Notes on higher order convex functions (V)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur (V), Bull. de la Sect. Sci. de l’Acad. Roum., 22 (1940), pp. 351-356 (in French).

PDF

About this paper

Journal

Bulletin de la Section Scientifique de l’Académie Roumaine

Publisher Name
DOI
Print ISSN
Online ISSN

[MR0002561, JFM 66.0242.02]

google scholar link

??

Paper (preprint) in HTML form

1940 f -Popoviciu- Bull. Sect. Sci. Acad. Roum. - Notes sur les fonctions convexes d_ordre superieur
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
ACADEMIE ROUMAINE BULLETIN DE LA SECTION SCIENTIFIQUE TOMEXXIT-ème  ACADEMIE ROUMAINE   BULLETIN DE LA SECTION SCIENTIFIQUE   TOMEXXIT-ème  {:[" ACADEMIE ROUMAINE "],[" BULLETIN DE LA SECTION SCIENTIFIQUE "],[" TOMEXXIT-ème "]:}\begin{aligned} & \text { ACADEMIE ROUMAINE } \\ & \text { BULLETIN DE LA SECTION SCIENTIFIQUE } \\ & \text { TOMEXXIT-ème } \end{aligned} ROMANIAN ACADEMY  BULLETIN OF THE SCIENTIFIC SECTION  TOMEXXIT-th 

