On a sufficient condition for a polynomial to be positive

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur une condition suffisante pour qu’un polynôme soit positif, Mathematica, 11 (1935), pp. 247-256 (in French).

PDF

About this paper

Journal

Mathematica

Publisher Name

published by the Romanian Academy Publishing House

DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1935 b -Popoviciu- Mathematica - On a sufficient condition for a polynomial to be positive
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON A SUFFICIENT CONDITION FOR A POLYNOMIAL TO BE POSITIVE

by

Tiberiu Popoviciuin Cluj.

Received on May 5, 1935.
    • Consider a polynomial of degree 2 m 2 m 2m2 m2mwhich we will write in the following form
f ( x ) = has 0 c 0 + has 1 c 1 x + , , + has k c k x k + , + has 2 m c 2 m x 2 m f ( x ) = has 0 c 0 + has 1 c 1 x + , , + has k c k x k + , + has 2 m c 2 m x 2 m f(x)=a_(0)c_(0)+a_(1)c_(1)x+,dots,+a_(k)c_(k)x^(k)+dots,+a_(2m)c_(2m)x^(2m)f(x)=a_{0} c_{0}+a_{1} c_{1} x+, \ldots,+a_{k} c_{k} x^{k}+\ldots,+a_{2 m} c_{2 m} x^{2 m}f(x)=has0c0+has1c1x+,,+haskckxk+,+has2mc2mx2m
Or has 0 , has 1 , , has k , , has m has 0 , has 1 , , has k , , has m a_(0),a_(1),dots,a_(k),dots,a_(m)a_{0}, a_{1}, \ldots, a_{k}, \ldots, a_{m}has0,has1,,hask,,hasmare positive constants and c L c L c_(l)c_{l}cLreal coefficients.
Let's put this polynomial in the form
f ( x ) = i = 0 m 1 [ α i c 2 i x 2 i ( 1 + β i c 2 i + 1 c 2 i x ) 2 + γ i 1 λ 2 c 2 i c 2 i + 2 c 2 i + 1 2 c 2 i x 2 i + 2 ] + α m c 2 m x 2 m f ( x ) = i = 0 m 1 α i c 2 i x 2 i 1 + β i c 2 i + 1 c 2 i x 2 + γ i 1 λ 2 c 2 i c 2 i + 2 c 2 i + 1 2 c 2 i x 2 i + 2 + α m c 2 m x 2 m f(x)=sum_(i=0)^(m-1)[alpha_(i)c_(2i)x^(2i)(1+beta_(i)(c_(2i+1))/(c_(2i))x)^(2)+gamma_( i)((1)/(lambda^(2))c_(2i)c_(2i+2)-c_(2i+1)^(2))/(c_(2i))x^(2i+2)]+alpha_(m)c_(2m)x^(2m)f(x)=\sum_{i=0}^{m-1}\left[\alpha_{i} c_{2 i} x^{2 i}\left(1+\beta_{i} \frac{c_{2 i+1}}{c_{2 i}} x\right)^{2}+\gamma_{i} \frac{\frac{1}{\lambda^{2}} c_{2 i} c_{2 i+2}-c_{2 i+1}^{2}}{c_{2 i}} x^{2 i+2}\right]+\alpha_{m} c_{2 m} x^{2 m}f(x)=i=0m1[αic2ix2i(1+βic2i+1c2ix)2+γi1λ2c2ic2i+2c2i+12c2ix2i+2]+αmc2mx2m
and let's determine the constants α i , β i , γ i α i , β i , γ i alpha_(i),beta_(i),gamma_(i)\alpha_{i}, \beta_{i}, \gamma_{i}αi,βi,γiby identification. We obtain
α 0 = has 0 , 2 α i β i = has 2 i + 1 , β i 2 α i = γ i , α i + 1 + γ i λ 2 = has 2 i + 2 i = 0 , 1 , , m 1 α 0 = has 0 , 2 α i β i = has 2 i + 1 , β i 2 α i = γ i , α i + 1 + γ i λ 2 = has 2 i + 2 i = 0 , 1 , , m 1 {:[alpha_(0)=a_(0)","quad2alpha_(i)beta_(i)=a_(2i+1)","quadbeta_(i)^(2)alpha_(i)=gamma_(i)","alpha_(i+1)+(gamma_(i))/(lambda^(2))=a_(2i+2)],[i=0","1","dots","m-1]:}\begin{gathered} \alpha_{0}=a_{0}, \quad 2 \alpha_{i} \beta_{i}=a_{2 i+1}, \quad \beta_{i}^{2} \alpha_{i}=\gamma_{i}, \alpha_{i+1}+\frac{\gamma_{i}}{\lambda^{2}}=a_{2 i+2} \\ i=0,1, \ldots, m-1 \end{gathered}α0=has0,2αiβi=has2i+1,βi2αi=γi,αi+1+γiλ2=has2i+2i=0,1,,m1
The constants α i α i alpha_(i)\alpha_{i}αiare therefore determined by recurrence relations
α 0 = a 0 , α i + 1 + a 2 i + 1 2 4 λ 2 α i = a 2 i + 2 , i = 0 , 1 , , m 1 . α 0 = a 0 , α i + 1 + a 2 i + 1 2 4 λ 2 α i = a 2 i + 2 , i = 0 , 1 , , m 1 . alpha_(0)=a_(0),alpha_(i+1)+(a_(2i+1)^(2))/(4lambda^(2)alpha_(i))=a_(2i+2),quad i=0,1,dots,m-1.\alpha_{0}=a_{0}, \alpha_{i+1}+\frac{a_{2 i+1}^{2}}{4 \lambda^{2} \alpha_{i}}=a_{2 i+2}, \quad i=0,1, \ldots, m-1 .α0=has0,αi+1+has2i+124λ2αi=has2i+2,i=0,1,,m1.
