On a quadrature formula of S. Golab and C. Olech

Abstract

?

Authors

Tiberiu Popoviciu
(Institutul de Calcul)

Original title (in French)

Sur une formule de quadrature de S. Golab et C. Olech

Keywords

?

Cite this paper as

T. Popoviciu, Sur une formule de quadrature de S. Golab et C. Olech, Demonstratio Math., 6 (1973), pp. 771-789 (1974) (in French)

(Collection of articles dedicated to Stanislaw Golab on his 70th birthday)

PDF

About this paper

Journal

Demonstratio Math.

Publisher Name

Warsaw University of Technology

DOI

?

Print ISSN

not available

Online ISSN

not available

Google Scholar citations

to be inserted

Paper (preprint) in HTML form

1973 a -Popoviciu- Demonstratio Math. - On a quadrature formula of S. Golab and C. Olech (1).pd
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

Tiberiu Popoviciu

ON A SQUADRATION FORMULA BY S. GOŁAB AND C. OLECH
Dedicated to MS Gołąb on the occasion of his 70 ième 70 ième  70^("ième ")70^{\text {ième }}70th birthday
  1. S. Gołąb and C. Olech demonstrated [1] that there exists one and only one number strictly between 0 and 1 ( 0 < ( 4 < 1 ) ( 0 < ( 4 < 1 ) (0 < (4 < 1)(0<(4<1)(0<(4<1), so that the quadrature formula
    (1) 0 1 f ( x ) d x = λ 0 f ( 0 ) + λ 1 f ( 0 ) + λ 2 f ( 1 ) + R ( f ) 0 1 f ( x ) d x = λ 0 f ( 0 ) + λ 1 f ( 0 ) + λ 2 f ( 1 ) + R ( f ) int_(0)^(1)f(x)dx*=lambda_(0)f(0)+lambda_(1)f(0)+lambda_(2)f(1)+R(f)\int_{0}^{1} f(x) d x \cdot=\lambda_{0} f(0)+\lambda_{1} f(0)+\lambda_{2} f(1)+R(f)01f(x)dx=λ0f(0)+λ1f(0)+λ2f(1)+R(f)
    be exact for the functions ( x 0 = x 0 = x^(0)=x^{0}=x0=) 1 , x p , x q , x r 1 , x p , x q , x r 1,x^(p),x^(q),x^(r)1, x^{p}, x^{q}, x^{r}1,xp,xq,xr, Or p , q p , q p,qp, qp,q, r r rrrare any positive numbers such that p < q < r p < q < r p < q < rp<q<rp<q<rThe fact that formula (1) is exact for functions 1, x p x p x^(p)x^{p}xp, x q , x r x q , x r x^(q),x^(r)x^{q}, x^{r}xq,xrmeans that
    (2) R ( 1 ) = R ( x p ) = R ( x q ) = R ( x r ) = 0 R ( 1 ) = R x p = R x q = R x r = 0 quad R(1)=R(x^(p))=R(x^(q))=R(x^(r))=0\quad R(1)=R\left(x^{p}\right)=R\left(x^{q}\right)=R\left(x^{r}\right)=0R(1)=R(xp)=R(xq)=R(xr)=0.
The coefficients λ 0 , λ 1 , λ 2 λ 0 , λ 1 , λ 2 lambda_(0),lambda_(1),lambda_(2)\lambda_{0}, \lambda_{1}, \lambda_{2}λ0,λ1,λ2are independent of the function f f fffand can be easily calculated using the equalities (2). We thus obtain λ 0 + λ 1 + λ 2 = 1 λ 0 + λ 1 + λ 2 = 1 lambda_(0)+lambda_(1)+lambda_(2)=1\lambda_{0}+\lambda_{1}+\lambda_{2}=1λ0+λ1+λ2=1and
(3a) λ 1 = q p ( p + 1 ) ( q + 1 ) ( ω p θ q ) λ 1 = q p ( p + 1 ) ( q + 1 ) ω p θ q quadlambda_(1)=(q-p)/((p+1)(q+1)(omega^(p)-theta^(q)))\quad \lambda_{1}=\frac{q-p}{(p+1)(q+1)\left(\omega^{p}-\theta^{q}\right)}λ1=qp(p+1)(q+1)(ωpθq);
(3b)
λ 2 = ( p + 1 ) θ p ( q + 1 ) θ q ( p + 1 ) ( q + 1 ) ( θ p ( θ q ) . λ 2 = ( p + 1 ) θ p ( q + 1 ) θ q ( p + 1 ) ( q + 1 ) θ p θ q . lambda_(2)=((p+1)theta^(p)-(q+1)theta^(q))/((p+1)(q+1)(theta^(p)-(theta^(q))).\lambda_{2}=\frac{(p+1) \theta^{p}-(q+1) \theta^{q}}{(p+1)(q+1)\left(\theta^{p}-\left(\theta^{q}\right)\right.} .λ2=(p+1)θp(q+1)θq(p+1)(q+1)(θp(θq).
Any real power of a positive number is a well-defined positive number. Other determinations of such a power will not be relevant to this discussion. We have 0 σ = 0 0 σ = 0 0^(sigma)=00^{\sigma}=00σ=0if 6 is positive. The function x 6 x 6 x^(6)x^{6}x6is therefore defined, uniform, continuous and infinitely differentiable on the positive real axis, for any real exponent σ σ sigma^(')\sigma^{\prime}σ. For σ = 0 σ = 0 sigma=0\sigma=0σ=0this function reduces to the constant 1. If σ > 0 σ > 0 sigma > 0\sigma>0σ>0the function x x xxxis defined and continuous for x 0 x 0 x >= 0x \geqslant 0x0.
The number (10) is given by the equation ].
(4) ( r = q ) ( p + 1 ) O p + ( p r ) ( q + 1 ) Q q + + ( q p ) ( r + 1 ) O r = 0 (4) ( r = q ) ( p + 1 ) O p + ( p r ) ( q + 1 ) Q q + + ( q p ) ( r + 1 ) O r = 0 {:[(4)(r=q)(p+1)O^(p)+(p-r)(q+1)Q^(q)+],[+(q-p)(r+1)O^(r)=0]:}\begin{gather*} (r=q)(p+1) \mathbb{O}^{p}+(p-r)(q+1) \mathbb{Q}^{q}+ \tag{4}\\ +(q-p)(r+1) \mathbb{O}^{r}=0 \end{gather*}(4)(r=q)(p+1)Op+(pr)(q+1)Qq++(qp)(r+1)Or=0
which, as S. Goląb and C. Olech have shown [1], has exactly one and only one root in the open interval ] 0 , 1 [ ] 0 , 1 [ ]0,1[] 0,1[]0,1[In the work cited from S S SSSGołąb and C. Olech assume that the exponents p , q , r p , q , r p,q,rp, q, rp,q,rare (positive) integers. Following their proof, we can easily see that this restriction is not necessary. We will therefore only assume that 0 < p < q < r 0 < p < q < r 0 < p < q < r0<p<q<r0<p<q<r.
Formula (1) is an interesting generalization of Simpson's formula; the latter is obtained by taking p = 1 ; q = 2 , r = 3 p = 1 ; q = 2 , r = 3 p=1;q=2,r=3p=1 ; q=2, r=3p=1;q=2,r=3.
In this work we propose to study the remainder R ( 1 ) R ( 1 ) R(1)R(1)R(1)of formula (1), under well-defined assumptions made about the function f f fff
Beforehand, we will establish some results which, being of interest in themselves, can be used in the study of other problems, analogous to the one dealt with in this work.