NOTES ON HIGHER ORDER CONVEX FUNCTIONS (V)
BY

TIBERIU POPOVICIU

Note presented by Mr. S. Stoilow, Mc. AR, in the session of February 23, 1940 INEQUALITIES VERIFIED BY AN ORDER FUNCTION n n nnnE'T BY ITS DERIVATIVES
  1. In the two previous notes (III and IV 1 1 ^(1){ }^{1}1) we studied the inequalities of the form
(I) i = 1 m p i f ( x i ) 0 , (I) i = 1 m p i f x i 0 , {:(I)sum_(i=1)^(m)p_(i)f(x_(i)) >= 0",":}\begin{equation*} \sum_{i=1}^{m} p_{i} f\left(x_{i}\right) \geqq 0, \tag{I} \end{equation*}(I)i=1mpif(xi)0,
verified by any non-concave function of order n n nnn, points
(2)
x 1 < x 2 < < x m , x 1 < x 2 < < x m , x_(1) < x_(2) < dots < x_(m),x_{1}<x_{2}<\ldots<x_{m},x1<x2<<xm,
given and the coefficients p i p i p_(i)p_{i}pibeing independent of the function f f fff.
The necessary and sufficient conditions that the coefficients must satisfy p i p i p_(i)p_{i}pi, for this to be so, are easily obtained, for example, using the formula that we can call the fundamental formula for transforming divided differences. This formula is written 2 2 ^(2){ }^{2}2)
i = 1 m p i f ( x i ) = i = 1 n + 1 A i [ x 1 , x 2 , , x i ; f ] + i = 1 n n 1 C i [ x i , x i + 1 , , x i + n + 1 ; f ] , i = 1 m p i f x i = i = 1 n + 1 A i x 1 , x 2 , , x i ; f + i = 1 n n 1 C i x i , x i + 1 , , x i + n + 1 ; f , sum_(i=1)^(m)p_(i)f(x_(i))=sum_(i=1)^(n+1)A_(i)[x_(1),x_(2),dots,x_(i);f]+sum_(i=1)^(n-n-1)C_(i)[x_(i),x_(i+1),dots,x_(i+n+1);f],\sum_{i=1}^{m} p_{i} f\left(x_{i}\right)=\sum_{i=1}^{n+1} A_{i}\left[x_{1}, x_{2}, \ldots, x_{i} ; f\right]+\sum_{i=1}^{n-n-1} C_{i}\left[x_{i}, x_{i+1}, \ldots, x_{i+n+1} ; f\right],i=1mpif(xi)=i=1n+1HASi[x1,x2,,xi;f]+i=1nn1Ci[xi,xi+1,,xi+n+1;f],
Or A i , C i A i , C i A_(i),C_(i)A_{i}, C_{i}HASi,Ciare independent of the function f f fff.
We then obtain sufficient conditions for the inequality (r) err writing
(3) A 1 = A 2 = = A n + I = 0 , C i 0 , i = I , 2 , , m n I . (3) A 1 = A 2 = = A n + I = 0 , C i 0 , i = I , 2 , , m n I . {:(3)A_(1)=A_(2)=dots=A_(n+I)=0","quadC_(i) >= 0","quad i=I","2","dots","m-n-I.:}\begin{equation*} \mathrm{A}_{1}=\mathrm{A}_{2}=\ldots=\mathrm{A}_{n+\mathrm{I}}=0, \quad \mathrm{C}_{i} \geq 0, \quad i=\mathrm{I}, 2, \ldots, m-n-\mathbf{I} . \tag{3} \end{equation*}(3)HAS1=HAS2==HASn+I=0,Ci0,i=I,2,,mnI.
These conditions are also necessary if the function is defined only on points (2):
We can, moreover, easily obtain the coefficients A i , C i A i , C i A_(i),C_(i)A_{i}, C_{i}HASi,Ciby suitably particularizing the function f f fff. By first taking
f = ( x x 1 ) ( x x 2 ) ( x x j 1 ) , j = 1 , 2 , , n + 1 , ( pour j = 1 , f = 1 ) f = x x 1 x x 2 x x j 1 , j = 1 , 2 , , n + 1 , (  pour  j = 1 , f = 1 ) f=(x-x_(1))(x-x_(2))dots(x-x_(j-1)),j=1,2,dots,n+1,(" pour "j=1,f=1)f=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{j-1}\right), j=1,2, \ldots, n+1,(\text { pour } j=1, f=1)f=(xx1)(xx2)(xxI1),I=1,2,,n+1,( For I=1,f=1)
we get
A j = i = 1 m p i ( x i x j ) ( x i x j 1 ) = i = j m p i ( x i x 1 ) ( x i x j 1 ) A j = i = 1 m p i x i x j x i x j 1 = i = j m p i x i x 1 x i x j 1 A_(j)=sum_(i=1)^(m)p_(i)(x_(i)-x_(j))dots(x_(i)-x_(j-1))=sum_(i=j)^(m)p_(i)(x_(i)-x_(1))dots(x_(i)cdotsx_(j-1))A_{j}=\sum_{i=1}^{m} p_{i}\left(x_{i}-x_{j}\right) \ldots\left(x_{i}-x_{j-1}\right)=\sum_{i=j}^{m} p_{i}\left(x_{i}-x_{1}\right) \ldots\left(x_{i} \cdots x_{j-1}\right)HASI=i=1mpi(xixI)(xixI1)=i=Impi(xix1)(xixI1)
j = I , 2 , , n + I . j = I , 2 , , n + I . j=I,2,dots,n+I.j=I, 2, \ldots, n+I .I=I,2,,n+I.
If we then take