We can write
α i = P ^ i + 1 ( λ ) λ P i ( λ ) α i = P ^ i + 1 ( λ ) λ P i ( λ ) alpha_(i)=( hat(P)_(i+1)(lambda))/(lambdaP_(i)(lambda))\alpha_{i}=\frac{\hat{P}_{i+1}(\lambda)}{\lambda P_{i}(\lambda)}αi=P^i+1(λ)λPi(λ)
and then P k ( λ ) P k ( λ ) P_(k)(lambda)P_{k}(\lambda)Pk(λ)is a polynomial of degree k k kkkin λ λ lambda\lambdaλ
These polynomials satisfy the recurrence relations .
P 0 ( λ ) = 1 , P 1 ( λ ) = a 0 λ , P i + 2 ( λ ) λ a 2 i + 2 P i + 1 ( λ ) + a 2 i + 1 2 4 P i ( λ ) = 0 P 0 ( λ ) = 1 , P 1 ( λ ) = a 0 λ , P i + 2 ( λ ) λ a 2 i + 2 P i + 1 ( λ ) + a 2 i + 1 2 4 P i ( λ ) = 0 P_(0)(lambda)=1,quadP_(1)(lambda)=a_(0)lambda,quadP_(i+2)(lambda)-lambdaa_(2i+2)P_(i+1)(lambda)+(a_(2i+1)^(2))/(4)P_(i)(lambda)=0\mathrm{P}_{0}(\lambda)=1, \quad \mathrm{P}_{1}(\lambda)=a_{0} \lambda, \quad \mathrm{P}_{i+2}(\lambda)-\lambda a_{2 i+2} \mathrm{P}_{i+1}(\lambda)+\frac{a_{2 i+1}^{2}}{4} \mathrm{P}_{i}(\lambda)=0P0(λ)=1,P1(λ)=has0λ,Pi+2(λ)λhas2i+2Pi+1(λ)+has2i+124Pi(λ)=0
Let's ask
Q 0 λ ) = P 0 ( λ ) , Q i ( λ ) = P i ( λ ) a 0 a 2 , , a 2 i 2 Q 0 λ = P 0 ( λ ) , Q i ( λ ) = P i ( λ ) a 0 a 2 , , a 2 i 2 {:Q_(0)lambda)=P_(0)(lambda),quadQ_(i)(lambda)=(P_(i)(lambda))/(a_(0)a_(2),dots,a_(2i-2))\left.Q_{0} \lambda\right)=P_{0}(\lambda), \quad Q_{i}(\lambda)=\frac{P_{i}(\lambda)}{a_{0} a_{2}, \ldots, a_{2 i-2}}Q0λ)=P0(λ),Qi(λ)=Pi(λ)has0has2,,has2i2
we then
Q J ( λ ) = 1 , Q I ( λ ) = λ , Q I + 2 ( λ ) λ Q i + 1 ( λ ) + a 2 i + 1 2 4 a 2 i a 2 i + 2 Q i ( λ ) = 0 Q J ( λ ) = 1 , Q I ( λ ) = λ , Q I + 2 ( λ ) λ Q i + 1 ( λ ) + a 2 i + 1 2 4 a 2 i a 2 i + 2 Q i ( λ ) = 0 Q_(J)(lambda)=1,Q_(I)(lambda)=lambda,Q_(I+2)(lambda)-lambdaQ_(i+1)(lambda)+(a_(2i+1)^(2))/(4a_(2i)a_(2i+2))Q_(i)(lambda)=0Q_{J}(\lambda)=1, Q_{I}(\lambda)=\lambda, Q_{I+2}(\lambda)-\lambda Q_{i+1}(\lambda)+\frac{a_{2 i+1}^{2}}{4 a_{2 i} a_{2 i+2}} Q_{i}(\lambda)=0QI(λ)=1,QI(λ)=λ,QI+2(λ)λQi+1(λ)+has2i+124has2ihas2i+2Qi(λ)=0
The polynomial Q k ( λ ) Q k ( λ ) Q_(k)(lambda)Q_{k}(\lambda)Qk(λ)has all its real zeros and the zeros of Q k + 1 ( λ ) Q k + 1 ( λ ) Q_(k+1)(lambda)Q_{k+1}(\lambda)Qk+1(λ)are separated by those of Q k ( λ ) Q k ( λ ) Q_(k)(lambda)Q_{k}(\lambda)Qk(λ).