2. Let us designate by

(5)
V ( g 1 , g 2 , , g n x 1 , x 2 , , ) = | g n ( x i ) | i , t = 1 , 2 , , n V g 1 ,      g 2 , , g n x 1 ,      x 2 , , = g n x i i , t = 1 , 2 , , n V([g_(1)",",g_(2)","dots","g_(n)],[x_(1)",",x_(2)","dots","])=|g_(n)(x_(i))|_(i,t=1,2,dots,n)V\left(\begin{array}{ll} g_{1}, & g_{2}, \ldots, g_{n} \\ x_{1}, & x_{2}, \ldots, \end{array}\right)=\left|g_{n}\left(x_{i}\right)\right|_{i, t=1,2, \ldots, n}V(g1,g2,,gnx1,x2,,)=|gn(xi)|i,t=1,2,,n
1st order determinant n n nnnvalues ​​of the functions g t , t == 1 , 2 , , n g t , t == 1 , 2 , , n g_(t),t==1,2,dots,ng_{t}, t= =1,2, \ldots, ngt,t==1,2,,non the points x i , i = 1 , 2 , , n x i , i = 1 , 2 , , n x_(i),i=1,2,dots,nx_{i}, i=1,2, \ldots, nxi,i=1,2,,nIn this determinant g t ( x i ) g t x i g_(t)(x_(i))g_{t}\left(x_{i}\right)gt(xi)is the element that is located in the i-th row and twi-th column.
The determinant (5) is obviously zero if the points x 1 ^ x 1 ^ x_( hat(1))x_{\hat{1}}x1^or if the functions g t g t g_(t)g_{t}gtare not distinct.
If the points x i x i x_(i)x_{i}xiare not distinct, notation (5) will be used for a suitably modified determinant. This modification consists of replacing the lines corresponding to each group of points x i x i x_(i)x_{i}xiconfused by lines formed by the values ​​of the functions g t g t g_(t)g_{t}gtand their successive derivatives at these points. This implies, of course, the existence of the derivatives considered. More precisely, let z 1 , z 2 , , z m z 1 , z 2 , , z m z_(1),z_(2),dots,z_(m)z_{1}, z_{2}, \ldots, z_{m}z1,z2,,zmthe distinct points with which coincide respectively k 1 , k 2 , , k 1 n ( k 1 , k 2 , , k m 1 k 1 , k 2 , , k 1 n k 1 , k 2 , , k m 1 k_(1),k_(2),dots,k_(1n)quad(k_(1),k_(2,):}dots,k_(m) >= 1k_{1}, k_{2}, \ldots, k_{1 n} \quad\left(k_{1}, k_{2,}\right. \ldots, k_{m} \geqslant 1k1,k2,,k1n(k1,k2,,km1) points x i x i x_(i)x_{i}xiSo for everything i = 1 , 2 , , m i = 1 , 2 , , m i=1,2,dots,mi=1,2, \ldots, mi=1,2,,m, there is exactly k i k i k_(i)k_{i}kilines made up of the function values g t g t g_(t)g_{t}gtand their k i 1 k i 1 k_(i)-1k_{i}-1ki1first derivatives on the point z j z j z_(j)z_{j}zj.
We continue to refer to by
(6) V ( g 1 , g 2 , , g n x 1 , x 2 , , x n ) (6) V g 1 , g 2 , , g n x 1 , x 2 , , x n {:(6)V([g_(1)",",g_(2)",",dots",",g_(n)],[x_(1)",",x_(2)",",dots",",x_(n)]):}V\left(\begin{array}{llll} g_{1}, & g_{2}, & \ldots, & g_{n} \tag{6}\\ x_{1}, & x_{2}, & \ldots, & x_{n} \end{array}\right)(6)V(g1,g2,,gnx1,x2,,xn)
the determinant thus modified. But it is important to precede the succession of lines of the determinant thus defined, which is indeed of order k 1 + k 2 + + k m = n k 1 + k 2 + + k m = n k_(1)+k_(2)+dots+k_(m)=nk_{1}+k_{2}+\ldots+k_{m}=nk1+k2++km=n.
We will denote by (6) the determinant of order n whose ( k 1 + k 2 + + k i 1 + j ) i emes k 1 + k 2 + + k i 1 + j i  emes  (k_(1)+k_(2)+dots+k_(i-1)+j)^(i" emes ")\left(k_{1}+k_{2}+\ldots+k_{i-1}+j\right)^{i \text { emes }}(k1+k2++ki1+j)i emes lines β β _(beta){ }_{\beta}βfor consecutive values ​​1, 2, ..., k i k i k_(i)k_{i}kiof j j jjj, taken in this order, are the following
(7) { g 1 ( z i ) g 2 ( z i ) g n ( z i ) g 1 ( z i ) g 2 ( z i ) g n ( z i ) ( k i 1 ) ( z i ) g 2 ( k i 1 ) ( z i ) g n ( k i 1 ) ( z i ) g 1 z i      g 2 z i           g n z i g 1 z i      g 2 z i           g n z i                k i 1      z i      g 2 k i 1      z i g n k i 1 z i quad{[g_(1)(z_(i)),g_(2)(z_(i)),cdots,g_(n)(z_(i))],[g_(1)^(')(z_(i)),g_(2)^(')(z_(i)),cdots,g_(n)^(')(z_(i))],[*,cdots,*,cdots],[(k_(i)-1),(z_(i)),g_(2)(k_(i)-1),(z_(i))]cdots*g_(n)^((k_(i)-1))(z_(i)):}\quad\left\{\begin{array}{llll}g_{1}\left(z_{i}\right) & g_{2}\left(z_{i}\right) & \cdots & g_{n}\left(z_{i}\right) \\ g_{1}^{\prime}\left(z_{i}\right) & g_{2}^{\prime}\left(z_{i}\right) & \cdots & g_{n}^{\prime}\left(z_{i}\right) \\ \cdot & \cdots & \cdot & \cdots \\ \left(k_{i}-1\right) & \left(z_{i}\right) & g_{2}\left(k_{i}-1\right) & \left(z_{i}\right)\end{array} \cdots \cdot g_{n}^{\left(k_{i}-1\right)}\left(z_{i}\right)\right.{g1(zi)g2(zi)gn(zi)g1(zi)g2(zi)gn(zi)(ki1)(zi)g2(ki1)(zi)gn(ki1)(zi).
The sum k 1 + k 2 + + k i 1 k 1 + k 2 + + k i 1 k_(1)+k_(2)+dots+k_(i-1)k_{1}+k_{2}+\ldots+k_{i-1}k1+k2++ki1is replaced by 0 for i = 1 i = 1 i=1i=1i=1and the accents denote successive derivations.
The lines (7) are consecutive lines in the determinant (6). With this convention the succession of columns and lines is clearly specified in the determinant (6).
Of course, the modified determinant (6) is well-defined even if the points z 1 , z 2 , , z m z 1 , z 2 , , z m z_(1),z_(2),dots,z_(m)z_{1}, z_{2}, \ldots, z_{m}z1,z2,,zmare not distinct, but then it is obviously equal to 0.
Everything comes down, we sum up, to asking
(8) x k 1 + k 2 + + k i 1 + j = z i , j = 1 , 2 , , k i , i = 1 , 2 , , m x k 1 + k 2 + + k i 1 + j = z i , j = 1 , 2 , , k i , i = 1 , 2 , , m x_(k_(1)+k_(2)+dots+k_(i-1)+j)=z_(i),j=1,2,dots,k_(i),i=1,2,dots,mx_{k_{1}+k_{2}+\ldots+k_{i-1}+j}=z_{i}, j=1,2, \ldots, k_{i}, i=1,2, \ldots, mxk1+k2++ki1+j=zi,j=1,2,,ki,i=1,2,,m.
It is important to note that, in general, the lines of the determinant cannot be subjected to any permutation, since the order of these lines has been fixed in advance. By this we mean that, to take an example, while the determinant V ( E 1 , E 2 , E 3 z 1 , z 1 , z 2 ) V E 1 ,      E 2 ,      E 3 z 1 ,      z 1 ,      z 2 V([E_(1)",",E_(2)",",E_(3)],[z_(1)",",z_(1)",",z_(2)])V\left(\begin{array}{lll}E_{1}, & E_{2}, & E_{3} \\ z_{1}, & z_{1}, & z_{2}\end{array}\right)V(E1,E2,E3z1,z1,z2)is always defined, the symbol V ( g 1 , g 2 , g 3 z 1 , z 2 , z 1 ) V g 1 ,      g 2 ,      g 3 z 1 ,      z 2 ,      z 1 V([g_(1)",",g_(2)",",g_(3)],[z_(1)",",z_(2)",",z_(1)])V\left(\begin{array}{lll}g_{1}, & g_{2}, & g_{3} \\ z_{1}, & z_{2}, & z_{1}\end{array}\right)V(g1,g2,g3z1,z2,z1)means nothing if z 1 z 2 z 1 z 2 z_(1)!=z_(2)z_{1} \neq z_{2}z1z2.
On the contrary, we can subject the lines of the determinant to a permutation by group of points combined; which amounts, in short, to a permutation of the points z i z i z_(i)z_{i}ziMore precisely, either v 1 , v 2 , , v n v 1 , v 2 , , v n v_(1),v_(2),dots,v_(n)v_{1}, v_{2}, \ldots, v_{n}v1,v2,,vna permutation of indices 1 , 2 , , n 1 , 2 , , n 1,2,dots,n1,2, \ldots, n1,2,,nLet us then assume, to simplify the notation. x i = x v i , i = 1 , 2 , , n x i = x v i , i = 1 , 2 , , n x_(i)^(')=x_(v_(i)),i=1,2,dots,nx_{i}^{\prime}=x_{v_{i}}, i=1,2, \ldots, nxi=xvi,i=1,2,,nThe determinant (6), with the corresponding rows permuted, is then
v ( g 1 , g 2 , , g n x 1 , x 2 , , x n ) v g 1 ,      g 2 ,      ,      g n x 1 ,      x 2 ,      ,      x n v([g_(1)",",g_(2)",",dots",",g_(n)],[x_(1)^(')",",x_(2)^(')",",dots",",x_(n)^(')])v\left(\begin{array}{llll} g_{1}, & g_{2}, & \ldots, & g_{n} \\ x_{1}^{\prime}, & x_{2}^{\prime}, & \ldots, & x_{n}^{\prime} \end{array}\right)v(g1,g2,,gnx1,x2,,xn)
1a succession of lines for a group of points x i x i x_(i)^(')x_{i}^{\prime}xiequals with a z i z i z_(i)z_{i}zibeing respected according to the rule described by table (7). This means that we only consider permutations v 1 , v 2 , , v n v 1 , v 2 , , v n v_(1),v_(2),dots,v_(n)v_{1}, v_{2}, \ldots, v_{n}v1,v2,,vnfor which we have
(10)
x k 1 + k 2 + + k i 1 + j = z i , j = 1 , 2 , , k i , i = 1 , 2 , , m x k 1 + k 2 + + k i 1 + j = z i , j = 1 , 2 , , k i , i = 1 , 2 , , m x_(k_(1)^(')+k_(2)^(')+dots+k_(i-1)^(')+j)^(')=z_(i)^('),j=1,2,dots,k_(i)^('),i=1,2,dots,mx_{k_{1}^{\prime}+k_{2}^{\prime}+\ldots+k_{i-1}^{\prime}+j}^{\prime}=z_{i}^{\prime}, j=1,2, \ldots, k_{i}^{\prime}, i=1,2, \ldots, mxk1+k2++ki1+j=zi,j=1,2,,ki,i=1,2,,m