f = { 0 , pour x = x 1 , x 2 , , x j + n ( x x j + 1 ) ( x x j + 2 ) ( x x j + n ) , pour x = x j + n + 1 , x j + n + 2 , , x m j = 1 ; 2 , , m n I f = 0 ,  pour  x = x 1 , x 2 , , x j + n x x j + 1 x x j + 2 x x j + n ,  pour  x = x j + n + 1 , x j + n + 2 , , x m j = 1 ; 2 , , m n I f={[0","quad" pour "x=x_(1)","x_(2)","dots","x_(j+n)],[(x-x_(j+1))(x-x_(j+2))dots(x-x_(j+n))","" pour "x=x_(j+n+1)","x_(j+n+2)","dots","x_(m)],[quad j=1;2","dots","m-n-I]:}f=\left\{\begin{array}{l} 0, \quad \text { pour } x=x_{1}, x_{2}, \ldots, x_{j+n} \\ \left(x-x_{j+1}\right)\left(x-x_{j+2}\right) \ldots\left(x-x_{j+n}\right), \text { pour } x=x_{j+n+1}, x_{j+n+2}, \ldots, x_{m} \\ \quad j=1 ; 2, \ldots, m-n-\mathbf{I} \end{array}\right.f={0, For x=x1,x2,,xI+n(xxI+1)(xxI+2)(xxI+n), For x=xI+n+1,xI+n+2,,xmI=1;2,,mnI
we get
When the function f f fffis defined in an interval containing the points (2) the conditions (3) are no longer necessary for n > 1 n > 1 n > 1n>1n>1. For inequality (I) to hold, whatever the function f f fffdefined in an interval containing within it the points (2), it is necessary and sufficient that this inequality is true for any polynomial of degree n n nnnand for any function of the form ( | x λ | + x λ ) n , λ ( | x λ | + x λ ) n , λ (|x-lambda|+x-lambda)^(n),lambda(|x-\lambda|+x-\lambda)^{n}, \lambda(|xλ|+xλ)n,λbeing a constant. Indeed, any non-concave function of order n n nnnis the limit of a sequence of functions which are, at an additive polynomial of degree n n nnnnear, sums of such functions ( | x λ | + x λ ) n ( | x λ | + x λ ) n (|x-lambda|+x-lambda)^(n)(|x-\lambda|+x-\lambda)^{n}(|xλ|+xλ)nwith positive coefficients 3 3 ^(3){ }^{3}3).
We thus find the necessary and sufficient equalities.
i = 1 m p i = i = 1 m p i x i = = i = 1 m p i x i n = 0 , i = 1 m p i = i = 1 m p i x i = = i = 1 m p i x i n = 0 , sum_(i=1)^(m)p_(i)=sum_(i=1)^(m)p_(i)x_(i)=dots=sum_(i=1)^(m)p_(i)x_(i)^(n)=0,\sum_{i=1}^{m} p_{i}=\sum_{i=1}^{m} p_{i} x_{i}=\ldots=\sum_{i=1}^{m} p_{i} x_{i}^{n}=0,i=1mpi=i=1mpixi==i=1mpixin=0,
which are none other than A 1 = A 2 = = A n + 1 = 0 A 1 = A 2 = = A n + 1 = 0 A_(1)=A_(2)=dots=A_(n+1)=0A_{1}=A_{2}=\ldots=A_{n+1}=0HAS1=HAS2==HASn+1=0, expressing that the first member of (I) is identically zero for any polynomial of degree η η eta\etaη.
We then find the necessary and sufficient inequalities
i = r + 1 m p i ( x i i = r + 1 m p i x i sum_(i=r+1)^(m)p_(i)(x_(i):}\sum_{i=r+1}^{m} p_{i}\left(x_{i}\right.i=r+1mpi(xi
3 3 ^(3){ }^{3}3) Tiberiu Popoviciu, On the extension of convex functions of higher order, Bull. Math. Soc. Roumaine des Sci., 36, 75-108 (1934).
2. We can generalize the inequality ( x ) by also introducing the values ​​of the derivatives of f f fffto the points x i x i x_(i)x_{i}xi. For simplicity, let us assume f f fffdefined in an interval containing the points (2). If n > 1 n > 1 n > 1n>1n>1the function f f fff, non-concave of order n n nnn, has continuous derivatives t , t , , t ( n 1 ) t , t , , t ( n 1 ) t^('),t^(''),dots,t^((n-1))t^{\prime}, t^{\prime \prime}, \ldots, t^{(n-1)}t,t,,t(n1)and derivatives to the left of the d and to the right of order n , f g ( n ) , f d ( n ) [ f g ( n ) = ( f ( n 1 ) ) g , f d ( n ) = ( f ( n 1 ) ) d ] n , f g ( n ) , f d ( n ) f g ( n ) = f ( n 1 ) g , f d ( n ) = f ( n 1 ) d n,f_(g)^((n)),f_(d)^((n))*[f_(g)^((n))=(f^((n-1)))_(g)^('),f_(d)^((n))=(f^((n-1)))_(d)^(')]n, f_{g}^{(n)}, f_{d}^{(n)} \cdot\left[f_{g}^{(n)}=\left(f^{(n-1)}\right)_{g}^{\prime}, f_{d}^{(n)}=\left(f^{(n-1)}\right)_{d}^{\prime}\right]n,fg(n),fd(n)[fg(n)=(f(n1))g,fd(n)=(f(n1))d]in every interior point.
We can then look for the necessary and sufficient conditions so that we have
(4) i = 1 m j = 0 k i p i j f ( j ) ( x i ) 0 (4) i = 1 m j = 0 k i p i j f ( j ) x i 0 {:(4)sum_(i=1)^(m)sum_(j=0)^(k_(i))p_(ij)f^((j))(x_(i)) >= 0:}\begin{equation*} \sum_{i=1}^{m} \sum_{j=0}^{k_{i}} p_{i j} f^{(j)}\left(x_{i}\right) \geq 0 \tag{4} \end{equation*}(4)i=1mI=0kipiIf(I)(xi)0
