}\right\|\right)\left\|x_{k}-x^{*}\right\|+L^{\prime}\left\|x_{k}-x^{*}\right\|^{1+p_{0}}\right)\leq\end{gathered}

Received 7.03.1996

Romanian Academy

"T. Popoviciu" Institute of Numerical Analysis
P.O. Box 68 Cluj-Napoca 1 RO-3400

αγ(1+p0)k+αKxkx1+p0+αKxk1xxkx+αLxkx1+p0==αγ(1+p0)k+α(K+L)xkx1+p0+αKxk1xxkxαγ(1+p0)k+α(K+L)c1+p0γ(1+p0)k+1k1+αKcγ(1+p0)kk1cγ(1+p0)k1k1==αγ(1+p0)k+α(K+L)c1+p0γ(1+p0)k+1k1+αKc2γ(1+p0)k+1k1\begin{gathered}\leq\alpha\gamma^{\left(1+p_{0}\right)^{k}}+\alpha K\left\|x_{k}-x^{*}\right\|^{1+p_{0}}+\alpha K\left\|x_{k-1}-x^{*}\right\|\left\|x_{k}-x^{*}\right\|+\alpha L^{\prime}\left\|x_{k}-x^{*}\right\|^{1+p_{0}}=\\ =\alpha\gamma^{\left(1+p_{0}\right)^{k}}+\alpha\left(K+L^{\prime}\right)\left\|x_{k}-x^{*}\right\|^{1+p_{0}}+\alpha K\left\|x_{k-1}-x^{*}\right\|\left\|x_{k}-x^{*}\right\|\leq\\ \leq\alpha\gamma^{\left(1+p_{0}\right)^{k}}+\alpha\left(K+L^{\prime}\right)c^{1+p_{0}}\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}+\alpha Kc\gamma^{\left(1+p_{0}\right)^{k-k_{1}}}\cdot c\gamma^{\left(1+p_{0}\right)^{k-1-k_{1}}}=\\ =\alpha\gamma^{\left(1+p_{0}\right)^{k}}+\alpha\left(K+L^{\prime}\right)c^{1+p_{0}}\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}+\alpha Kc^{2}\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}\end{gathered}

As in the proof of Theorem 2.3,

xk+1xαγ(1+p0)k+cγ(1+p0)k+1k1(α(K+L)cp0+αKc)=\displaystyle\left\|x_{k+1}-x^{*}\right\|\leq\alpha\gamma^{\left(1+p_{0}\right)^{k}}+c\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}\left(\alpha\left(K+L^{\prime}\right)c^{p_{0}}+\alpha Kc\right)=
=cγ(1+p0)k+1k1(αcγ(1+p0)k+1k1[(1+p0)k111]+α(K+L)cp0+αKc)\displaystyle=c\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}\left(\frac{\alpha}{c}\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}\left[\left(1+p_{0}\right)^{k_{1}-1}-1\right]+\alpha\left(K+L^{\prime}\right)c^{p_{0}}+\alpha Kc\right)\leq
cγ(1+p0)k+1k1(12+12)=cγ(1+p0)k+1k1\displaystyle\leq c\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}\left(\frac{1}{2}+\frac{1}{2}\right)=c\gamma^{\left(1+p_{0}\right)^{k+1-k_{1}}}

since 1+p01+p_{0} satisfies t2=t+1t^{2}=t+1. We get
so that xkxx_{k}\rightarrow x^{*} with weak order of convergence 1+p01+p_{0}. \square

REFERENCES

  1. 1.

    M. Balázs, G. Goldner, Remarks Concerning the Divided Differences and Chord Method, (in Romanian), Rev. Numer. Anal. and Approx. Theory, 3, Fasc. 1 (1974),19-30.

  2. 2.

    J.E. Dennis, Jr., J.J. Moré, Quasi-Newton Methods, Motivation and Theory, SIAM Rev., 19 (1977), 46-89.

  3. 3.

    R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton Methods, SIAM J. Numer. Anal., 19 (2) (1982), 400-408.

  4. 4.

    G. Goldner, M. Balázs, On the Chord Method and on a Modification of It for Solving Nonlinear Operator Equations, (in Romanian), Stud. Cerc. Mat., 20 (7) (1968) 981-990.

  5. 5.

    I. Muntean, Functional Analysis, (in Romanian), "Babes-Bolyai" University, Cluj-Napoca,1993.

  6. 6.

    J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

1996

Related Posts