the sequel z 1 , z 2 , , z m z 1 , z 2 , , z m z_(1)^('),z_(2)^('),dots,z_(m)^(')z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{m}^{\prime}z1,z2,,zmbeing a permutation of the sequence z 1 , z 2 , , z m z 1 , z 2 , , z m z_(1),z_(2),dots,z_(m)z_{1}, z_{2}, \ldots, z_{m}z1,z2,,zmThe value of the determinant (9) differs from that of (6) at most by the sign, according to formula (17) which will be established later.
Let us now point out the following special cases:
1 1 1^(@)1^{\circ}1For the functions g t = x t 1 , t = 1 , 2 , , n g t = x t 1 , t = 1 , 2 , , n g_(t)=x^(t-1),t=1,2,dots,ng_{t}=x^{t-1}, t=1,2, \ldots, ngt=xt1,t=1,2,,n, the ending deus (5) reduces to the determinant of Vandermonde V ( x 1 , x 2 , , x n ) V x 1 , x 2 , , x n V(x_(1),x_(2),dots,x_(n))V\left(x_{1}, x_{2}, \ldots, x_{n}\right)V(x1,x2,,xn)numbers x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xnSo we have
(11) V ( 1 , x , , x n 1 x 1 , x 2 , , x n ) = V ( x 1 , x 2 , , x n ) = = i < j 1 , 2 , , n ( x j x i ) , ( V ( x 1 ) = 1 ) (11) V ( 1 , x , , x n 1 x 1 , x 2 , , x n ) = V x 1 , x 2 , , x n = = i < j 1 , 2 , , n x j x i , V x 1 = 1 {:[(11)V((1,x,dots,x^(n-1))/(x_(1),x_(2),dots,x_(n)))=V(x_(1),x_(2),dots,x_(n))=],[quad=prod_(i < j)^(1,2,dots,n)(x_(j)-x_(i))","quad(V(x_(1))=1)]:}\begin{align*} & V\binom{1, x, \ldots, x^{n-1}}{x_{1}, x_{2}, \ldots, x_{n}}=V\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \tag{11}\\ & \quad=\prod_{i<j}^{1,2, \ldots, n}\left(x_{j}-x_{i}\right), \quad\left(V\left(x_{1}\right)=1\right) \end{align*}(11)V(1,x,,xn1x1,x2,,xn)=V(x1,x2,,xn)==i<j1,2,,n(xjxi),(V(x1)=1)
2 0 2 0 2^(0)2^{0}20In the case where all the points x i x i x_(i)x_{i}xicoincident (with x) the modified determinant (6) reduces to the Wronskian W ( g 1 , g 2 , , g n ) ( x ) W g 1 , g 2 , , g n ( x ) W(g_(1),g_(2),dots,g_(n))(x)W\left(g_{1}, g_{2}, \ldots, g_{n}\right)(x)W(g1,g2,,gn)(x)functions g t ) g t ) g_(t)^(**))g_{t}{ }^{*)}gt*)We can therefore write
*) This is why we sometimes call the determinant (5) the Prewronskian of functions E t E t E_(t)\mathrm{E}_{t}Et.
V ( g 1 , g 2 , , g n x , x , , x ) = W ( g 1 , g 2 , , g n ) ( x ) . V g 1 , g 2 , , g n x , x , , x = W g 1 , g 2 , , g n ( x ) . V([g_(1)",",g_(2)",",dots",",g_(n)],[x",",x",",dots",",x])=W(g_(1),g_(2),dots,g_(n))(x).V\left(\begin{array}{cccc} g_{1}, & g_{2}, & \ldots, & g_{n} \\ x, & x, & \ldots, & x \end{array}\right)=W\left(g_{1}, g_{2}, \ldots, g_{n}\right)(x) .V(g1,g2,,gnx,x,,x)=W(g1,g2,,gn)(x).
  1. We can also obtain the modified determinant (6) by a suitable limit. To avoid complicating matters, we will assume that all the derivatives involved exist and are continuous, at least in certain neighborhoods of the points z 1 z 1 z_(1)z_{1}z1.
So be it n n nnndistinct points x j ( i ) , j = 1 , 2 , , k j x j ( i ) , j = 1 , 2 , , k j x_(j)^((i)),j=1,2,dots,k_(j)x_{j}^{(i)}, j=1,2, \ldots, k_{j}xj(i),j=1,2,,kj, i = 1 , 2 , , m , et considérons le déterminant D d i = 1 , 2 , , m , et considérons le déterminant  D d i=1,2,dots,m_(", et considérons le déterminant "D)d^(')i=1,2, \ldots, m_{\text {, et considérons le déterminant } D} d^{\prime}i=1,2,,m, and let us consider the determinant Ddorder n n nnn( = k 1 + k 2 + + k m = k 1 + k 2 + + k m =k_(1)+k_(2)+dots+k_(m)=k_{1}+k_{2}+\ldots+k_{m}=k1+k2++km) of which the element of lå ( k 1 + k 2 + + + + k i 1 + j ) i e m e k 1 + k 2 + + + + k i 1 + j i e m e k_(1)+k_(2)+dots++cdots+k_(i-1)+j)^(ieme)k_{1}+k_{2}+\ldots+ \left.+\cdots+k_{i-1}+j\right)^{i e m e}k1+k2++++ki1+j)iemeline and the t i e m e t i e m e t^(ieme)t^{i e m e}tiemecolumn is the usual divided difference [ x 1 ( i ) , x 2 ( i ) , , x j ( i ) ; g t ] x 1 ( i ) , x 2 ( i ) , , x j ( i ) ; g t [x_(1)^((i)),x_(2)^((i)),dots,x_(j)^((i));g_(t)]\left[x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{j}^{(i)} ; g_{t}\right][x1(i),x2(i),,xj(i);gt]of the function g t g t g_(t)g_{t}gton the nodes x 1 ( i ) , x 2 ( i ) , , x j ( i ) x 1 ( i ) , x 2 ( i ) , , x j ( i ) x_(1)^((i)),x_(2)^((i)),dots,x_(j)^((i))x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{j}^{(i)}x1(i),x2(i),,xj(i)and where j == 1 , 2 , , k i , t = 1 , 2 , , n j == 1 , 2 , , k i , t = 1 , 2 , , n j==1,2,dots,k_(i),t=1,2,dots,nj= =1,2, \ldots, k_{i}, t=1,2, \ldots, nj==1,2,,ki,t=1,2,,nIf we observe that this divided difference tends towards 1 ( j 1 ) ! g t ( j 1 ) ( z 1 ) 1 ( j 1 ) ! g t ( j 1 ) z 1 (1)/((j-1)!)g_(t)^((j cdots1))(z_(1))\frac{1}{(j-1)!} g_{t}^{(j \cdots 1)}\left(z_{1}\right)1(j1)!gt(j1)(z1)when the points x v ( i ) , v = 1 , 2 , , j x v ( i ) , v = 1 , 2 , , j x_(v)^((i)),v=1,2,dots,jx_{v}^{(i)}, v=1,2, \ldots, jxv(i),v=1,2,,jtend towards z i z i z_(i)z_{i}zi, we see that the determinant D D DDDtends towards the modified determinant (6) divided by the number i = 1 m ( k i 1 ) i = 1 m k i 1 prod_(i=1)^(m)(k_(i)-1)\prod_{i=1}^{m}\left(k_{i}-1\right)i=1m(ki1)!! when x V ( i ) z i , v = 1 , 2 , , k j , i = 1 , 2 , , m 0 x V ( i ) z i , v = 1 , 2 , , k j , i = 1 , 2 , , m 0 x_(V)^((i))rarrz_(i),v=1,2,dots,k_(j),i=1,2,dots,m_(0)x_{V}^{(i)} \rightarrow z_{i}, v=1,2, \ldots, k_{j}, i=1,2, \ldots, m_{0}xV(i)zi,v=1,2,,kj,i=1,2,,m0
We use the abbreviated notation α ! ! = 1 ! 2 ! α α ! ! = 1 ! 2 ! α alpha!!=1!2!dots alpha\alpha!!=1!2!\ldots \alphaα!!=1!2!α! ( 0 ! ! = 1 0 ! ! = 1 0!!=10!!=10!!=1).
Finally, if we multiply the determinant D D DDDby the product
(13) i = 1 m v ( x 1 ( i ) , x 2 ( i ) , , x k i ( i ) ) (13) i = 1 m v x 1 ( i ) , x 2 ( i ) , , x k i ( i ) {:(13)prod_(i=1)^(m)v(x_(1)^((i)),x_(2)^((i)),dots,x_(k_(i))^((i))):}\begin{equation*} \prod_{i=1}^{m} v\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{k_{i}}^{(i)}\right) \tag{13} \end{equation*}(13)i=1mv(x1(i),x2(i),,xki(i))
and if we perform some elementary operations on the lines, we obtain the determinant
(14) V ( x 1 ( 1 ) , x 2 ( 1 ) , , x k 1 ( 1 ) , x 1 ( 2 ) , x 2 ( 2 ) , , x k 2 ( 2 ) , , x 1 ( m ) , x 2 ( m ) , , x k m ( m ) ) V x 1 ( 1 ) , x 2 ( 1 ) , , x k 1 ( 1 ) , x 1 ( 2 ) , x 2 ( 2 ) , , x k 2 ( 2 ) , , x 1 ( m ) , x 2 ( m ) , , x k m ( m ) V(x_(1)^((1)),x_(2)^((1)),dots,x_(k_(1))^((1)),x_(1)^((2)),x_(2)^((2)),dots,x_(k_(2))^((2)),dots,x_(1)^((m)),x_(2)^((m)),dots,x_(k_(m))^((m)))V\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{k_{1}}^{(1)}, x_{1}^{(2)}, x_{2}^{(2)}, \ldots, x_{k_{2}}^{(2)}, \ldots, x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{k_{m}}^{(m)}\right)V(x1(1),x2(1),,xk1(1),x1(2),x2(2),,xk2(2),,x1(m),x2(m),,xkm(m))
It follows that the determinant (6) is obtained by multiplying (14) pax i = 1 m ( k i 1 ) 11 i = 1 m k i 1 11 prod_(i=1)^(m)(k_(i)-1)11\prod_{i=1}^{m}\left(k_{i}-1\right) 11i=1m(ki1)11, by dividing it by (13) and then making the points stretch x j ( i ) x j ( i ) x_(j)^((i))x_{j}^{(i)}xj(i)towards z i z i z_(i)z_{i}zi, For j == 1 , 2 , , k i , i = 1 , 2 , , m j == 1 , 2 , , k i , i = 1 , 2 , , m j==1,2,dots,k_(i),i=1,2,dots,mj= =1,2, \ldots, k_{i}, i=1,2, \ldots, mj==1,2,,ki,i=1,2,,m,
The concept of difference divided is well known. We l " l l^("" ")l^{\text {" }}LWe will employ it in its general form as set forth in the memoir cited below concerning the study of the remainder of formula (1) [5]. The usual divided differences are those with respect to successive non-negative integer powers. 1 , x , x 2 , 1 , x , x 2 , 1,x,x^(2),dots1, x, x^{2}, \ldots1,x,x2,. of the variable.
4. As a first application, we will find the formula giving the value of the generalized Vandermonde determinant
(15) V ( 1 1 1 , x 2 , , x n 1 ) = V ( x 1 , x 2 , , x n ) = = i = 1 1 , 2 , , m ( k i 1 ) ! ! i < j 1 , 2 , , m ( z j z i ) k i k j (15) V 1 1 1 , x 2 , , x n 1 = V x 1 , x 2 , , x n = = i = 1 1 , 2 , , m k i 1 ! ! i < j 1 , 2 , , m z j z i k i k j {:[(15)V(1_(1)^(1),x_(2),dots,x^(n-1))=V(x_(1),x_(2),dots,x_(n))=],[=prod_(i=1)^(1,2,dots,m)(k_(i)-1)!!prod_(i < j)^(1,2,dots,m)(z_(j)-z_(i))^(k_(i)k_(j))]:}\begin{align*} & V\left(1_{1}^{1}, x_{2}, \ldots, x^{n-1}\right)=V\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \tag{15}\\ = & \prod_{i=1}^{1,2, \ldots, m}\left(k_{i}-1\right)!!\prod_{i<j}^{1,2, \ldots, m}\left(z_{j}-z_{i}\right)^{k_{i} k_{j}} \end{align*}(15)V(111,x2,,xn1)=V(x1,x2,,xn)==i=11,2,,m(ki1)!!i<j1,2,,m(zjzi)kikj