So that the constants α i α i alpha_(i)\alpha_{i}αiall things must be positive, it is necessary that λ λ lambda\lambdaλbe greater than the largest zero of Q m + 1 ( λ ) Q m + 1 ( λ ) Q_(m+1)(lambda)Q_{m+1}(\lambda)Qm+1(λ)In this case, the constants β i β i beta_(i)\beta_{i}βiAnd γ i γ i gamma_(i)\gamma_{i}γiare all positive as well.
We can see, therefore, that if we have
c 0 > 0 , 1 λ 2 c 2 i r 2 i + 2 c 2 i + 1 2 > 0 ( i = 0 , 1 , , m 1 ) c 0 > 0 , 1 λ 2 c 2 i r 2 i + 2 c 2 i + 1 2 > 0 ( i = 0 , 1 , , m 1 ) {:[c_(0) > 0","quad(1)/(lambda^(2))c_(2i)r_(2i+2)-c_(2i+1)^(2) > 0],[(i=0","1","dots","m-1)]:}\begin{gathered} c_{0}>0, \quad \frac{1}{\lambda^{2}} c_{2 i} r_{2 i+2}-c_{2 i+1}^{2}>0 \\ (i=0,1, \ldots, m-1) \end{gathered}c0>0,1λ2c2ir2i+2c2i+12>0(i=0,1,,m1)
Or λ λ lambda\lambdaλis at least equal to the largest root λ m + 1 λ m + 1 lambda_(m+1)\lambda_{m+1}λm+1of the equation Q m + 1 ( λ ) = 0 Q m + 1 ( λ ) = 0 Q_(m+1)(lambda)=0\mathrm{Q}_{m+1}(\lambda)=0Qm+1(λ)=0the polynomial f ( x ) f ( x ) f(x)f(x)f(x)is positive.
2. - The limit found λ m + 1 λ m + 1 lambda_(m+1)\lambda_{m+1}λm+1is the best possible. One can see it directly, or in the following way:
Let's ask
c 2 i = x i 2 , 1 λ 2 c 2 i c 2 i + 2 c 2 i + 1 2 = 0 , c 2 i + 1 = 1 λ x i x + 1 i = 0 , 1 , , m ( x i 0 ) i = 0 , 1 , , m 1 c 2 i = x i 2 , 1 λ 2 c 2 i c 2 i + 2 c 2 i + 1 2 = 0 , c 2 i + 1 = 1 λ x i x + 1 i = 0 , 1 , , m x i 0 i = 0 , 1 , , m 1 {:[c_(2i)=x_(i)^(2)","quad(1)/(lambda^(2))c_(2i)c_(2i+2)-c_(2i+1)^(2)=0","quadc_(2i+1)=-(1)/(lambda)x_(i)x_(+1)],[i=0","1","dots","m quad(x_(i)!=0)quad i=0","1","dots","m-1]:}\begin{gathered} c_{2 i}=x_{i}^{2}, \quad \frac{1}{\lambda^{2}} c_{2 i} c_{2 i+2}-c_{2 i+1}^{2}=0, \quad c_{2 i+1}=-\frac{1}{\lambda} x_{i} x_{+1} \\ i=0,1, \ldots, m \quad\left(x_{i} \neq 0\right) \quad i=0,1, \ldots, m-1 \end{gathered}c2i=xi2,1λ2c2ic2i+2c2i+12=0,c2i+1=1λxix+1i=0,1,,m(xi0)i=0,1,,m1
and determine λ λ lambda\lambdaλin the manner that the equation f ( x ) = 0 f ( x ) = 0 f(x)=0f(x)=0f(x)=0can have at least one real root. We can immediately see that it suffices to examine the cases where +1 is a root of this equation. We then have
a 0 x 0 2 + a 2 x 1 2 + , , + a 2 m x m 2 = 1 λ ( a 1 x 0 x 1 + a 3 x m x 2 + + a 2 m 1 x m 1 x m ) a 0 x 0 2 + a 2 x 1 2 + , , + a 2 m x m 2 = 1 λ a 1 x 0 x 1 + a 3 x m x 2 + + a 2 m 1 x m 1 x m a_(0)x_(0)^(2)+a_(2)x_(1)^(2)+,dots,+a_(2m)x_(m)^(2)=(1)/(lambda)(a_(1)x_(0)x_(1)+a_(3)x_(m)x_(2)+dots+a_(2m-1)x_(m-1)x_(m))a_{0} x_{0}^{2}+a_{2} x_{1}^{2}+, \ldots,+a_{2 m} x_{m}^{2}=\frac{1}{\lambda}\left(a_{1} x_{0} x_{1}+a_{3} x_{m} x_{2}+\ldots+a_{2 m-1} x_{m-1} x_{m}\right)has0x02+has2x12+,,+has2mxm2=1λ(has1x0x1+has3xmx2++has2m1xm1xm)Or