Or 0 k i n 0 k i n 0 <= k_(i) <= n0 \leqq k_{i} \leqq n0kinAnd f ( n ) f ( n ) f^((n))f^{(n)}f(n)denotes one of the derivatives f g ( n ) , f d ( n ) f g ( n ) , f d ( n ) f_(g)^((n)),f_(d)^((n))f_{g}^{(n)}, f_{d}^{(n)}fg(n),fd(n)(not necessarily the same for all x i x i x_(i)x_{i}xi), whatever the function f f fff, non-concave of order n n nnnin an interval containing within it the points x ¯ i x ¯ i bar(x)_(i)\bar{x}_{i}x¯i. We can easily see that the necessary and sufficient conditions are still that the inequality holds for any polynomial of degree n n nnnand for any function of the form ( | x λ | + x λ ) n ( | x λ | + x λ ) n (|x-lambda|+x-lambda)^(n)(|x-\lambda|+x-\lambda)^{n}(|xλ|+xλ)n. These conditions can therefore be written
i = 1 m j = 0 k i p i j r ( r 1 ) ( r j + 1 ) x i γ j = 0 , r = 0 , 1 , , n i = 1 m j = 0 k i p i j n ( n 1 ) ( n j + 1 ) ( x i x ) n j 0 , x ( x i , x r + 1 ) , i = 1 m j = 0 k i p i j r ( r 1 ) ( r j + 1 ) x i γ j = 0 , r = 0 , 1 , , n i = 1 m j = 0 k i p i j n ( n 1 ) ( n j + 1 ) x i x n j 0 , x x i , x r + 1 , {:[sum_(i=1)^(m)sum_(j=0)^(k_(i))p_(ij)r(r-1)dots(r-j+1)x_(i)^(gamma-j)=0","quad r=0","1","dots","n],[sum_(i=1)^(m)sum_(j=0)^(k_(i))p_(ij)n(n-1)dots(n-j+1)(x_(i)-x)^(n-j) >= 0","quad x in(x_(i),x_(r+1))","]:}\begin{aligned} & \sum_{i=1}^{m} \sum_{j=0}^{k_{i}} p_{i j} r(r-1) \ldots(r-j+1) x_{i}^{\gamma-j}=0, \quad r=0,1, \ldots, n \\ & \sum_{i=1}^{m} \sum_{j=0}^{k_{i}} p_{i j} n(n-1) \ldots(n-j+1)\left(x_{i}-x\right)^{n-j} \geq 0, \quad x \in\left(x_{i}, x_{r+1}\right), \end{aligned}i=1mI=0kipiIr(r1)(rI+1)xiγI=0,r=0,1,,ni=1mI=0kipiIn(n1)(nI+1)(xix)nI0,x(xi,xr+1),
r = I ; 2 , , m I . r = I ; 2 , , m I . r=I;2,dots,m-I.r=\mathrm{I} ; 2, \ldots, m-\mathbf{I} .r=I;2,,mI.
If, moreover,
j = 0 k i | p i j | 0 , i = 1 , 2 , , m , j = 0 k i p i j 0 , i = 1 , 2 , , m , sum_(j=0)^(k_(i))|p_(ij)|!=0,quad i=1,2,dots,m,\sum_{j=0}^{k_{i}}\left|p_{i j}\right| \neq 0, \quad i=1,2, \ldots, m,I=0ki|piI|0,i=1,2,,m,
we can say that for a convex function of order n n nnnthe sign > > >>>takes place in (4).
In the case i = 1 m ( k i + 1 ) = n + 2 i = 1 m k i + 1 = n + 2 sum_(i=1)^(m)(k_(i)+1)=n+2\sum_{i=1}^{m}\left(k_{i}+1\right)=n+2i=1m(ki+1)=n+2, the inequality can be written
(5) [ x 1 , x 1 , , x 1 k 1 + I , x 2 , x 2 , , x 2 k 2 + I , , x m , x m , , x m k m + I ; f ] 0 . (5) [ x 1 , x 1 , , x 1 k 1 + I , x 2 , x 2 , , x 2 k 2 + I , , x m , x m , , x m k m + I ; f ] 0 . {:(5)[ubrace(x_(1),x_(1),dots,x_(1)ubrace)_(k_(1)+I)","ubrace(x_(2),x_(2),dots,x_(2)ubrace)_(k_(2)+I)","dots","ubrace(x_(m),x_(m),dots,x_(m)ubrace)_(k_(m)+I);f] >= 0.:}\begin{equation*} [\underbrace{x_{1}, x_{1}, \ldots, x_{1}}_{k_{1}+\mathrm{I}}, \underbrace{x_{2}, x_{2}, \ldots, x_{2}}_{k_{2}+\mathrm{I}}, \ldots, \underbrace{x_{m}, x_{m}, \ldots, x_{m}}_{k_{m}+\mathrm{I}} ; f] \geq 0 . \tag{5} \end{equation*}(5)[x1,x1,,x1k1+I,x2,x2,,x2k2+I,,xm,xm,,xmkm+I;f]0.
The first member is the limit of a divided difference of order n + I n + I n+In+In+I, when k i + I k i + I k_(i)+Ik_{i}+Iki+Iof his n + 2 n + 2 n+2n+2n+2points tend towards x i , i = I , 2 , , m x i , i = I , 2 , , m x_(i),i=I,2,dots,mx_{i}, i=I, 2, \ldots, mxi,i=I,2,,m. It is easy to obtain the explicit form of this generalized divided difference.
3. We can also establish, sometimes, the exactness of inequality (4) by expressing the first member in the form of a sum of
divided differences of order n + 1 n + 1 n+1n+1n+1(of the generalized form (5)) chosen appropriately. We will establish in this way an interesting particular inequality. Let x 1 < x 2 < < x n n x 1 < x 2 < < x n n x_(1) < x_(2) < dots < x_(n)nx_{1}<x_{2}<\ldots<x_{n} nx1<x2<<xnndistinct points of the real axis and let
φ ( x ) = ( x x 1 ) ( x x 2 ) ( x x n ) . φ ( x ) = x x 1 x x 2 x x n . varphi(x)=(x-x_(1))(x-x_(2))dots(x-x_(n)).\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right) .φ(x)=(xx1)(xx2)(xxn).
Let ξ 1 < ξ 2 < < ξ n I ξ 1 < ξ 2 < < ξ n I xi_(1) < xi_(2) < dots < xi_(n-I)\xi_{1}<\xi_{2}<\ldots<\xi_{n-\mathrm{I}}ξ1<ξ2<<ξnIthe zeros, all real, of the derivative φ ( x ) φ ( x ) varphi^(')(x)\varphi^{\prime}(x)φ(x)of the polynomial φ ( x ) φ ( x ) varphi(x)\varphi(x)φ(x). We have