using the notation (8). In particular, we have
V ( x , x , , x m ) = W ( 1 , x , , x n 1 ) ( x ) = ( n 1 ) ! ! V ( x , x , , x m ) = W 1 , x , , x n 1 ( x ) = ( n 1 ) ! ! V(ubrace(x,x,dots,xubrace)_(m))=W(1,x,dots,x^(n-1))(x)=(n-1)!!V(\underbrace{x, x, \ldots, x}_{m})=W\left(1, x, \ldots, x^{n-1}\right)(x)=(n-1)!!V(x,x,,xm)=W(1,x,,xn1)(x)=(n1)!!
Returning to the value of the determinant (9), equal to (6) or its opposite, we can write
(16) sg V ( g 1 , g 2 , , g n x 1 , x 2 , , x n ) = = sg ( V ( x 1 , x 2 , , x n ) V ( g 1 , g 2 , , g n x 1 , x 2 , , ) ) (16) sg V g 1 , g 2 , , g n x 1 , x 2 , , x n = = sg V x 1 , x 2 , , x n V g 1 , g 2 , , g n x 1 , x 2 , , {:[(16)sg V([g_(1)",",g_(2)","dots","g_(n)],[x_(1)^(')",",x_(2)^(')","dots","x_(n)^(')])=],[=sg(V(x_(1)^('),x_(2)^('),dots,x_(n)^('))V([g_(1)",",g_(2)","dots","g_(n)],[x_(1)",",x_(2)","dots","]))]:}\begin{gather*} \operatorname{sg} V\left(\begin{array}{ll} g_{1}, & g_{2}, \ldots, g_{n} \\ x_{1}^{\prime}, & x_{2}^{\prime}, \ldots, x_{n}^{\prime} \end{array}\right)= \tag{16}\\ =\operatorname{sg}\left(V\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) V\left(\begin{array}{ll} g_{1}, & g_{2}, \ldots, g_{n} \\ x_{1}, & x_{2}, \ldots, \end{array}\right)\right) \end{gather*}(16)sgV(g1,g2,,gnx1,x2,,xn)==sg(V(x1,x2,,xn)V(g1,g2,,gnx1,x2,,))
x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1)^('),x_(2)^('),dots,x_(n)^(')x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}x1,x2,,xnbeing an admissible permutation of the sequence x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xnassuming that x 1 x 2 x n x 1 x 2 x n x_(1) <= x_(2) <= dots <= x_(n)x_{1} \leqslant x_{2} \leqslant \ldots \leqslant x_{n}x1x2xnand where we employ the function
sg x = { 1 , pour 0 , x > 0 1 , pour x = 0 sg x = 1 ,  pour  0 , x > 0 1 ,  pour  x = 0 sg x={[1","," pour "],[0",",x > 0],[-1","," pour "]quad x=0:}\operatorname{sg} x=\left\{\begin{array}{rl} 1, & \text { pour } \\ 0, & x>0 \\ -1, & \text { pour } \end{array} \quad x=0\right.sgx={1, For 0,x>01, For x=0
which satisfies the functional equation s g ( x y ) = s g x s g y s g ( x y ) = s g x s g y sg(xy)=sgx*sgys g(x y)=s g x \cdot s g ysg(xy)=sgxsgyFor x x xxxAnd y y yyyany real numbers.
Taking into account (15) and (16) we also obtain
(17) sg V ( g 1 , g 2 , , g n x 1 0 , x 2 0 , , x n ) = (17) sg V g 1 , g 2 , , g n x 1 0 , x 2 0 , , x n = {:(17)sg V([g_(1)",",g_(2)",",cdots",",g_(n)],[x_(1)^(0)",",x_(2)^(0)",",dots",",x_(n)^(')])=:}\operatorname{sg} V\left(\begin{array}{cccc} g_{1}, & g_{2}, & \cdots, & g_{n} \tag{17}\\ x_{1}^{0}, & x_{2}^{0}, & \ldots, & x_{n}^{\prime} \end{array}\right)=(17)sgV(g1,g2,,gnx10,x20,,xn)=
= sg ( j < j 1 , 2 , , m ( z j z i ) k i k j v ( g 1 , g 2 , , g n x 1 , x 2 , , x n ) ) = sg j < j 1 , 2 , , m z j z i k i k j v g 1 ,      g 2 ,      ,      g n x 1 ,      x 2 ,      ,      x n =sg(prod_(j < j)^(1,2,dots,m)(z_(j)^(')-z_(i)^('))^(k_(i)^(')k_(j)^('))v([g_(1)",",g_(2)",",dots",",g_(n)],[x_(1)",",x_(2)",",dots",",x_(n)]))=\operatorname{sg}\left(\prod_{j<j}^{1,2, \ldots, m}\left(z_{j}^{\prime}-z_{i}^{\prime}\right)^{k_{i}^{\prime} k_{j}^{\prime}} v\left(\begin{array}{llll} g_{1}, & g_{2}, & \ldots, & g_{n} \\ x_{1}, & x_{2}, & \ldots, & x_{n} \end{array}\right)\right)=sg(j<j1,2,,m(zjzi)kikjv(g1,g2,,gnx1,x2,,xn))
using notation (10) and assuming that z 1 < z 2 << < z m z 1 < z 2 << < z m z_(1) < z_(2)<<dots < z_(m)z_{1}<z_{2}< <\ldots<z_{m}z1<z2<<zm.
Let us note in passing that if among the numbers k 1 , 8 k 2 k 1 , 8 k 2 k_(1,8)k_(2)k_{1,8} k_{2}k1,8k2, ..., k m k m k_(m)k_{m}kmhe y y yyya at most one which is odd, the determinant (9) does not depend on the admissible permutation x 1 x 1 x_(1)^(')x_{1}^{\prime}x1, x 2 , , x n d e x 2 , , x n d e x_(2)^('),dots,x_(n)^(')dex_{2}^{\prime}, \ldots, x_{n}^{\prime} d ex2,,xndethe sequel x 1 , x 2 , , x n x 1 , x 2 , , x n x_(1),x_(2),dots,x_(n)x_{1}, x_{2}, \ldots, x_{n}x1,x2,,xn5.
We will now establish a formula that reduces the calculation of a determinant of the form (6) of order n to the calculation of a determinant of the same form but of order n - 1.
Let's modify the lines of the determinant (6) as follows: Let's return to table (7). Leibniz's formula
g t ( u ) = ( g t g 1 g 1 ) ( u ) = ( g t g 1 ) ( u ) g 1 + v = 1 u ( u v ) ( g t g 1 ) ( u v ) g 1 ( v ) ( v = 1 , 2 , , k 1 , t = 1 , 2 , , n ) g t ( u ) = g t g 1 g 1 ( u ) = g t g 1 ( u ) g 1 + v = 1 u ( u v ) g t g 1 ( u v ) g 1 ( v ) ( v = 1 , 2 , , k 1 , t = 1 , 2 , , n ) {:[g_(t)^((u))=((g_(t))/(g_(1))g_(1))^((u))=((g_(t))/(g_(1)))^((u))g_(1)+sum_(v=1)^(u)((u)/(v))((g_(t))/(g_(1)))^((u-v))g_(1)^((v))],[(v=1","2","dots","k-1","t=1","2","dots","n)]:}\begin{gathered} g_{t}^{(u)}=\left(\frac{g_{t}}{g_{1}} g_{1}\right)^{(u)}=\left(\frac{g_{t}}{g_{1}}\right)^{(u)} g_{1}+\sum_{v=1}^{u}\binom{u}{v}\left(\frac{g_{t}}{g_{1}}\right)^{(u-v)} g_{1}^{(v)} \\ (v=1,2, \ldots, k-1, t=1,2, \ldots, n) \end{gathered}gt(u)=(gtg1g1)(u)=(gtg1)(u)g1+v=1u(uv)(gtg1)(uv)g1(v)(v=1,2,,k1,t=1,2,,n)
shows us that, without changing the value of the determinant (6),
the k i 1 k i 1 k_(i)-1k_{i}-1ki1last lines of table (7) can be replaced respectively by
(18) { g 1 h 1 g 1 h 2 g 1 h n g 1 h 1 g 1 h 2 g 1 h n g 1 h 1 ( k i 1 ) g 1 h 2 ( k i 1 ) g 1 h n ( k i 1 ) (18) g 1 h 1 g 1 h 2 g 1 h n g 1 h 1 g 1 h 2 g 1 h n g 1 h 1 k i 1 g 1 h 2 k i 1 g 1 h n k i 1 {:(18){[g_(1)h_(1)^('),g_(1)h_(2)^('),cdots,g_(1)h_(n)^(')],[g_(1)h_(1)^(''),g_(1)h_(2)^(''),cdots,g_(1)h_(n)^('')],[cdots,cdots,cdots,cdots],[g_(1)h_(1)^((k_(i)-1)),g_(1)h_(2)^((k_(i)-1)),cdots,g_(1)h_(n)^((k_(i)-1))]:}:}\left\{\begin{array}{llll} g_{1} h_{1}^{\prime} & g_{1} h_{2}^{\prime} & \cdots & g_{1} h_{n}^{\prime} \tag{18}\\ g_{1} h_{1}^{\prime \prime} & g_{1} h_{2}^{\prime \prime} & \cdots & g_{1} h_{n}^{\prime \prime} \\ \cdots & \cdots & \cdots & \cdots \\ g_{1} h_{1}^{\left(k_{i}-1\right)} & g_{1} h_{2}^{\left(k_{i}-1\right)} & \cdots & g_{1} h_{n}^{\left(k_{i}-1\right)} \end{array}\right.(18){g1h1g1h2g1hng1h1g1h2g1hng1h1(ki1)g1h2(ki1)g1hn(ki1)
Or h t = g t / g 1 , t = 1 , 2 , , n h t = g t / g 1 , t = 1 , 2 , , n h_(t)=g_(t)//g_(1),t=1,2,dots,nh_{t}=g_{t} / g_{1}, t=1,2, \ldots, nht=gt/g1,t=1,2,,n, the functions and derivatives of various orders being calculated at the point z i z i z_(i)z_{i}zi. If k i == 1 k i == 1 k_(i)==1k_{i}= =1ki==1No such modification is made to table (7). Note that the elements in the first column of table (18) are all zero.
These results were obtained based on the fact that a determinant does not change value when any linear combination of other rows is added to a row. After these operations, the rows that remained unchanged form the table.
(19) { g 1 ( z 1 ) g 2 ( z 1 ) g n ( z 1 ) g 1 ( z 2 ) g 2 ( z 2 ) g n ( z 2 ) g 1 ( z m ) g 2 ( z m ) g n ( z m ) (19) g 1 z 1 g 2 z 1 g n z 1 g 1 z 2 g 2 z 2 g n z 2 g 1 z m g 2 z m g n z m {:(19){[g_(1)(z_(1)),g_(2)(z_(1)),cdots,g_(n)(z_(1))],[g_(1)(z_(2)),g_(2)(z_(2)),cdots,g_(n)(z_(2))],[*,*,*,*],[g_(1)(z_(m)),g_(2)(z_(m)),cdots,g_(n)(z_(m))]:}:}\left\{\begin{array}{llll} g_{1}\left(z_{1}\right) & g_{2}\left(z_{1}\right) & \cdots & g_{n}\left(z_{1}\right) \tag{19}\\ g_{1}\left(z_{2}\right) & g_{2}\left(z_{2}\right) & \cdots & g_{n}\left(z_{2}\right) \\ \cdot & \cdot & \cdot & \cdot \\ g_{1}\left(z_{m}\right) & g_{2}\left(z_{m}\right) & \cdots & g_{n}\left(z_{m}\right) \end{array}\right.(19){g1(z1)g2(z1)gn(z1)g1(z2)g2(z2)gn(z2)g1(zm)g2(zm)gn(zm)