λ = a 1 x 0 x 1 + a 3 x 1 x 2 + , + a 2 m 1 x m 1 x m a 0 x 0 2 + a 2 x 1 2 + + + a 2 m x m 2 λ = a 1 x 0 x 1 + a 3 x 1 x 2 + , + a 2 m 1 x m 1 x m a 0 x 0 2 + a 2 x 1 2 + + + a 2 m x m 2 lambda=(a_(1)x_(0)x_(1)+a_(3)x_(1)x_(2)+,dots+a_(2m-1)x_(m-1)x_(m))/(a_(0)x_(0)^(2)+a_(2)x_(1)^(2)+dots++a_(2m)x_(m)^(2))\lambda=\frac{a_{1} x_{0} x_{1}+a_{3} x_{1} x_{2}+, \ldots+a_{2 m-1} x_{m-1} x_{m}}{a_{0} x_{0}^{2}+a_{2} x_{1}^{2}+\ldots++a_{2 m} x_{m}^{2}}λ=has1x0x1+has3x1x2+,+has2m1xm1xmhas0x02+has2x12+++has2mxm2
λ λ lambda\lambdaλmust therefore be between the maximum and minimum of the right-hand side, in other words between the maximum and minimum of the quadratic form i = 0 m 1 a 2 i + 1 x i x i + 1 i = 0 m 1 a 2 i + 1 x i x i + 1 sum_(i=0)^(m-1)a_(2i+1)x_(i)x_(i+1)\sum_{i=0}^{m-1} a_{2 i+1} x_{i} x_{i+1}i=0m1has2i+1xixi+1when the variables are linked by the relation i = 0 m a 2 i x 1 2 = 1 i = 0 m a 2 i x 1 2 = 1 sum_(i=0)^(m)a_(2i)x_(1)^(2)=1\sum_{i=0}^{m} a_{2 i} x_{1}^{2}=1i=0mhas2ix12=1.
The result is that λ λ lambda\lambdaλis between the smallest and largest roots of the characteristic equation
R n + 1 ( x ) = | 2 x a 0 a 1 0 0 0 a 1 2 x a 2 a 3 0 0 0 a 3 2 x a 4 a 5 0 0 0 0 a 2 m 1 2 x a 2 m | = 0 R n + 1 ( x ) = 2 x a 0 a 1 0 0 0 a 1 2 x a 2 a 3 0 0 0 a 3 2 x a 4 a 5 0 0 0 0 a 2 m 1 2 x a 2 m = 0 R_(n+1)(x)=|[-2xa_(0),a_(1),0,0,dots,dots,dots,0],[a_(1),-2xa_(2),a_(3),0,dots,dots,dots,0],[0,a_(3),-2xa_(4),a_(5),dots,dots,dots,dots],[cdots,dots,dots,dots,dots,dots,dots],[0,0,0,0,dots,dots,a_(2m-1),-2xa_(2m)]|=0\mathbb{R}_{n+1}(x)=\left|\begin{array}{cccccccc}-2 x a_{0} & a_{1} & 0 & 0 & \ldots & \ldots & \ldots & 0 \\ a_{1} & -2 x a_{2} & a_{3} & 0 & \ldots & \ldots & \ldots & 0 \\ 0 & a_{3} & -2 x a_{4} & a_{5} & \ldots & \ldots & \ldots & \ldots \\ \cdots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & \ldots & a_{2 m-1} & -2 x a_{2 m}\end{array}\right|=0Rn+1(x)=|2xhas0has1000has12xhas2has3000has32xhas4has50000has2m12xhas2m|=0
It is immediately apparent that
R 1 ( x ) = 2 x a 0 , R 2 ( x ) = 4 a 0 a 2 ( x 2 a 1 2 4 a 0 a 2 ) R i + 2 ( x ) + 2 x a 2 i + 2 R i + 1 ( x ) + a 2 i + 1 2 R i ( x ) = 0 R 1 ( x ) = 2 x a 0 , R 2 ( x ) = 4 a 0 a 2 x 2 a 1 2 4 a 0 a 2 R i + 2 ( x ) + 2 x a 2 i + 2 R i + 1 ( x ) + a 2 i + 1 2 R i ( x ) = 0 {:[R_(1)(x)=-2xa_(0)","quadR_(2)(x)=4a_(0)a_(2)(x^(2)-(a_(1)^(2))/(4a_(0)a_(2)))],[R_(i+2)(x)+2xa_(2i+2)R_(i+1)(x)+a_(2i+1)^(2)R_(i)(x)=0]:}\begin{gathered} \mathrm{R}_{1}(x)=-2 x a_{0}, \quad \mathrm{R}_{2}(x)=4 a_{0} a_{2}\left(x^{2}-\frac{a_{1}^{2}}{4 a_{0} a_{2}}\right) \\ \mathrm{R}_{i+2}(x)+2 x a_{2 i+2} \mathrm{R}_{i+1}(x)+a_{2 i+1}^{2} \mathrm{R}_{i}(x)=0 \end{gathered}R1(x)=2xhas0,R2(x)=4has0has2(x2has124has0has2)Ri+2(x)+2xhas2i+2Ri+1(x)+has2i+12Ri(x)=0
The result is that
R i ( x ) = ( 1 ) i 2 i a 0 a 2 a 2 i 2 Q i ( x ) R i ( x ) = ( 1 ) i 2 i a 0 a 2 a 2 i 2 Q i ( x ) R_(i)(x)=(-1)^(i)2^(i)a_(0)a_(2)dotsa_(2i-2)Q_(i)(x)\mathrm{R}_{i}(x)=(-1)^{i} 2^{i} a_{0} a_{2} \ldots a_{2 i-2} Q_{i}(x)Ri(x)=(1)i2ihas0has2has2i2Qi(x)
The stated property follows from this identity.