x 1 < ξ 1 < x 2 < ξ 2 < < ξ n 1 < x n . x 1 < ξ 1 < x 2 < ξ 2 < < ξ n 1 < x n . x_(1) < xi_(1) < x_(2) < xi_(2) < dots < xi_(n-1) < x_(n).x_{1}<\xi_{1}<x_{2}<\xi_{2}<\ldots<\xi_{n-1}<x_{n} .x1<ξ1<x2<ξ2<<ξn1<xn.
We have the following formulas
[ x 1 , x 2 , , x n ; f ] = i = 1 n f ( x i ) φ ( x i ) , [ ξ 1 , ξ 2 , , ξ n 1 ; ] = n i = 1 n 1 f ( ξ i ) φ ( ξ i ) x 1 , x 2 , , x n ; f = i = 1 n f x i φ x i , ξ 1 , ξ 2 , , ξ n 1 ; = n i = 1 n 1 f ξ i φ ξ i [x_(1),x_(2),dots,x_(n);f]=sum_(i=1)^(n)(f(x_(i)))/(varphi^(')(x_(i))),[xi_(1),xi_(2),dots,xi_(n-1);'^(')]=nsum_(i=1)^(n-1)(f^(')(xi_(i)))/(varphi^('')(xi_(i)))\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right]=\sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{\varphi^{\prime}\left(x_{i}\right)},\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n-1} ; \prime^{\prime}\right]=n \sum_{i=1}^{n-1} \frac{f^{\prime}\left(\xi_{i}\right)}{\varphi^{\prime \prime}\left(\xi_{i}\right)}[x1,x2,,xn;f]=i=1nf(xi)φ(xi),[ξ1,ξ2,,ξn1;]=ni=1n1f(ξi)φ(ξi), [ x 1 , x 2 , , x n , ξ j , ξ j ; f ] = i = 1 n f ( x i ) ( x i ξ j ) 2 φ ( x i ) + f ( ξ j ) φ ( ξ j ) x 1 , x 2 , , x n , ξ j , ξ j ; f = i = 1 n f x i x i ξ j 2 φ x i + f ξ j φ ξ j [x_(1),x_(2),dots,x_(n),xi_(j),xi_(j);f]=sum_(i=1)^(n)(f(x_(i)))/((x_(i)-xi_(j))^(2)varphi^(')(x_(i)))+(f^(')(xi_(j)))/(varphi(xi_(j)))\left[x_{1}, x_{2}, \ldots, x_{n}, \xi_{j}, \xi_{j} ; f\right]=\sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{\left(x_{i}-\xi_{j}\right)^{2} \varphi^{\prime}\left(x_{i}\right)}+\frac{f^{\prime}\left(\xi_{j}\right)}{\varphi\left(\xi_{j}\right)}[x1,x2,,xn,ξI,ξI;f]=i=1nf(xi)(xiξI)2φ(xi)+f(ξI)φ(ξI),
j = 1 , 2 , , n 1 j = 1 , 2 , , n 1 j=1,2,dots,n-1j=1,2, \ldots, n-1I=1,2,,n1
We deduce from this
(6) j = 1 n φ ( ξ j ) φ ( ξ j ) [ x 1 , x 2 , , x n , ξ j , ξ j ; f ] = j = 1 n φ ξ j φ ξ j x 1 , x 2 , , x n , ξ j , ξ j ; f = -sum_(j=1)^(n)(varphi(xi_(j)))/(varphi^('')(xi_(j)))[x_(1),x_(2),dots,x_(n),xi_(j),xi_(j);f]=-\sum_{j=1}^{n} \frac{\varphi\left(\xi_{j}\right)}{\varphi^{\prime \prime}\left(\xi_{j}\right)}\left[x_{1}, x_{2}, \ldots, x_{n}, \xi_{j}, \xi_{j} ; f\right]=I=1nφ(ξI)φ(ξI)[x1,x2,,xn,ξI,ξI;f]=
= i = 1 n f ( x i ) φ ( x i ) ( j = 1 n 1 φ ( ξ j ) ( x i ξ j ) 2 φ ( ξ j ) ) j = 1 n 1 f ( ξ j ) φ ( ξ j ) . = i = 1 n f x i φ x i j = 1 n 1 φ ξ j x i ξ j 2 φ ξ j j = 1 n 1 f ξ j φ ξ j . =sum_(i=1)^(n)(f(x_(i)))/(varphi^(')(x_(i)))(-sum_(j=1)^(n-1)(varphi(xi_(j)))/((x_(i)-xi_(j))^(2)varphi^('')(xi_(j))))-sum_(j=1)^(n-1)(f^(')(xi_(j)))/(varphi^('')(xi_(j))).=\sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{\varphi^{\prime}\left(x_{i}\right)}\left(-\sum_{j=1}^{n-1} \frac{\varphi\left(\xi_{j}\right)}{\left(x_{i}-\xi_{j}\right)^{2} \varphi^{\prime \prime}\left(\xi_{j}\right)}\right)-\sum_{j=1}^{n-1} \frac{f^{\prime}\left(\xi_{j}\right)}{\varphi^{\prime \prime}\left(\xi_{j}\right)} .=i=1nf(xi)φ(xi)(I=1n1φ(ξI)(xiξI)2φ(ξI))I=1n1f(ξI)φ(ξI).
The polynomial
ψ ( x ) = φ ( x ) 1 n ( x x 2 + x 2 + + x n n ) φ ( x ) ψ ( x ) = φ ( x ) 1 n x x 2 + x 2 + + x n n φ ( x ) psi(x)=varphi(x)-(1)/(n)(x-(x_(2)+x_(2)+dots+x_(n))/(n))varphi^(')(x)\psi(x)=\varphi(x)-\frac{1}{n}\left(x-\frac{x_{2}+x_{2}+\ldots+x_{n}}{n}\right) \varphi^{\prime}(x)ψ(x)=φ(x)1n(xx2+x2++xnn)φ(x)
being of degree n 2 n 2 n-2n-2n2We have
ψ ( x ) φ ( x ) = j = 1 n 1 ψ ( ξ j ) ( x ξ j ) φ ( ξ j ) = j = 1 n 1 φ ( ξ j ) ( x ξ j ) φ ( ξ j ) ψ ( x ) φ ( x ) = j = 1 n 1 ψ ξ j x ξ j φ ξ j = j = 1 n 1 φ ξ j x ξ j φ ξ j (psi(x))/(varphi^(')(x))=sum_(j=1)^(n-1)(psi(xi_(j)))/((x-xi_(j))varphi^('')(xi_(j)))=sum_(j=1)^(n-1)(varphi(xi_(j)))/((x-xi_(j))varphi^('')(xi_(j)))\frac{\psi(x)}{\varphi^{\prime}(x)}=\sum_{j=1}^{n-1} \frac{\psi\left(\xi_{j}\right)}{\left(x-\xi_{j}\right) \varphi^{\prime \prime}\left(\xi_{j}\right)}=\sum_{j=1}^{n-1} \frac{\varphi\left(\xi_{j}\right)}{\left(x-\xi_{j}\right) \varphi^{\prime \prime}\left(\xi_{j}\right)}ψ(x)φ(x)=I=1n1ψ(ξI)(xξI)φ(ξI)=I=1n1φ(ξI)(xξI)φ(ξI)
And