These lines retain their positions in determinant (6). Still without changing the value of determinant (6), we can subtract (i-1). i e ̀ m e i e ̀ m e ^(ième){ }^{i e ̀ m e}ie-meline multiplied by g 1 ( z i ) g 1 ( z i 1 ) g 1 z i g 1 z i 1 (g_(1)(z_(i)))/(g_(1)(z_(i-1)))\frac{g_{1}\left(z_{i}\right)}{g_{1}\left(z_{i-1}\right)}g1(zi)g1(zi1)of the i i i i i^(i)i^{i}iiand this for the second line i = 1 , 2 , , m i = 1 , 2 , , m i=1,2,dots,mi=1,2, \ldots, mi=1,2,,mThe elements of the table (19) thus transformed are obtained by applying the (Newton-Leibniz) formula.
g t ( z i ) g t ( z i 1 ) g 1 ( z i ) g 1 ( z i 1 ) = g 1 ( z i ) z i 1 z i ( g t ( y ) g 1 ( y ) ) d y . g t z i g t z i 1 g 1 z i g 1 z i 1 = g 1 z i z i 1 z i g t ( y ) g 1 ( y ) d y . g_(t)(z_(i))-g_(t)(z_(i-1))(g_(1)(z_(i)))/(g_(1)(z_(i-1)))=g_(1)(z_(i))int_(z_(i-1))^(z_(i))((g_(t)(y))/(g_(1)(y)))^(')dy.g_{t}\left(z_{i}\right)-g_{t}\left(z_{i-1}\right) \frac{g_{1}\left(z_{i}\right)}{g_{1}\left(z_{i-1}\right)}=g_{1}\left(z_{i}\right) \int_{z_{i-1}}^{z_{i}}\left(\frac{g_{t}(y)}{g_{1}(y)}\right)^{\prime} d y .gt(zi)gt(zi1)g1(zi)g1(zi1)=g1(zi)zi1zi(gt(y)g1(y))dy.
When m = 1 m = 1 m=1m=1m=1Table (19) has only one row which is left unchanged.
After all these transformations, the elements of the first column of the determinant (6) all become zero, except for the first one, which is equal to g 1 ( z 1 ) g 1 z 1 g_(1)(z_(1))g_{1}\left(z_{1}\right)g1(z1)Finally, by taking out the lactour i = 1 m ( g 1 ( z i ) ) k i = i = 1 n g 1 ( x i ) i = 1 m g 1 z i k i = i = 1 n g 1 x i prod_(i=1)^(m)(g_(1)(z_(i)))^(k_(i))=prod_(i=1)^(n)g_(1)(x_(i))\prod_{i=1}^{m}\left(g_{1}\left(z_{i}\right)\right)^{k_{i}}=\prod_{i=1}^{n} g_{1}\left(x_{i}\right)i=1m(g1(zi))ki=i=1ng1(xi)and by expanding the determinant from the first column, we obtain the formula
(20) V ( g 1 , g 2 , , g n x 1 , x 2 , , x n ) = (20) V g 1 , g 2 , , g n x 1 , x 2 , , x n = {:(20)V([g_(1)",",g_(2)",",dots",",g_(n)],[x_(1)",",x_(2)",",dots",",x_(n)])=:}V\left(\begin{array}{cccc} g_{1}, & g_{2}, & \ldots, & g_{n} \tag{20}\\ x_{1}, & x_{2}, & \ldots, & x_{n} \end{array}\right)=(20)V(g1,g2,,gnx1,x2,,xn)=
= ( i = 1 m g 1 ( x i ) ) z 1 z 2 z 2 z 3 z m 1 z m ψ ( y 1 , y 2 , , y m 1 ) d y 1 d y 2 d y m 1 = i = 1 m g 1 x i z 1 z 2 z 2 z 3 z m 1 z m ψ y 1 , y 2 , , y m 1 d y 1 d y 2 d y m 1 =(prod_(i=1)^(m)g_(1)(x_(i)))int_(z_(1))^(z_(2))int_(z_(2))^(z_(3))cdotsint_(z_(m-1))^(z_(m))psi(y_(1),y_(2),dots,y_(m-1))dy_(1)dy_(2)dots dy_(m-1)=\left(\prod_{i=1}^{m} g_{1}\left(x_{i}\right)\right) \int_{z_{1}}^{z_{2}} \int_{z_{2}}^{z_{3}} \cdots \int_{z_{m-1}}^{z_{m}} \psi\left(y_{1}, y_{2}, \ldots, y_{m-1}\right) d y_{1} d y_{2} \ldots d y_{m-1}=(i=1mg1(xi))z1z2z2z3zm1zmψ(y1,y2,,ym1)dy1dy2dym1
Or
(21) ψ ( y 1 , y 2 , , y m 1 ) = (21) ψ y 1 , y 2 , , y m 1 = {:(21)psi(y_(1),y_(2),dots,y_(m-1))=:}\begin{equation*} \psi\left(y_{1}, y_{2}, \ldots, y_{m-1}\right)= \tag{21} \end{equation*}(21)ψ(y1,y2,,ym1)=
= v ( ( g 2 / g 1 ) , ( g 3 / g 1 ) , , ( g n / g 1 ) k 1 1 ( z 1 , z 1 , , z 1 k 2 1 , y 1 , z 2 , z 2 , , z 2 , y 2 , , y m 1 , z m z m , , z m k m 1 ) = v ( g 2 / g 1 , g 3 / g 1 , , g n / g 1 k 1 1 ( z 1 , z 1 , , z 1 k 2 1 , y 1 , z 2 , z 2 , , z 2 , y 2 , , y m 1 , z m z m , , z m k m 1 ) =v(ubrace((g_(2)//g_(1))^(@),(g_(3)//g_(1))^(@),dots,(g_(n)//g_(1))^(@)ubrace)_(k_(1)-1)(ubrace(z_(1),z_(1),dots,z_(1)ubrace)_(k_(2)-1),y_(1),z_(2),z_(2),dots,z_(2),y_(2),dots,y_(m-1),ubrace(z_(m)z_(m),dots,z_(m)ubrace)_(k_(m)-1))=v(\underbrace{\left(g_{2} / g_{1}\right)^{\circ},\left(g_{3} / g_{1}\right)^{\circ}, \ldots,\left(g_{n} / g_{1}\right)^{\circ}}_{k_{1}-1}(\underbrace{z_{1}, z_{1}, \ldots, z_{1}}_{k_{2}-1}, y_{1}, z_{2}, z_{2}, \ldots, z_{2}, y_{2}, \ldots, y_{m-1}, \underbrace{z_{m} z_{m}, \ldots, z_{m}}_{k_{m}-1})=v((g2/g1),(g3/g1),,(gn/g1)k11(z1,z1,,z1k21,y1,z2,z2,,z2,y2,,ym1,zmzm,,zmkm1)This is the formula
we wanted to establish. We also used the notations (8)
We assume, of course, that all the functions, derivatives, and integrals involved are meaningful. In particular, for example, that the function g 1 g 1 g_(1)g_{1}g1does not cancel out, that the function ψ ( y 1 , y 2 , , y m 1 ) ψ y 1 , y 2 , , y m 1 psi(y_(1),y_(2),dots,y_(m-1))\psi\left(y_{1}, y_{2}, \ldots, y_{m-1}\right)ψ(y1,y2,,ym1)is continuous, etc.
If k 1 = 1 k 1 = 1 k_(1)=1k_{1}=1k1=1the point z i z i z_(i)z_{i}zidoes not appear on the second member of (21). Finally, if m = 1 m = 1 m=1m=1m=1Formula (20) is meaningless. In this case, it is replaced by the well-known formula [2]:
(22) w ( g 1 , g 2 , , g n ) = g 1 n w ( ( g 2 g 1 ) , ( g 3 g 1 ) , , ( g n g 1 ) ) w g 1 , g 2 , , g n = g 1 n w g 2 g 1 , g 3 g 1 , , g n g 1 w(g_(1),g_(2),dots,g_(n))=g_(1)^(n)w(((g_(2))/(g_(1)))^('),((g_(3))/(g_(1)))^('),dots,((g_(n))/(g_(1)))^('))w\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{1}^{n} w\left(\left(\frac{g_{2}}{g_{1}}\right)^{\prime},\left(\frac{g_{3}}{g_{1}}\right)^{\prime}, \ldots,\left(\frac{g_{n}}{g_{1}}\right)^{\prime}\right)w(g1,g2,,gn)=g1nw((g2g1),(g3g1),,(gng1)).
Formula (20) should therefore be regarded as a generalization of the latter formula (22).
6. All the assumptions concerning the continuity, differentiability, integrability, etc., of the functions involved are verified if we apply the preceding results to the functions g t ( x ) = x σ t , t = 1 , 2 , , n g t ( x ) = x σ t , t = 1 , 2 , , n g_(t)(x)=x^(sigma_(t)),t=1,2,dots,ng_{t}(x)=x^{\sigma_{t}}, t=1,2, \ldots, ngt(x)=xσt,t=1,2,,ndefined for x > 0 x > 0 x > 0x>0x>0, THE σ t σ t sigma_(t)\sigma_{t}σtbeing any given real numbers. If we note that, in this case,
( g t ( x ) g 1 ( x ) ) = ( σ t σ 1 ) x σ t σ 1 1 , t = 1 , 2 , , n , g t ( x ) g 1 ( x ) = σ t σ 1 x σ t σ 1 1 , t = 1 , 2 , , n , ((g_(t)(x))/(g_(1)(x)))^(')=(sigma_(t)-sigma_(1))x^(sigma_(t)-sigma_(1)-1),t=1,2,dots,n,\left(\frac{g_{t}(x)}{g_{1}(x)}\right)^{\prime}=\left(\sigma_{t}-\sigma_{1}\right) x^{\sigma_{t}-\sigma_{1}-1}, t=1,2, \ldots, n,(gt(x)g1(x))=(σtσ1)xσtσ11,t=1,2,,n,
formula (20) becomes ( m > 1 m > 1 m > 1m>1m>1)
(23) = ( σ 2 σ 1 ) ( σ 3 σ 1 ) ( σ n , , x n × z 1 z 2 z 2 z 3 z m 1 z m Φ ( x 1 , x 2 x n ) σ 1 × (23) = σ 2 σ 1 σ 3 σ 1 σ n , , x n × z 1 z 2 z 2 z 3 z m 1 z m Φ x 1 , x 2 x n σ 1 × {:[(23)=(sigma_(2)-sigma_(1))(sigma_(3)-sigma_(1))dots(sigma_(n),dots,x_(n):}],[ xxint_(z_(1))^(z_(2))int_(z_(2))^(z_(3))dotsint_(z_(m-1))^(z_(m))Phi(x_(1),x_(2)dotsx_(n))^(sigma_(1))xx]:}\begin{align*} & =\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{3}-\sigma_{1}\right) \ldots\left(\sigma_{n}, \ldots, x_{n}\right. \tag{23}\\ & \times \int_{z_{1}}^{z_{2}} \int_{z_{2}}^{z_{3}} \ldots \int_{z_{m-1}}^{z_{m}} \Phi\left(x_{1}, x_{2} \ldots x_{n}\right)^{\sigma_{1}} \times \end{align*}(23)=(σ2σ1)(σ3σ1)(σn,,xn×z1z2z2z3zm1zmΦ(x1,x2xn)σ1×
Or
Φ ( y 1 , y 2 , , y m 1 ) = = x σ 2 σ 1 1 , x σ 3 σ 1 1 , , x σ n σ 1 1 = V ( z 1 , z 1 , , z 1 k 1 1 , y 1 , z 2 , z 2 , , z 2 k 2 1 , y 2 , , y m 1 , z m , z m , , z m k m 1 ) Φ y 1 , y 2 , , y m 1 = = x σ 2 σ 1 1 , x σ 3 σ 1 1 , , x σ n σ 1 1 = V ( z 1 , z 1 , , z 1 k 1 1 , y 1 , z 2 , z 2 , , z 2 k 2 1 , y 2 , , y m 1 , z m , z m , , z m k m 1 ) {:[Phi(y_(1),y_(2),dots,y_(m-1))=],[=x^(sigma_(2)-sigma_(1)-1)","x^(sigma_(3)-sigma_(1)-1)","dots","x^(sigma_(n)-sigma_(1)-1)],[=V(ubrace(z_(1),z_(1),dots,z_(1)ubrace)_(k_(1)-1)","y_(1)","ubrace(z_(2),z_(2),dots,z_(2)ubrace)_(k_(2)-1)","y_(2)","dots","y_(m-1)","ubrace(z_(m),z_(m),dots,z_(m)ubrace)_(k_(m)-1))]:}\begin{gathered} \Phi\left(y_{1}, y_{2}, \ldots, y_{m-1}\right)= \\ =x^{\sigma_{2}-\sigma_{1}-1}, x^{\sigma_{3}-\sigma_{1}-1}, \ldots, x^{\sigma_{n}-\sigma_{1}-1} \\ =V(\underbrace{z_{1}, z_{1}, \ldots, z_{1}}_{k_{1}-1}, y_{1}, \underbrace{z_{2}, z_{2}, \ldots, z_{2}}_{k_{2}-1}, y_{2}, \ldots, y_{m-1}, \underbrace{z_{m}, z_{m}, \ldots, z_{m}}_{k_{m}-1}) \end{gathered}Φ(y1,y2,,ym1)==xσ2σ11,xσ3σ11,,xσnσ11=V(z1,z1,,z1k11,y1,z2,z2,,z2k21,y2,,ym1,zm,zm,,zmkm1)
From this formula we deduce