3. - Let's examine some specific cases of this problem.
Let us first assume that
a : = a 1 = = a 2 m = 1 a : = a 1 = = a 2 m = 1 a_(:)=a_(1)=dots=a_(2m)=1a_{:}=a_{1}=\ldots=a_{2 m}=1has:=has1==has2m=1
The polynomial Q ( x ) Q ( x ) Q^(')(x)Q^{\prime}(x)Q(x)is none other than the trigonometric polynomial
Q i ( x ) = sin ( i + 1 ) arccos x 2 1 x 2 Q i ( x ) = sin ( i + 1 ) arccos x 2 1 x 2 Q_(i)(x)=(sin(i+1)arccos x)/(2^(')sqrt(1-x^(2)))Q_{i}(x)=\frac{\sin (i+1) \arccos x}{2^{\prime} \sqrt{1-x^{2}}}Qi(x)=si(i+1)arccosx21x2
and then we have
λ m + 1 = cos π m + 2 λ m + 1 = cos π m + 2 lambda_(m+1)=cos((pi)/(m+2))\lambda_{m+1}=\cos \frac{\pi}{m+2}λm+1=cosπm+2
We therefore deduce the following property:
If the coefficients c 0 , c 1 , c 2 , , c 2 m c 0 , c 1 , c 2 , , c 2 m c_(0),c_(1),c_(2),dots,c_(2m)c_{0}, c_{1}, c_{2}, \ldots, c_{2 m}c0,c1,c2,,c2mof the polynomial
(1)
c 0 + c 1 x + c 2 x 2 + + c 2 m x 2 m c 0 + c 1 x + c 2 x 2 + + c 2 m x 2 m c_(0)+c_(1)x+c_(2)x^(2)+dots+c_(2m)x^(2m)c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{2 m} x^{2 m}c0+c1x+c2x2++c2mx2m
check the inequalities
c 0 > 0 , μ c 2 i c 2 i + 2 c i i + 1 2 > 0 , 1 = 0 , 1 , , m 1 c 0 > 0 , μ c 2 i c 2 i + 2 c i i + 1 2 > 0 , 1 = 0 , 1 , , m 1 c_(0) > 0,quad muc_(2i)c_(2i+2)-c_(ii+1)^(2) > 0,quad1=0,1,dots,m-1c_{0}>0, \quad \mu c_{2 i} c_{2 i+2}-c_{i i+1}^{2}>0, \quad 1=0,1, \ldots, m-1c0>0,μc2ic2i+2cii+12>0,1=0,1,,m1
Or μ 1 cos 2 π m + 2 μ 1 cos 2 π m + 2 mu <= (1)/(cos^(2)((pi)/(m+2)))\mu \leq \frac{1}{\cos ^{2} \frac{\pi}{m+2}}μ1cos2πm+2, this polynomial is positive.
If μ > 1 cos 2 π m + 2 μ > 1 cos 2 π m + 2 mu > (1)/(cos^(2)((pi)/(m+2)))\mu>\frac{1}{\cos ^{2} \frac{\pi}{m+2}}μ>1cos2πm+2The property is no longer true. Moreover, it can be shown that in this case the polynomial, while still satisfying the written inequalities, can change its sign.
In particular, by taking μ = 1 μ = 1 mu=1\mu=1μ=1, we have the following theorem, due to MEB Van Vleck ( 1 1 ^(1){ }^{1}1).