i = 1 n 1 p ( ξ i ) ( x i ξ i ) 2 φ ( ξ i ) = [ ψ ( x ) φ ( x ) ] x = x i = = [ φ ( x ) φ ( x ) 1 n ( x x 1 + x 2 + + x n n ) ] x = x i = n 1 n . i = 1 n 1 p ξ i x i ξ i 2 φ ξ i = ψ ( x ) φ ( x ) x = x i = = φ ( x ) φ ( x ) 1 n x x 1 + x 2 + + x n n x = x i = n 1 n . {:[-sum_(i=1)^(n-1)(p(xi_(i)))/((x_(i)-xi_(i))^(2)varphi^('')(xi_(i)))=[(psi(x))/(varphi^(')(x))]_(x=x_(i))^(')=],[quad=[(varphi(x))/(varphi^(')(x))-(1)/(n)(x-(x_(1)+x_(2)+dots+x_(n))/(n))]_(x=x_(i))^(')=(n-1)/(n).]:}\begin{aligned} -\sum_{i=1}^{n-1} \frac{p\left(\xi_{i}\right)}{\left(x_{i}-\xi_{i}\right)^{2} \varphi^{\prime \prime}\left(\xi_{i}\right)} & =\left[\frac{\psi(x)}{\varphi^{\prime}(x)}\right]_{x=x_{i}}^{\prime}= \\ \quad= & {\left[\frac{\varphi(x)}{\varphi^{\prime}(x)}-\frac{1}{n}\left(x-\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right)\right]_{x=x_{i}}^{\prime}=\frac{n-1}{n} . } \end{aligned}i=1n1p(ξi)(xiξi)2φ(ξi)=[ψ(x)φ(x)]x=xi==[φ(x)φ(x)1n(xx1+x2++xnn)]x=xi=n1n.
Formula (6) can therefore be written
n I n [ x 1 , x 2 , , x n ; f ] I n [ ξ 1 , ξ 2 , , ξ n 1 ; f ] = n I n x 1 , x 2 , , x n ; f I n ξ 1 , ξ 2 , , ξ n 1 ; f = (n-I)/(n)[x_(1),x_(2),dots,x_(n);f]-(I)/(n)[xi_(1),xi_(2),dots,xi_(n-1);f^(')]=\frac{n-\mathrm{I}}{n}\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right]-\frac{\mathrm{I}}{n}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n-1} ; f^{\prime}\right]=nIn[x1,x2,,xn;f]In[ξ1,ξ2,,ξn1;f]=
= j = 1 n 1 φ ( ξ j ) φ ( ξ j ) [ x 1 , x 2 , , x n , ξ j , ξ j ; f ] = j = 1 n 1 φ ξ j φ ξ j x 1 , x 2 , , x n , ξ j , ξ j ; f =-sum_(j=1)^(n-1)(varphi(xi_(j)))/(varphi^('')(xi_(j)))[x_(1),x_(2),dots,x_(n),xi_(j),xi_(j);f]=-\sum_{j=1}^{n-1} \frac{\varphi\left(\xi_{j}\right)}{\varphi^{\prime \prime}\left(\xi_{j}\right)}\left[x_{1}, x_{2}, \ldots, x_{n}, \xi_{j}, \xi_{j} ; f\right]=I=1n1φ(ξI)φ(ξI)[x1,x2,,xn,ξI,ξI;f]
We have
φ ( ξ i ) φ ( ξ j ) > 0 , j = I , 2 , , n I φ ξ i φ ξ j > 0 , j = I , 2 , , n I -(varphi(xi_(i)))/(varphi^('')(xi_(j))) > 0,quad j=I,2,dots,n-I-\frac{\varphi\left(\xi_{i}\right)}{\varphi^{\prime \prime}\left(\xi_{j}\right)}>0, \quad j=I, 2, \ldots, n-Iφ(ξi)φ(ξI)>0,I=I,2,,nI
and we can state the following theorem
If x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xnare n n nnnreal axis points and ξ 1 , ξ 2 , , ξ n 1 ξ 1 , ξ 2 , , ξ n 1 xi_(1),xi_(2),dots,xi_(n-1)\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}ξ1,ξ2,,ξn1are the zeros of the derivative of the polynomial φ ( x ) = ( x x 1 ) ( x x 2 ) ( x x n ) φ ( x ) = x x 1 x x 2 x x n varphi(x)=(x-x_(1))(x-x_(2))dots(x-x_(n))\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)φ(x)=(xx1)(xx2)(xxn), any function f f fff, non-concave of order n n nnnin an interval containing within it the points x x xxx, verifies inequality
(7) ( n 1 ) [ x 1 , x 2 , , x n ; f ] [ ξ 1 , ξ 2 , , ξ n 1 ; t ] ( n 1 ) x 1 , x 2 , , x n ; f ξ 1 , ξ 2 , , ξ n 1 ; t quad(n-1)[x_(1),x_(2),dots,x_(n);f] >= [xi_(1),xi_(2),dots,xi_(n-1);t^(')]\quad(n-1)\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right] \geq\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n-1} ; t^{\prime}\right](n1)[x1,x2,,xn;f][ξ1,ξ2,,ξn1;t].
We have demonstrated the property in the case where the points x i x i x_(i)x_{i}xiare distinct. It also remains true, as a result of continuity, when these points are not distinct [the divided differences then being of the generalized form (5)].
Remarks I. We can easily see that if in addition the function f f fffis convex of order n n nnn, the equality in (7) can only hold if x 1 = x 2 = = x n x 1 = x 2 = = x n x_(1)=x_(2)=dots=x_(n)x_{1}=x_{2}=\ldots=x_{n}x1=x2==xn.
II. The restriction that the x i x i x_(i)x_{i}xiare within the definition interval of f f fffis not essential. The result remains the same if one or both ends of this interval coincide with a simple zero of φ ( x ) φ ( x ) varphi(x)\varphi(x)φ(x). The result is true even without restriction if the function is differentiable a sufficient number of times at the ends of the interval.