Theorem 1. With the previous notation, if 0 < z 1 < z 2 < < z m 0 < z 1 < z 2 < < z m 0 < z_(1) < z_(2) < dots < z_(m)0<z_{1}<z_{2}<\ldots<z_{m}0<z1<z2<<zmAnd σ 1 < σ 2 < < σ n σ 1 < σ 2 < < σ n sigma_(1) < sigma_(2) < dots < sigma_(n)\sigma_{1}<\sigma_{2}<\ldots<\sigma_{n}σ1<σ2<<σn, the determinant
(24) v ( x σ 1 , x σ 2 , , x σ n x 1 , x 2 , , x n ) (24) v x σ 1 , x σ 2 , , x σ n x 1 , x 2 , , x n {:(24)v([x^(sigma_(1))",",x^(sigma_(2))",",dots",",x^(sigma_(n))],[x_(1)",",x_(2)",",dots",",x_(n)]):}v\left(\begin{array}{llll} x^{\sigma_{1}}, & x^{\sigma_{2}}, & \ldots, & x^{\sigma_{n}} \tag{24}\\ x_{1}, & x_{2}, & \ldots, & x_{n} \end{array}\right)(24)v(xσ1,xσ2,,xσnx1,x2,,xn)
is positive.
The demonstration presents no difficulties and is principally based on formula (23). We can proceed by complete induction. Let us first note that the property is via for n = 1 n = 1 n=1n=1n=1because then the determinant (24) is reduced & x 1 6 x 1 6 x_(1)^(6)x_{1}^{6}x16which is indeed a positive number. Let's also remember that for n = 1 n = 1 n=1n=1n=1( n n nnn(any) the property is true guisqu alons on a
(25) V ( x 1 σ 1 , x 2 σ 2 , , x σ n x 1 , x 1 , 000 x 1 ) = W ( x σ 1 , x σ 2 , 0 , x n σ n ) ( x 1 ) = = V ( σ 1 , σ 2 , , σ n ) x 1 σ 1 + σ 2 + + σ n a ( n 1 ) 2 (25) V ( x 1 σ 1 , x 2 σ 2 , , x σ n x 1 , x 1 , 000 x 1 ) = W x σ 1 , x σ 2 , 0 , x n σ n x 1 = = V σ 1 , σ 2 , , σ n x 1 σ 1 + σ 2 + + σ n a ( n 1 ) 2 {:[(25)V((x_(1)^(sigma_(1)),x_(2)^(sigma_(2)),dots,x^(sigma_(n)))/(x_(1),x_(1),000x_(1)))=W(x^(sigma_(1)),x^(sigma_(2)),dots0,x_(n)^(sigma_(n)))(x_(1))=],[quad=V(sigma_(1),sigma_(2),dots,sigma_(n))x_(1)^(sigma_(1))+sigma_(2)+cdots+sigma_(n)-(a(n-1))/(2)]:}\begin{align*} & V\binom{x_{1}^{\sigma_{1}}, x_{2}^{\sigma_{2}}, \ldots, x^{\sigma_{n}}}{x_{1}, x_{1}, 000 x_{1}}=W\left(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots 0, x_{n}^{\sigma_{n}}\right)\left(x_{1}\right)= \tag{25}\\ & \quad=V\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) x_{1}^{\sigma_{1}}+\sigma_{2}+\cdots+\sigma_{n}-\frac{a(n-1)}{2} \end{align*}(25)V(x1σ1,x2σ2,,xσnx1,x1,000x1)=W(xσ1,xσ2,0,xnσn)(x1)==V(σ1,σ2,,σn)x1σ1+σ2++σnhas(n1)2
Let us now assume that the property is true for the order determinant n 1 ( n 1 ) n 1 ( n 1 ) n-1(n-1)n-1(n-1)n1(n1)and demonstrated for the order determinant n n nnnWe can assume m >↑ >↑ > uarr>\uparrow>↑The property then results from formula (23) in which we have
z 1 y 1 z 2 y m 1 z m z 1 y 1 z 2 y m 1 z m z_(1) <= y_(1) <= z_(2) <= dots <= y_(m-1) <= z_(m)z_{1} \leqslant y_{1} \leqslant z_{2} \leqslant \ldots \leqslant y_{m-1} \leqslant z_{m}z1y1z2ym1zm
and the function to be integrated is continuous over its entire domain of definition [ z 1 , z 2 ] × [ z 2 , z 3 ] × x [ z m 1 , z m ] z 1 , z 2 × z 2 , z 3 × x z m 1 , z m [z_(1),z_(2)]xx[z_(2),z_(3)]xx dots x[z_(m-1),z_(m)]\left[z_{1}, z_{2}\right] \times\left[z_{2}, z_{3}\right] \times \ldots x\left[z_{m-1}, z_{m}\right][z1,z2]×[z2,z3]×x[zm1,zm]and is (by hypothesis) positive at every internal point of this domain.
If we now take into account the general formula (16), we deduce the
Corollary 1. If the numbers x i , i = 1 , 2 , , n x i , i = 1 , 2 , , n x_(i),i=1,2,dots,nx_{i}, i=1,2, \ldots, nxi,i=1,2,,nare positive, we have
(26) sg V ( x σ 1 , x σ 2 , , x σ n x 1 , x 2 , , x n ) = = sg ( V ( x 1 , x 2 , , x n ) V π ( σ 1 , σ 2 , , σ n ) ) (26) sg V ( x σ 1 , x σ 2 , , x σ n x 1 , x 2 , , x n ) = = sg V x 1 , x 2 , , x n V π σ 1 , σ 2 , , σ n {:[(26)sg V((x^(sigma_(1)),x^(sigma_(2)),dots,x^(sigma_(n)))/(x_(1),x_(2),dots,x_(n)))=],[=sg(V(x_(1),x_(2),dots,x_(n))V^(pi)(sigma_(1),sigma_(2),dots,sigma_(n)))]:}\begin{gather*} \operatorname{sg} V\binom{x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots, x^{\sigma_{n}}}{x_{1}, x_{2}, \ldots, x_{n}}= \tag{26}\\ =\operatorname{sg}\left(V\left(x_{1}, x_{2}, \ldots, x_{n}\right) V^{\pi}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)\right) \end{gather*}(26)sgV(xσ1,xσ2,,xσnx1,x2,,xn)==sg(V(x1,x2,,xn)Vπ(σ1,σ2,,σn))
THE z i z i z_(i)z_{i}ziand the k i k i k_(i)k_{i}kibeing always determined by formulas (8).
In the second member V ( x 1 , x 2 , , x n ) V x 1 , x 2 , , x n V(x_(1),x_(2),dots,x_(n))V\left(x_{1}, x_{2}, \ldots, x_{n}\right)V(x1,x2,,xn)is the generalized Vandermonde determinant (15), but V 2 ( σ 1 , σ 2 , , σ n ) V 2 σ 1 , σ 2 , , σ n V^(2)(sigma_(1),sigma_(2),dots,sigma_(n))V^{2}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)V2(σ1,σ2,,σn)is the usual Vandermonde determinant of numbers σ 1 , σ 2 , , σ n σ 1 , σ 2 , , σ n sigma_(1),sigma_(2),dots,sigma_(n)\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}σ1,σ2,,σn, different or not, given by formula (11). Formula (26) is also true in the case where the σ t σ t sigma_(t)\sigma_{t}σtare not all distinct, since then both members are equal to 0.
The special case m = n m = n m=nm=nm=n, therefore the case where the points x i x i x_(i)x_{i}xi. i = 1 , 2 , , n i = 1 , 2 , , n i=1,2,dots,ni=1,2, \ldots, ni=1,2,,n, are distinct, has also been dealt with by us in an earlier work [3].
7. We can now return to the study of the remainder of the quadrature formula (1). For this, we will use our results concerning generalized convex functions and the notion of a linear functional of simple form, presented in our work cited [5]. The reader is advised to refer to this work for the justification of all the statements that follow.
Formula (1) can be obtained by replacing the function f with the (generalized) Lagrange-Hermite type polynomial
L ( x ) = c 0 + c 1 x p + c 2 x q + c 3 x x L ( x ) = c 0 + c 1 x p + c 2 x q + c 3 x x L(x)=c_(0)+c_(1)x^(p)+c_(2)x^(q)+c_(3)x^(x)L(x)=c_{0}+c_{1} x^{p}+c_{2} x^{q}+c_{3} x^{x}L(x)=c0+c1xp+c2xq+c3xx
whose coefficients c 0 , c 1 , c 2 , c 3 c 0 , c 1 , c 2 , c 3 c_(0),c_(1),c_(2),c_(3)c_{0}, c_{1}, c_{2}, c_{3}c0,c1,c2,c3are well determined by the interpolatory conditions
(27) L ( 0 ) = f ( 0 ) , L ( L ( 0 ) = f ( 0 ) , L ( L(0)=f(0),L^(')(L(0)=f(0), L^{\prime}(L(0)=f(0),L( ) = f ( ) = f )=f(:})=f\left(\right.)=f(四), L ( 0 ) = f ( ) , L ( 1 ) = f ( 1 ) L ( 0 ) = f ( ) , L ( 1 ) = f ( 1 ) L^(')(0)=f^(')(o+),L(1)=f(1)L^{\prime}(0)=f^{\prime}(\oplus), L(1)=f(1)L(0)=f(),L(1)=f(1).
Numbers p , q , r p , q , r p,q,rp, q, rp,q,rand (ii) have the meanings given in rr. 1.
As a result, the rest R ( f ) R ( f ) R(f)R(f)R(f)is given by the formula
(28) R ( f ) = 0 1 ( f ( x ) I ( x ) ) d x (28) R ( f ) = 0 1 ( f ( x ) I ( x ) ) d x {:(28)R(f)=int_(0)^(1)(f(x)-I(x))dx:}\begin{equation*} R(f)=\int_{0}^{1}(f(x)-I(x)) d x \tag{28} \end{equation*}(28)R(f)=01(f(x)I(x))dx
But it's easy to point out the difference f ( x ) = L ( x ) f ( x ) = L ( x ) f(x)=L(x)f(x)=L(x)f(x)=L(x)
in a remarkable form to I I IIIusing the generalized divided difference
(29)
[ x 1 , x 2 , x 3 , x 4 , x 5 ; f ] = = v ( 1 , x p , x q , x r , f x 1 , x 2 , x 3 , x 4 , x 5 ) : v ( 1 , x p , x q , x r , x s x 1 , x 2 , x 3 , x 4 , x 5 ) x 1 , x 2 , x 3 , x 4 , x 5 ; f = = v ( 1 , x p , x q , x r , f x 1 , x 2 , x 3 , x 4 , x 5 ) : v ( 1 , x p , x q , x r , x s x 1 , x 2 , x 3 , x 4 , x 5 ) {:[[x_(1),x_(2),x_(3),x_(4),x_(5);f]=],[=v((1,x^(p),x^(q),x^(r),f)/(x_(1),x_(2),x_(3),x_(4),x_(5))):v((1,x^(p),x^(q),x^(r),x^(s))/(x_(1),x_(2),x_(3),x_(4),x_(5)))]:}\begin{gathered} {\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; f\right]=} \\ =v\binom{1, x^{p}, x^{q}, x^{r}, f}{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}}: v\binom{1, x^{p}, x^{q}, x^{r}, x^{s}}{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}} \end{gathered}[x1,x2,x3,x4,x5;f]==v(1,xp,xq,xr,fx1,x2,x3,x4,x5):v(1,xp,xq,xr,xsx1,x2,x3,x4,x5)
Or s s sssis a positive number > r ( > q > p ) > r ( > q > p ) > r quad( > q > p)>r \quad(>q>p)>r(>q>p)We see that