If the coefficients ci satisfy the inequalities
c 0 > 0 , c 2 l c 2 l + 2 c 2 l + 1 2 > 0 , i = 0 , 1 , , m 1 c 0 > 0 , c 2 l c 2 l + 2 c 2 l + 1 2 > 0 , i = 0 , 1 , , m 1 c_(0) > 0,quadc_(2l)c_(2l+2)-c_(2l+1)^(2) > 0,quad i=0,1,dots,m-1c_{0}>0, \quad c_{2 l} c_{2 l+2}-c_{2 l+1}^{2}>0, \quad i=0,1, \ldots, m-1c0>0,c2Lc2L+2c2L+12>0,i=0,1,,m1
Polynomial (1) is positive.
4. - By specifying the values ​​of a 0 , a 1 , , a 2 m a 0 , a 1 , , a 2 m a_(0),a_(1),dots,a_(2m)a_{0}, a_{1}, \ldots, a_{2 m}has0,has1,,has2mWe find: various statements.
If we take
a 0 = 1 , a 1 = a 2 = = a 2 m = 2 a 0 = 1 , a 1 = a 2 = = a 2 m = 2 a_(0)=1,quada_(1)=a_(2)=dots=a_(2m)=2a_{0}=1, \quad a_{1}=a_{2}=\ldots=a_{2 m}=2has0=1,has1=has2==has2m=2
the polynomial Q I ( x ) Q I ( x ) Q_(I)(x)Q_{I}(x)QI(x)becomes the trigonometric polynomial
Q t ( x ) = cos i ( arccos x ) 2 i 1 Q t ( x ) = cos i ( arccos x ) 2 i 1 Q_(t)(x)=(cos i(arccos x))/(2^(i-1))Q_{t}(x)=\frac{\cos i(\arccos x)}{2^{i-1}}Qt(x)=cosi(arccosx)2i1
and then we have
λ m + 1 = cos π 2 ( m + 1 ) λ m + 1 = cos π 2 ( m + 1 ) lambda_(m+1)=cos((pi)/(2(m+1)))\lambda_{m+1}=\cos \frac{\pi}{2(m+1)}λm+1=cosπ2(m+1)
which gives us the following statement:
If the coefficients c 0 , c 1 , , c 2 m d u c 0 , c 1 , , c 2 m d u c_(0),c_(1),dots,c_(2m)duc_{0}, c_{1}, \ldots, c_{2 m} d uc0,c1,,c2mdupolynomial (1) satisfy the inequalities
c 0 > 0 , 2 μ c 0 c 2 c 1 2 > 0 , μ c 2 i c i + 2 c 2 i + 1 2 > 0 , i = 1 , 2 , , m 1 c 0 > 0 , 2 μ c 0 c 2 c 1 2 > 0 , μ c 2 i c i + 2 c 2 i + 1 2 > 0 , i = 1 , 2 , , m 1 c_(0) > 0,quad2muc_(0)c_(2)-c_(1)^(2) > 0,quad muc_(2i)c_(i+2)-c_(2i+1)^(2) > 0,quad i=1,2,dots,m-1c_{0}>0, \quad 2 \mu c_{0} c_{2}-c_{1}^{2}>0, \quad \mu c_{2 i} c_{i+2}-c_{2 i+1}^{2}>0, \quad i=1,2, \ldots, m-1c0>0,2μc0c2c12>0,μc2ici+2c2i+12>0,i=1,2,,m1Or μ 1 cos 2 π 2 ( m + 1 ) μ 1 cos 2 π 2 ( m + 1 ) mu <= (1)/(cos^(2)((pi)/(2(m+1))))\mu \leq \frac{1}{\cos ^{2} \frac{\pi}{2(m+1)}}μ1cos2π2(m+1), this polynomial is positive.
It should be noted that this criterion is distinct from the previous one. Indeed, we have
1 cos 2 π m + 2 > 1 cos 2 π 2 ( m + 1 ) , 1 cos 2 π m + 2 < 2 cos 2 π 2 ( m + 1 ) ( 1 cos 2 π m + 2 > 1 cos 2 π 2 ( m + 1 ) , 1 cos 2 π m + 2 < 2 cos 2 π 2 ( m + 1 ) ( (1)/(cos^(2)((pi)/(m+2))) > (1)/(cos^(2)((pi)/(2(m+1)))),(1)/(cos^(2)((pi)/(m+2))) < (2)/(cos^(2)((pi)/(2(m+1))))(\frac{1}{\cos ^{2} \frac{\pi}{m+2}}>\frac{1}{\cos ^{2} \frac{\pi}{2(m+1)}}, \frac{1}{\cos ^{2} \frac{\pi}{m+2}}<\frac{2}{\cos ^{2} \frac{\pi}{2(m+1)}}(1cos2πm+2>1cos2π2(m+1),1cos2πm+2<2cos2π2(m+1)(For m > 1 ) m > 1 ) m > 1)m>1)m>1)
Let's mention one more case. If
a i = i + 1 , i = 0 , 1 , 2 , , 2 m a i = i + 1 , i = 0 , 1 , 2 , , 2 m a_(i)=i+1,quad i=0,1,2,dots,2ma_{i}=i+1, \quad i=0,1,2, \ldots, 2 mhasi=i+1,i=0,1,2,,2m
(1) EB Van Vleck "A sufficient condition for the maximum number of imaginary roots of an equation of the n n nnn-the degree" Annals of Math. (2), t. 4 (1902-03) p. 191.