4. From the previous theorem we can draw some simple conclusions. Let us denote by ξ I ( i ) , ξ 2 ( j ) , , ξ n i ( i ) ξ I ( i ) , ξ 2 ( j ) , , ξ n i ( i ) xi_(I)^((i)),xi_(2)^((j)),dots,xi_(n-i)^((i))\xi_{\mathrm{I}}^{(i)}, \xi_{2}^{(j)}, \ldots, \xi_{n-i}^{(i)}ξI(i),ξ2(I),,ξni(i)the zeros of the order derivative i i iiiof φ ( x ) φ ( x ) varphi(x)\varphi(x)φ(x). We then have, under the same conditions,
( n 1 ) ! [ x 1 , x 2 , , x n ; f ] ( n 2 ) ! [ ξ 1 , ξ 2 , , ξ n 1 ; f ] ( n 1 ) ! x 1 , x 2 , , x n ; f ( n 2 ) ! ξ 1 , ξ 2 , , ξ n 1 ; f (n-1)![x_(1),x_(2),dots,x_(n);f] >= (n-2)![xi_(1),xi_(2),dots,xi_(n-1);f^(')] >= dots(n-1)!\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right] \geqq(n-2)!\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n-1} ; f^{\prime}\right] \geqq \ldots(n1)![x1,x2,,xn;f](n2)![ξ1,ξ2,,ξn1;f]
( n i I ) ! [ ξ I ( i ) , ξ 2 ( i ) , , ξ n i ( i ) ; f ( i ) ] [ ξ I ( n I ) ; f ( n I ) ] ( n i I ) ! ξ I ( i ) , ξ 2 ( i ) , , ξ n i ( i ) ; f ( i ) ξ I ( n I ) ; f ( n I ) dots >= (n-i-I)![xi_(I)^((i)),xi_(2)^((i)),dots,xi_(n-i)^((i));f^((i))] >= dots >= [xi_(I)^((n-I));f^((n-I))]\ldots \geq(n-i-\mathrm{I})!\left[\xi_{\mathrm{I}}^{(i)}, \xi_{2}^{(i)}, \ldots, \xi_{n-i}^{(i)} ; f^{(i)}\right] \geq \ldots \geq\left[\xi_{\mathrm{I}}^{(n-\mathrm{I})} ; f^{(n-\mathrm{I})}\right](niI)![ξI(i),ξ2(i),,ξni(i);f(i)][ξI(nI);f(nI)].
But,
[ ξ I ( n 1 ) ; f ( n 1 ) ] = f ( n 1 ) ( x 1 + x 2 + + x n n ) ξ I ( n 1 ) ; f ( n 1 ) = f ( n 1 ) x 1 + x 2 + + x n n [xi_(I)^((n-1));f^((n-1))]=f^((n-1))((x_(1)+x_(2)+dots+x_(n))/(n))\left[\xi_{\mathrm{I}}^{(n-1)} ; f^{(n-1)}\right]=f^{(n-1)}\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right)[ξI(n1);f(n1)]=f(n1)(x1+x2++xnn)
so:
If the function f f fffis non-concave of order n n nnnin an interval containing the points x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn, we have the inequality
( n 1 ) ! [ x 1 , x 2 , , x n ; f ] f ( n 1 ) ( x 1 + x 2 + + x n n ) ( n 1 ) ! x 1 , x 2 , , x n ; f f ( n 1 ) x 1 + x 2 + + x n n (n-1)![x_(1),x_(2),dots,x_(n);f] >= f^((n-1))((x_(1)+x_(2)+dots+x_(n))/(n))(n-1)!\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right] \geq f^{(n-1)}\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right)(n1)![x1,x2,,xn;f]f(n1)(x1+x2++xnn)
If f is convex of order n n nnn, equality is only possible for x 1 = x 2 = = x n x 1 = x 2 = = x n x_(1)=x_(2)=dots=x_(n)x_{1}=x_{2}=\ldots=x_{n}x1=x2==xn. Let us take, in particular, the function f = x n + r 1 f = x n + r 1 f=x^(n+r-1)f=x^{n+r-1}f=xn+r1. So if r r rrris a natural number
, the difference divided [ x 1 , x 2 , , x n ; / ] x 1 , x 2 , , x n ; / [x_(1),x_(2),dots,x_(n);//]\left[x_{1}, x_{2}, \ldots, x_{n} ; /\right][x1,x2,,xn;/]is equal to the well-known symmetric function
W r = α 1 + α 2 + + α i l = r . x 1 α 1 x 2 i α 2 x n α n W r = α 1 + α 2 + + α i l = r . x 1 α 1 x 2 i α 2 x n α n W_(r)=sum_(alpha_(1)+alpha_(2)+dots+alpha_(il)=r.)x_(1)^(alpha_(1))x_(2i)^(alpha_(2))dotsx_(n)^(alpha_(n))\mathrm{W}_{r}=\sum_{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{i l}=r .} x_{1}^{\alpha_{1}} x_{2 i}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}Wr=α1+α2++αiL=r.x1α1x2iα2xnαn
Let us denote by Wr' the same symmetric functions of ξ 1 , ξ 2 , , ξ n 1 ξ 1 , ξ 2 , , ξ n 1 xi_(1),xi_(2),dots,xi_(n-1)\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}ξ1,ξ2,,ξn1and, in general, by W r ( i ) W r ( i ) W_(r)^((i))W_{r}^{(i)}Wr(i) les fonctions symétriques correspondantes de ξ 1 ( i ) ξ 1 ( i ) xi_(1)^((i))\xi_{1}^{(i)}ξ1(i), ξ 2 ( i ) , , ξ n i ( i ) ξ 2 ( i ) , , ξ n i ( i ) xi_(2)^((i)),dots,xi_(n-i)^((i))\xi_{2}^{(i)}, \ldots, \xi_{n-i}^{(i)}ξ2(i),,ξni(i). Remarquons que la fonction x n + r 1 x n + r 1 x^(n+r-1)x^{n+r-1}xn+r1 est convexe d'ordre n n nnn dans l'intervalle ( , + ) ( , + ) (-oo,+oo)(-\infty,+\infty)(,+) si r r rrr est tun nombre naturel pair et est convexe d'ordre n n nnn dans ( 0 , + 0 , + 0,+oo0,+\infty0,+ ) si r r rrr est un nombre naturel impair. Nous pouvons donc énoncer la propriété suivante:
Si x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn sont les zéros, tous réels, d'un polynome de degré n n nnn et ξ r ( i ) , ξ 2 ( i ) , , ξ n i ( i ) ξ r ( i ) , ξ 2 ( i ) , , ξ n i ( i ) xi_(r)^((i)),xi_(2)^((i)),dots,xi_(n-i)^((i))\xi_{\mathrm{r}}^{(i)}, \xi_{2}^{(i)}, \ldots, \xi_{n-i}^{(i)}ξr(i),ξ2(i),,ξni(i) sont les zéros de la iema dérivée de ce polynome ( ξ r ( n 1 ) = x 1 + x 2 + + x n n ) ξ r ( n 1 ) = x 1 + x 2 + + x n n (xi_(r)^((n-1))=:}{:(x_(1)+x_(2)+dots+x_(n))/(n))\left(\xi_{\mathrm{r}}^{(n-1)}=\right. \left.\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right)(ξr(n1)=x1+x2++xnn), nous avons les inégalités
(8) W r ( n + r I r ) W r ( n + r 2 r ) W r ( i ) ( n + r i I r ) ( x 1 + x + + x n n ) (8) W r ( n + r I r ) W r ( n + r 2 r ) W r ( i ) ( n + r i I r ) x 1 + x + + x n n {:(8)(W_(r))/(((n+r-I)/(r))) >= (W_(r)^('))/(((n+r-2)/(r))) >= cdots >= (W_(r)^((i)))/(((n+r-i-I)/(r))) >= cdots >= ((x_(1)+x+dots+x_(n))/(n))^('):}\begin{equation*} \frac{\mathrm{W}_{r}}{\binom{n+r-\mathrm{I}}{r}} \geq \frac{\mathrm{W}_{r}^{\prime}}{\binom{n+r-2}{r}} \geq \cdots \geq \frac{\mathrm{W}_{r}^{(i)}}{\binom{n+r-i-\mathrm{I}}{r}} \geq \cdots \geq\left(\frac{x_{1}+x+\ldots+x_{n}}{n}\right)^{\prime} \tag{8} \end{equation*}(8)Wr(n+rIr)Wr(n+r2r)Wr(i)(n+riIr)(x1+x++xnn)
pour tout nombre naturel pair r 2 r 2 r >= 2r \geq 2r2.
Si, de plus, les zéros x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn sont non-négatifs, ces inégalités sont vraies aussi pour r 3 r 3 r >= 3r \geq 3r3 impair.
Le signe >=\geq ne devient = = === dans ces inégalités que si x 1 = x 2 = = x n x 1 = x 2 = = x n x_(1)=x_(2)=dots=x_(n)x_{1}=x_{2}=\ldots=x_{n}x1=x2==xn.
L'inégalité (7) est à rapprocher de l'inégalité de M. K. T o d à 4)
f ( x 1 ) + f ( x 2 ) + + f ( x n ) n f ( ξ 1 ) + f ( ξ 2 ) + + f ( ξ n 1 ) n I f x 1 + f x 2 + + f x n n f ξ 1 + f ξ 2 + + f ξ n 1 n I (f(x_(1))+f(x_(2))+cdots+f(x_(n)))/(n) >= (f(xi_(1))+f(xi_(2))+dots+f(xi_(n-1)))/(n-I)\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n} \geq \frac{f\left(\xi_{1}\right)+f\left(\xi_{2}\right)+\ldots+f\left(\xi_{n-1}\right)}{n-\mathrm{I}}f(x1)+f(x2)++f(xn)nf(ξ1)+f(ξ2)++f(ξn1)nI
valable pour toute fonction non-concave d'ordre I 5 I 5 I^(5)I^{5}I5 ). Pour f = x p f = x p f=x^(p)f=x^{p}f=xp où, p p p >=p \geqp I ou p < 0 p < 0 p < 0p<0p<0, cette inégalité revient à celle de MM. H. E. B i a y 6 6 ^(6){ }^{6}6 ) ẹt S. Kake y a 7 7 ^(7){ }^{7}7 )
x I p + x 2 p + + x n p n ξ ˙ I p + ξ 2 p + + ξ n I p n I , ( x i > 0 ) x I p + x 2 p + + x n p n ξ ˙ I p + ξ 2 p + + ξ n I p n I , x i > 0 (x_(I)^(p)+x_(2)^(p)+dots+x_(n)^(p))/(n) >= (xi^(˙)_(I)^(p)+xi_(2)^(p)+dots+xi_(n-I)^(p))/(n-I),quad(x_(i) > 0)\frac{x_{\mathrm{I}}^{p}+x_{2}^{p}+\ldots+x_{n}^{p}}{n} \geq \frac{\dot{\xi}_{\mathrm{I}}^{p}+\xi_{2}^{p}+\ldots+\xi_{n-\mathrm{I}}^{p}}{n-\mathrm{I}}, \quad\left(x_{i}>0\right)xIp+x2p++xnpnξ˙Ip+ξ2p++ξnIpnI,(xi>0)
qui est à rapprocher de (8).
Cernăufi, le 27 février 1940.

  1. 1 ) 1 ) ^(1)){ }^{1)}1) La note III est sous presse dans Mathematica, 16, 74-86. La note IV doit paraître dans cette même revue.
    2 2 ^(2){ }^{2}2 ) Pour les notations voir mes travaux antérieurs.
  2. 4 4 ^(4){ }^{4}4 ) K. Toda, On certain functional inequalities, Journal of the Hiroshima. Univ., A,, 427-40 (1934).
    5 5 ^(5){ }^{5}5 ) Voir aussi la note III, loc. cil. (1).
    6 6 ^(6){ }^{6}6 ) H. E. B r a y, On the zeros of a polynomial and of its devivatives, Aner. Journal of Math., 53, 864-872 (1931).
    7 7 ^(7){ }^{7}7 ) S.K a ke y a, On an inequality between the roots of an equation and its derivative, Proceedings Phys.-Math. Soc. Japan (3), 15, 149-154 (1933).
1940

Related Posts