, by virtue of corollary 1, this divided difference exists regardless of the points x 1 , x 2 , x 3 , x 4 , x 5 x 1 , x 2 , x 3 , x 4 , x 5 x_(1),x_(2),x_(3),x_(4),x_(5)x_{1}, x_{2}, x_{3}, x_{4}, x_{5}x1,x2,x3,x4,x5, non-negative, but of which at most one is equal to O O OOOThe two determinants of the second member of (29) are taken in the generalized sense (9) (with the z j z j z_(j)z_{j}zjdistinct). Note that if x 1 = 0 x 1 = 0 x_(1)=0x_{1}=0x1=0and the points x 2 , x 3 , x 4 , x 5 x 2 , x 3 , x 4 , x 5 x_(2),x_(3),x_(4),x_(5)x_{2}, x_{3}, x_{4}, x_{5}x2,x3,x4,x5are positive, we have #)
V ( 1 , x p , x q , x r , x s x 1 , x 2 , x 3 , x 4 , x 5 ) = V ( x p , x q , x r , x s x 2 , x 3 , x 4 , x 5 ) V ( 1 , x p , x q , x r , x s x 1 , x 2 , x 3 , x 4 , x 5 ) = V ( x p , x q , x r , x s x 2 , x 3 , x 4 , x 5 ) V((1,x^(p),x^(q),x^(r),x^(s))/(x_(1),x_(2),x_(3),x_(4),x_(5)))=V((x^(p),x^(q),x^(r),x^(s))/(x_(2),x_(3),x_(4),x_(5)))V\binom{1, x^{p}, x^{q}, x^{r}, x^{s}}{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}}=V\binom{x^{p}, x^{q}, x^{r}, x^{s}}{x_{2}, x_{3}, x_{4}, x_{5}}V(1,xp,xq,xr,xsx1,x2,x3,x4,x5)=V(xp,xq,xr,xsx2,x3,x4,x5)
We then have
(30) f ( x ) L ( x ) = V ( 1 , x p , x q , x r , x s 0 , 0 , 0 , 1 , x ) V ( 1 , x p , x q , x r 0 , 0 , 0 , 1 ) [ 0 , 0 , 0 , 1 , x ; f ] (30) f ( x ) L ( x ) = V ( 1 , x p , x q , x r , x s 0 , 0 , 0 , 1 , x ) V ( 1 , x p , x q , x r 0 , 0 , 0 , 1 ) [ 0 , 0 , 0 , 1 , x ; f ] {:(30)f(x)-L(x)=(V((1,x^(p),x^(q),x^(r),x^(s))/(0,0,0,1,x)))/(V((1,x^(p),x^(q),x^(r))/(0,0,0,1)))[0","0","0","1","x;f]:}\begin{equation*} f(x)-L(x)=\frac{V\binom{1, x^{\mathrm{p}}, x^{\mathrm{q}}, x^{\mathrm{r}}, x^{\mathrm{s}}}{0,0,0,1, x}}{V\binom{1, x^{\mathrm{p}}, x^{\mathrm{q}}, x^{\mathrm{r}}}{0,0,0,1}}[0,0,0,1, x ; f] \tag{30} \end{equation*}(30)f(x)L(x)=V(1,xp,xq,xr,xs0,0,0,1,x)V(1,xp,xq,xr0,0,0,1)[0,0,0,1,x;f]
assuming that x x xxxbe positive and different from Θ Θ Theta\ThetaΘand 1. In our example x x xxxalone is always a group of points z i z i z_(i)z_{i}ziIn this way the determinant V ( 1 , x p , x q , x x , x s 0 , Θ , Θ , 1 , x ) V ( 1 , x p , x q , x x , x s 0 , Θ , Θ , 1 , x ) quad V((1,x^(p),x^(q),x^(x),x^(s))/(0,Theta,Theta,1,x))\quad V\binom{1, x^{p}, x^{q}, x^{x}, x^{s}}{0, \Theta, \Theta, 1, x}V(1,xp,xq,xx,xs0,Θ,Θ,1,x)
is zero if x x xxxcoincides with 0, or 1, and then the difference divided [ 0 , ( 4 , 0 , 1 , x 9 f ] n 0 , 4 , 0 , 1 , x 9 f n [0,(4,0,1,x_(9)f]n:}\left[0,\left(4,0,1, x_{9} f\right] n\right.[0,(4,0,1,x9f]n'is not defined. This difficulty can easily be remedied, but it is unnecessary to do so in this work. For x = 0 , Θ x = 0 , Θ x=0,Thetax=0, \Thetax=0,Θor 1 the second member of (30) does not make sense, but then the polynomial values I I IIIare given by (27).
8. The coefficient of the divided difference of the right-hand side of (30) is, by virtue of corollary 3, negative at every point of [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], outside of 0, (1) and 1.
Let us now recall that the function f f fffis said to be convex with respect to the sequence of functions 1, x p , x q , x r , x s x p , x q , x r , x s x^(p),x^(q),x^(r),x^(s)x^{p}, x^{q}, x^{r}, x^{s}xp,xq,xr,xson the interval [0,1] if the divided difference (29) is > 0 > 0 > 0>0>0for any group of 5 distinct points x 1 , x 2 , x 3 , x 4 , x 5 x 1 , x 2 , x 3 , x 4 , x 5 x_(1),x_(2),x_(3),x_(4),x_(5)x_{1}, x_{2}, x_{3}, x_{4}, x_{5}x1,x2,x3,x4,x5In this case, the divided difference (29) is still positive if the points x 1 , x 2 , x 3 , x 4 , x 5 x 1 , x 2 , x 3 , x 4 , x 5 x_(1),x_(2),x_(3),x_(4),x_(5)x_{1}, x_{2}, x_{3}, x_{4}, x_{5}x1,x2,x3,x4,x5are not all confused, at least in the case where this difference divides exists. In the case (the only one that interests us here) where the function f f fffis convex we have [ 0 , ( 1 ) , ( 1 ) , 1 , x : f ] > 0 [ 0 , ( 1 ) , ( 1 ) , 1 , x : f ] > 0 [0,(1),(1),1,x:f] > 0[0,(1),(1), 1, x: f]>0[0,(1),(1),1,x:f]>0For x x xxxdifferent 0 , ( 4 ) 0 , ( 4 ) 0,(4)0,(4)0,(4)and 1. If t C [ 0 , 1 ] t C [ 0 , 1 ] t in C[0,1]t \in C[0,1]tC[0,1], therefore if the function f f fffis continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], it follows from formulas (28) and (30) that if, in addition, the function is convex with respect to the sequence 1 , x p , x q , x 1 , x 5 1 , x p , x q , x 1 , x 5 1,x^(p),x^(q),x^(1),x^(5)1, x^{p}, x^{q}, x^{1}, x^{5}1,xp,xq,x1,x5We have R ( f ) 0 ( p l u s R ( f ) 0 ( p l u s R(f)!=0quad(plusR(f) \neq 0 \quad(p l u sR(f)0(pLusExactly R ( f ) < 0 ) R ( f ) < 0 ) R(f) < 0)R(f)<0)R(f)<0).
But R ( f ) R ( f ) R(f)R(f)R(f)is a linear (additive and homogeneous) functional defined on C [ 0 , 1 ] C [ 0 , 1 ] C[0,1]C[0,1]C[0,1]It therefore follows from the study we have carried out on linear functionals of the simple form (see again work [5]) that
Theorem 2. If f C [ 0 , 1 ] f C [ 0 , 1 ] f in C[0,1]f \in C[0,1]fC[0,1], the rest R ( f ) R ( f ) R(f)R(f)R(f)of the quadrature formula (1) is of the form
(31) R ( f ) = R ( x s ) [ ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 ; f ] (31) R ( f ) = R x s ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 ; f {:(31)R(f)=R(x^(s))[xi_(1),xi_(2),xi_(3),xi_(4),xi_(5);f]:}\begin{equation*} R(f)=R\left(x^{s}\right)\left[\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5} ; f\right] \tag{31} \end{equation*}(31)R(f)=R(xs)[ξ1,ξ2,ξ3,ξ4,ξ5;f]
Or ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 xi_(1),xi_(2),xi_(3),xi_(4),xi_(5)\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}ξ1,ξ2,ξ3,ξ4,ξ5are 5 distinct points of the open interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1](generally dependent on the function) f f fff) and the divided difference of the second member is defined by formula (29).
The coefficient
R ( x s ) = 0 1 x s d x λ 1 ( 1 ) s λ 2 R x s = 0 1 x s d x λ 1 ( 1 ) s λ 2 R(x^(s))=int_(0)^(1)x^(s)dx-lambda_(1)(1)^(s)-lambda_(2)R\left(x^{s}\right)=\int_{0}^{1} x^{s} d x-\lambda_{1}(1)^{s}-\lambda_{2}R(xs)=01xsdxλ1(1)sλ2
The value of formula (31) can be calculated using the values ​​(3a) and (3b) of the coefficients λ 1 , λ 2 λ 1 , λ 2 lambda_(1),lambda_(2)\lambda_{1}, \lambda_{2}λ1,λ2from formula (1). We obtain
( p + 1 ) ( q s ) 0 p + ( q + 1 ) ( s p ) 0 q ( p + 1 ) ( q s ) 0 p + ( q + 1 ) ( s p ) 0 q (p+1)(q-s)0^(p)+(q+1)(s-p)0^(q)(p+1)(q-s) 0^{p}+(q+1)(s-p) 0^{q}(p+1)(qs)0p+(q+1)(sp)0q
(32) R ( x s ) = + ( s + 1 ) ( p q ) ( 1 ) s ( p + 1 ) ( q + 1 ) ( s + 1 ) ( 1 ( m ) (32) R x s = + ( s + 1 ) ( p q ) ( 1 ) s ( p + 1 ) ( q + 1 ) ( s + 1 ) ( 1 ( m ) {:(32)R(x^(s))=(+(s+1)(p-q)(1)^(s))/((p+1)(q+1)(s+1)(1(m)):}\begin{equation*} R\left(x^{s}\right)=\frac{+(s+1)(p-q)(1)^{s}}{(p+1)(q+1)(s+1)(1(m)} \tag{32} \end{equation*}(32)R(xs)=+(s+1)(pq)(1)s(p+1)(q+1)(s+1)(1(m)
where (10) Є ] 0 , 1 [ ] 0 , 1 ]0,1[:}] 0,1\left[\right.]0,1[satisfied & 1 1 1^(@)1^{\circ}1equation (4).
Apparently, in the proof of Theorem 2, in addition to the continuity of the function f, its differentiability also comes into play, at least with respect to point (ii). But this theorem remains true without this last restriction. This results, on the one hand, from the fact that the derivative of the function I does not appear in formula (1) and, on the other hand, from the fact that a function is convex with respect to the sequence 1 , x p 1 , x p 1,x^(p)1, x^{p}1,xp, x q , x r , x s x q , x r , x s x^(q),x^(r),x^(s)x^{q}, x^{r}, x^{s}xq,xr,xson 1 intervalle [ 0 , 1 ] 1 intervalle  [ 0 , 1 ] 1^("intervalle ")[0,1]1^{\text {intervalle }}[0,1]1interval [0,1]eat necessarily (continuous and) differentiable on ] 0 , 1 [ ] 0 , 1 [ ]0,1[] 0,1[]0,1[We established this latter property previously [4].
9. Formula (31) is inconvenient for delimiting the remainder R ( I ) R ( I ) R(I)R(\mathcal{I})R(I)But, it also follows from our work cited [5], that if the function i i iiihas a deximate 4 ieme 4 ieme  4^("ieme ")4^{\text {ieme }}4th on 1 1 1^(@)1^{\circ}1interm valle ouvert ] 0,1 [ one can in (31) produce the points ξ 1 ξ 2 , 0 ξ 3 , ξ 4 , 0 ξ 5 ξ 1 ξ 2 , 0 ξ 3 , ξ 4 , 0 ξ 5 xi_(1)xi_(2,0)xi_(3,)xi_(4,0)xi_(5)\xi_{1} \xi_{2,0} \xi_{3,} \xi_{4,0} \xi_{5}ξ1ξ2,0ξ3,ξ4,0ξ5equal to a child point ξ ] 0 0 1 [ ξ 0 0 1 [ {: xi in]0_(0)1[\left.\xi \in\right] 0_{0} 1[ξ]001[