Qi ( x x xxx) is none other (up to a constant factor) than the Legendre polynomial of degree i i iii
Q i ( x ) = ( 2 i ) ! i ! d i d x i ( x 2 1 ) i Q i ( x ) = ( 2 i ) ! i ! d i d x i x 2 1 i Q_(i)(x)=((2i)!)/(i!)(d^(i))/(dx^(i))(x^(2)-1)^(i)Q_{i}(x)=\frac{(2 i)!}{i!} \frac{d^{i}}{d x^{i}}\left(x^{2}-1\right)^{i}Qi(x)=(2i)!i!didxi(x21)i
We therefore find a property that can be stated in the following form:
If the coefficients c 0 , c 1 , , c 2 m c 0 , c 1 , , c 2 m c_(0),c_(1),dots,c_(2m)c_{0}, c_{1}, \ldots, c_{2 m}c0,c1,,c2mof the polynomial (1) satisfy the inequalities
c 0 > 0 , 1 λ 2 4 ( i + 1 ) 2 ( 2 i + 1 ) ( 2 i + 3 ) c 2 i c 2 i + 2 c 2 i + 1 2 > 0 , i = 0 , 1 , , m 1 c 0 > 0 , 1 λ 2 4 ( i + 1 ) 2 ( 2 i + 1 ) ( 2 i + 3 ) c 2 i c 2 i + 2 c 2 i + 1 2 > 0 , i = 0 , 1 , , m 1 c_(0) > 0,quad(1)/(lambda^(2))*(4(i+1)^(2))/((2i+1)(2i+3))c_(2i)c_(2i+2)-c_(2i+1)^(2) > 0,quad i=0,1,dots,m-1c_{0}>0, \quad \frac{1}{\lambda^{2}} \cdot \frac{4(i+1)^{2}}{(2 i+1)(2 i+3)} c_{2 i} c_{2 i+2}-c_{2 i+1}^{2}>0, \quad i=0,1, \ldots, m-1c0>0,1λ24(i+1)2(2i+1)(2i+3)c2ic2i+2c2i+12>0,i=0,1,,m1Or λ λ lambda\lambdaλis at least equal to the greatest zero of the Legendre polynomial. of degree m + 1 m + 1 m+1m+1m+1, this polynomial is positive.
5. - Now let's consider the case where
a i = ( 2 m i ) , i = 0 , 1 , , 2 m a i = ( 2 m i ) , i = 0 , 1 , , 2 m a_(i)=((2m)/(i)),quad i=0,1,dots,2ma_{i}=\binom{2 m}{i}, \quad i=0,1, \ldots, 2 mhasi=(2mi),i=0,1,,2m
We know that if the equation f ( x ) = 0 f ( x ) = 0 f(x)=0f(x)=0f(x)=0to all its real roots. we have
c 2 i + 1 2 c 2 i c 2 i + 2 0 , i = 0 , 1 , , m 1 c 2 i + 1 2 c 2 i c 2 i + 2 0 , i = 0 , 1 , , m 1 c_(2i+1)^(2)-c_(2i)c_(2i+2) >= 0,quad i=0,1,dots,m-1c_{2 i+1}^{2}-c_{2 i} c_{2 i+2} \geq 0, \quad i=0,1, \ldots, m-1c2i+12c2ic2i+20,i=0,1,,m1
If we consider the polynomial in the form (1), these inequalities can be written in the following form:
4 ( i + 1 ) ( m i ) ( 2 i + 1 ) ( 2 m 2 ı 1 ) c 2 t c 2 i + 2 c 2 i + 1 2 0 , i = 0 , 1 , , m 1 4 ( i + 1 ) ( m i ) ( 2 i + 1 ) ( 2 m 2 ı 1 ) c 2 t c 2 i + 2 c 2 i + 1 2 0 , i = 0 , 1 , , m 1 (4(i+1)(m-i))/((2i+1)(2m-2ı-1))c_(2t)c_(2i+2)-c_(2i+1)^(2) <= 0,quad i=0,1,dots,m-1\frac{4(i+1)(m-i)}{(2 i+1)(2 m-2 \imath-1)} c_{2 t} c_{2 i+2}-c_{2 i+1}^{2} \leq 0, \quad i=0,1, \ldots, m-14(i+1)(mi)(2i+1)(2m2ı1)c2tc2i+2c2i+120,i=0,1,,m1
Therefore, applying the previous results yields the opposite property. In this case λ m + 1 λ m + 1 lambda_(m+1)\lambda_{m+1}λm+1is the largest root of the equation