Formulas (12), (22) and (25) give us
V ( 1 , x p , x q , x r , l ξ , ξ , ξ , ξ , ξ ) = p q x W ( x p 1 , x q 1 , x r 1 , l ) ( ξ ) V ( 1 , x p , x q , x r , l ξ , ξ , ξ , ξ , ξ ) = p q x W x p 1 , x q 1 , x r 1 , l ( ξ ) V((1,x^(p),x^(q),x^(r),l)/(xi,xi,xi,xi,xi))=pqxW(x^(p-1),x^(q-1),x^(r-1),l^('))(xi)V\binom{1, x^{p}, x^{q}, x^{r}, l}{\xi, \xi, \xi, \xi, \xi}=p q x W\left(x^{p-1}, x^{q-1}, x^{r-1}, l^{\prime}\right)(\xi)V(1,xp,xq,xr,Lξ,ξ,ξ,ξ,ξ)=pqxW(xp1,xq1,xr1,L)(ξ)
V ( 1 , x p , x q , x r , x s ξ , ξ , ξ , ξ , ξ ) = ξ p + q + x + s 10 p q r s V ( p , q , r , s ) V ( 1 , x p , x q , x r , x s ξ , ξ , ξ , ξ , ξ ) = ξ p + q + x + s 10 p q r s V ( p , q , r , s ) V((1,x^(p),x^(q),x^(r),x^(s))/(xi,xi,xi,xi,xi))=xi^(p+q+x+s-10)pqrsV(p,q,r,s)V\binom{1, x^{p}, x^{q}, x^{r}, x^{s}}{\xi, \xi, \xi, \xi, \xi}=\xi^{p+q+x+s-10} p q r s V(p, q, r, s)V(1,xp,xq,xr,xsξ,ξ,ξ,ξ,ξ)=ξp+q+x+s10pqrsV(p,q,r,s)
assuming ξ ] 0 , 1 [ ξ ] 0 , 1 [ xi in]0,1[\xi \in] 0,1[ξ]0,1[
By doing the calculations, we will find
W ( x p 1 , x q 1 , x r 1 , f ) ( ξ ) = = ξ p + q + r 9 V ( p , q , r ) { ξ 3 f I V ( ξ ) ( p + q + r 6 ) ξ 2 f ( ξ ) + + [ ( p 1 ) ( q 2 ) + ( p 1 ) ( r 1 ) + ( q 2 ) ( r 2 ) ] ξ f ( ξ ) + ( p 1 ) ( q 1 ) ( r 1 ) f ( ξ ) } W x p 1 , x q 1 , x r 1 , f ( ξ ) = = ξ p + q + r 9 V ( p , q , r ) ξ 3 f I V ( ξ ) ( p + q + r 6 ) ξ 2 f ( ξ ) + + [ ( p 1 ) ( q 2 ) + ( p 1 ) ( r 1 ) + ( q 2 ) ( r 2 ) ] ξ f ( ξ ) + ( p 1 ) ( q 1 ) ( r 1 ) f ( ξ ) {:[W(x^(p-1),x^(q-1),x^(r-1),f^('))(xi)=],[=xi^(p+q+r-9)V(p","q","r){xi^(3)f^(IV)(xi)-(p+q+r-6)xi^(2)f^(''')(xi)+:}],[+[(p-1)(q-2)+(p-1)(r-1)+(q-2)(r-2)]xif^('')(xi)+],[{:-(p-1)(q-1)(r-1)f^(')(xi)}]:}\begin{gathered} W\left(x^{p-1}, x^{q-1}, x^{r-1}, f^{\prime}\right)(\xi)= \\ =\xi^{p+q+r-9} V(p, q, r)\left\{\xi^{3} f^{I V}(\xi)-(p+q+r-6) \xi^{2} f^{\prime \prime \prime}(\xi)+\right. \\ +[(p-1)(q-2)+(p-1)(r-1)+(q-2)(r-2)] \xi f^{\prime \prime}(\xi)+ \\ \left.-(p-1)(q-1)(r-1) f^{\prime}(\xi)\right\} \end{gathered}W(xp1,xq1,xr1,f)(ξ)==ξp+q+r9V(p,q,r){ξ3fIV(ξ)(p+q+r6)ξ2f(ξ)++[(p1)(q2)+(p1)(r1)+(q2)(r2)]ξf(ξ)+(p1)(q1)(r1)f(ξ)}
and we therefore deduce
Theorem 3. If the function f C [ 0 , 1 ] f C [ 0 , 1 ] f in C[0,1]f \in C[0,1]fC[0,1]has a fourth derivative on ] 0 , 1 [ ] 0 , 1 [ ]0,1[] 0,1[]0,1[, the rest R ( f ) R ( f ) R(f)R(f)R(f)of formula (1) is given by
R ( f ) = R ( x s ) 1 s s ( s p ) ( s q ) ( s r ) { ξ 3 f v ( ξ ) ¯ ( p + q + r 6 ) ξ 2 f ( ξ ) + + [ ( p 1 ) ( q 2 ) + ( p 1 ) ( r 1 ) + ( q 2 ) ( r 2 ) ] ξ f ( ξ ) + ( p 1 ) ( q 1 ) ( r 1 ) f ( ξ ) } R ( f ) = R x s 1 s s ( s p ) ( s q ) ( s r ) ξ 3 f v ( ξ ) ¯ ( p + q + r 6 ) ξ 2 f ( ξ ) + + [ ( p 1 ) ( q 2 ) + ( p 1 ) ( r 1 ) + ( q 2 ) ( r 2 ) ] ξ f ( ξ ) + ( p 1 ) ( q 1 ) ( r 1 ) f ( ξ ) {:[R(f)=(R(x^(s))^(1-s))/(s(s-p)(s-q)(s-r)){xi^(3)f^('v)(xi)( bar(∓)):}],[-(p+q+r-6)xi^(2)f^(''')(xi)+],[+[(p-1)(q-2)+(p-1)(r-1)+(q-2)(r-2)]xif^('')(xi)+],[{:-(p-1)(q-1)(r-1)f^(')(xi)}]:}\begin{aligned} & R(f)= \frac{R\left(x^{s}\right)^{1-s}}{s(s-p)(s-q)(s-r)}\left\{\xi^{3} f^{\prime v}(\xi) \bar{\mp}\right. \\ &-(p+q+r-6) \xi^{2} f^{\prime \prime \prime}(\xi)+ \\ &+[(p-1)(q-2)+(p-1)(r-1)+(q-2)(r-2)] \xi f^{\prime \prime}(\xi)+ \\ &\left.-(p-1)(q-1)(r-1) f^{\prime}(\xi)\right\} \end{aligned}R(f)=R(xs)1ss(sp)(sq)(sr){ξ3fv(ξ)¯(p+q+r6)ξ2f(ξ)++[(p1)(q2)+(p1)(r1)+(q2)(r2)]ξf(ξ)+(p1)(q1)(r1)f(ξ)}
Or ε ˙ ε ˙ epsi^(˙)\dot{\varepsilon}ε˙is a point in the open interval ]0,1[ (generally depending on the function .f).
10. We will finish with two examples.
E x E x ExE xExExample 1. From Simpson's formula ( p = 1 , q = 2 ( p = 1 , q = 2 (p=1,q=2(p=1, q=2(p=1,q=2, r = 3 r = 3 r=3r=3r=3), the remainder is given by the formula
R ( f ) = 1 s + 1 1 3 2 s 1 1 6 s ( s 1 ) ( s 2 ) ( s 3 ) ξ 4 s f ( ξ ) ( ξ ] 0 , 1 [ ) R ( f ) = 1 s + 1 1 3 2 s 1 1 6 s ( s 1 ) ( s 2 ) ( s 3 ) ξ 4 s f ( ξ ) ( ξ ] 0 , 1 [ ) R(f)=((1)/(s+1)-(1)/(3*2^(s-1))-(1)/(6))/(s(s-1)(s-2)(s-3))xi^(4-s)f quad(xi)quad(xi in]0,1[)R(f)=\frac{\frac{1}{s+1}-\frac{1}{3 \cdot 2^{s-1}}-\frac{1}{6}}{s(s-1)(s-2)(s-3)} \xi^{4-s} f \quad(\xi) \quad(\xi \in] 0,1[)R(f)=1s+1132s116s(s1)(s2)(s3)ξ4sf(ξ)(ξ]0,1[)
If we take s = 4 s = 4 s=4s=4s=4we find the rest well known 1 2880 f IV ( ξ ) 1 2880 f IV  ( ξ ) -(1)/(2880)f^("IV ")(xi)-\frac{1}{2880} \mathrm{f}^{\text {IV }}(\xi)12880fIV (ξ)By taking s = 7 2 s = 7 2 s=(7)/(2)s=\frac{7}{2}s=72respectively s = 5 s = 5 s=5s=5s=5we find the remainder respectively in the form
4 ( 2 1 ) 2 945 2 ξ f ( ξ ) , 1 5760 f V ( ξ ) ξ ( ξ ] 0 , 1 [ ) 4 ( 2 1 ) 2 945 2 ξ f ( ξ ) , 1 5760 f V ( ξ ) ξ ( ξ ] 0 , 1 [ ) -(4(sqrt2-1)^(2))/(945*sqrt2)sqrtxif^('')(xi),-(1)/(5760)*(f^('V)(xi))/(xi)quad(xi in]0,1[)-\frac{4(\sqrt{2}-1)^{2}}{945 \cdot \sqrt{2}} \sqrt{\xi} f^{\prime \prime}(\xi),-\frac{1}{5760} \cdot \frac{f^{\prime V}(\xi)}{\xi} \quad(\xi \in] 0,1[)4(21)29452ξf(ξ),15760fV(ξ)ξ(ξ]0,1[)
Example 2. Let's take p = 1 2 , q = 1 , r = 3 2 p = 1 2 , q = 1 , r = 3 2 p=(1)/(2),q=1,r=(3)/(2)p=\frac{1}{2}, q=1, r=\frac{3}{2}p=12,q=1,r=32. L L LLLequation then gives Θ = 9 25 Θ = 9 25 Theta=(9)/(25)\Theta=\frac{9}{25}Θ=925and formula (32) shows us that the remainder of the quadrature formula
0 1 f ( x ) d x = 1 36 [ 2 f ( 0 ) + 25 f ( 9 25 ) + 9 f ( 1 ) ] + R ( f ) 0 1 f ( x ) d x = 1 36 2 f ( 0 ) + 25 f 9 25 + 9 f ( 1 ) + R ( f ) int_(0)^(1)f(x)dx=(1)/(36)[2f(0)+25 f((9)/(25))+9f(1)]+R(f)\int_{0}^{1} f(x) d x=\frac{1}{36}\left[2 f(0)+25 f\left(\frac{9}{25}\right)+9 f(1)\right]+R(f)01f(x)dx=136[2f(0)+25f(925)+9f(1)]+R(f)
is given by the formula
R ( f ) = 1 s + 1 1 36 [ 25 ( 3 5 ) 2 s + 9 ] s ( 2 s 1 ) ( s 1 ) ( 2 s 3 ) ξ 2 s [ 3 f ( ξ ) + + 12 ξ f ( ξ ) + 4 ξ 2 f V ( ξ ) ] R ( f ) = 1 s + 1 1 36 25 3 5 2 s + 9 s ( 2 s 1 ) ( s 1 ) ( 2 s 3 ) ξ 2 s 3 f ( ξ ) + + 12 ξ f ( ξ ) + 4 ξ 2 f V ( ξ ) {:[R(f)=((1)/(s+1)-(1)/(36)[25((3)/(5))^(2s)+9])/(s(2s-1)(s-1)(2s-3))xi^(2-s)[3f^('')(xi)+:}],[{:+12 xif^(''')(xi)+4xi^(2)f^('V)(xi)]]:}\begin{aligned} R(f)= & \frac{\frac{1}{s+1}-\frac{1}{36}\left[25\left(\frac{3}{5}\right)^{2 s}+9\right]}{s(2 s-1)(s-1)(2 s-3)} \xi^{2-s}\left[3 f^{\prime \prime}(\xi)+\right. \\ & \left.+12 \xi f^{\prime \prime \prime}(\xi)+4 \xi^{2} f^{\prime V}(\xi)\right] \end{aligned}R(f)=1s+1136[25(35)2s+9]s(2s1)(s1)(2s3)ξ2s[3f(ξ)++12ξf(ξ)+4ξ2fV(ξ)]
Or ξ ] 0 , 1 [ ξ ] 0 , 1 xi in]0,1[:}\xi \in] 0,1\left[\right.ξ]0,1[And s s sssbeing a number > 3 2 > 3 2 > (3)/(2)>\frac{3}{2}>32By taking s = 21 e s = 21 e s=21 es=21 es=21estay s s ssswriting
R ( f ) = 1 300 [ 3 f ( ξ ) + 12 ξ f ( Θ ) + 4 ξ 2 f V ( ξ ) ] R ( f ) = 1 300 3 f ( ξ ) + 12 ξ f ( Θ ) + 4 ξ 2 f V ( ξ ) R(f)=-(1)/(300)[3f^('')(xi)+12 xif^(''')(Theta)+4xi^(2)f^('V)(xi)]R(f)=-\frac{1}{300}\left[3 f^{\prime \prime}(\xi)+12 \xi f^{\prime \prime \prime}(\Theta)+4 \xi^{2} f^{\prime V}(\xi)\right]R(f)=1300[3f(ξ)+12ξf(Θ)+4ξ2fV(ξ)]
BIBLIOGRAPHY
[1] S. Goła b, C. O lech: Contribution to the theory of the Simpsonian formula of approximate quadratures. Ann. Polon. Math. (1954) 176-183.
[2] G. P ol y a, G. S zeg ö: Aufgaben und Lehrsätze aus der Analysis, II. Berlin 1925.
[3] T. Popoviciu: Asupra unui determinant. Gas. Mast. Ser. A. 36 (1931) 405-408 (in Romanian).
[4] 'T. Popoviciu: Notes on higher order functions I. Mathematica (Cluj) 12 (1936) 81-92.
[5] T. Po poviciu: On the remainder in certain linear formulas of approximation of the analysis. Mathematica (Cluj) 24 (1959) 95-142。
CALCULATION INSTITUTE, Str. Republicii nr. 37, CLUJ, ROMANIA

    • When at least two of the points x 1 , x 2 , x 3 , x 4 , x 5 x 1 , x 2 , x 3 , x 4 , x 5 x_(1),x_(2),x_(3),x_(4),x_(5)x_{1}, x_{2}, x_{3}, x_{4}, x_{5}x1,x2,x3,x4,x5are equal to 0, the difference divided (29, (at least for p 1 p 1 p <= 1p \leqslant 1p1, is not defined.
1974

Related Posts