( b i = ( 2 i + 1 ) ( 2 m 2 i + 1 ) γ i = i ( 2 i + 1 ) ) ( b i = ( 2 i + 1 ) ( 2 m 2 i + 1 ) γ i = i ( 2 i + 1 ) ) {:((b_(i)=(2i+1)(2m-2i+1))/(gamma_(i)=i(2i+1))):}\begin{aligned} & \binom{b_{i}=(2 i+1)(2 m-2 i+1)}{\gamma_{i}=i(2 i+1)} \end{aligned}(bi=(2i+1)(2m2i+1)γi=i(2i+1))
We therefore have the following property:
If the coefficients c 0 , c 1 , , c 2 n c 0 , c 1 , , c 2 n c_(0),c_(1),dots,c_(2n)c_{0}, c_{1}, \ldots, c_{2 n}c0,c1,,c2ndıc polynomial (1) verify the: inequalities
c 0 > 0 , 1 λ 2 4 ( i + 1 ) ( m i ) ( 2 i + 1 ) ( 2 m 2 ι 1 ) c 2 i c 2 i + 2 c 2 i + 1 2 > 0 , i = 0 , 1 , , m 1 c 0 > 0 , 1 λ 2 4 ( i + 1 ) ( m i ) ( 2 i + 1 ) ( 2 m 2 ι 1 ) c 2 i c 2 i + 2 c 2 i + 1 2 > 0 , i = 0 , 1 , , m 1 c_(0) > 0,(1)/(lambda^(2))(4(i+1)(m-i))/((2i+1)(2m-2iota-1))c_(2i)c_(2i+2)-c_(2i+1)^(2) > 0,quad i=0,1,dots,m-1c_{0}>0, \frac{1}{\lambda^{2}} \frac{4(i+1)(m-i)}{(2 i+1)(2 m-2 \iota-1)} c_{2 i} c_{2 i+2}-c_{2 i+1}^{2}>0, \quad i=0,1, \ldots, m-1c0>0,1λ24(i+1)(mi)(2i+1)(2m2ι1)c2ic2i+2c2i+12>0,i=0,1,,m1
Or, λ λ lambda\lambdaλis at least equal to the largest root of the equation S m + 1 ( x ) = 0 S m + 1 ( x ) = 0 S_(m+1)(x)=0\mathrm{S}_{m+1}(x)=0Sm+1(x)=0, this polynomial is positive.
6. - Let us examine in particular the cases m = 2 , 3 , 4 m = 2 , 3 , 4 m=2,3,4m=2,3,4m=2,3,4.
Either m = 2 m = 2 m=2m=2m=2If the equation
(2) c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 = 0 (2) c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 = 0 {:(2)c_(0)+c_(1)x+c_(2)x^(2)+c_(3)x^(3)+c_(4)x^(4)=0:}\begin{equation*} c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}=0 \tag{2} \end{equation*}(2)c0+c1x+c2x2+c3x3+c4x4=0
to all its real roots we have
8 c 0 c 2 3 c 1 2 0 , 8 c 2 c 4 3 c 3 2 0 8 c 0 c 2 3 c 1 2 0 , 8 c 2 c 4 3 c 3 2 0 8c_(0)c_(2)-3c_(1)^(2) <= 0,quad8c_(2)c_(4)-3c_(3)^(2) <= 08 c_{0} c_{2}-3 c_{1}^{2} \leq 0, \quad 8 c_{2} c_{4}-3 c_{3}^{2} \leq 08c0c23c120,8c2c43c320
In this case S 3 ( x ) = 3 ( 3 x 3 4 x ) S 3 ( x ) = 3 3 x 3 4 x S_(3)(x)=-3(3x^(3)-4x)\mathrm{S}_{3}(x)=-3\left(3 x^{3}-4 x\right)S3(x)=3(3x34x)Equation (2) will therefore have all its roots imaginary if
c 0 > 0 , 8 μ c 0 c 2 3 c 1 2 > 0 , 8 μ c 2 c 4 3 c 3 2 > 0 c 0 > 0 , 8 μ c 0 c 2 3 c 1 2 > 0 , 8 μ c 2 c 4 3 c 3 2 > 0 c_(0) > 0,quad8muc_(0)c_(2)-3c_(1)^(2) > 0,quad8muc_(2)c_(4)-3c_(3)^(2) > 0c_{0}>0, \quad 8 \mu c_{0} c_{2}-3 c_{1}^{2}>0, \quad 8 \mu c_{2} c_{4}-3 c_{3}^{2}>0c0>0,8μc0c23c12>0,8μc2c43c32>0
Or μ 3 4 = 0 , 75 μ 3 4 = 0 , 75 mu <= (3)/(4)=0,75\mu \leq \frac{3}{4}=0,75μ34=0,75.
Either m = 3 m = 3 m=3m=3m=3If equation
(3) c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + c 6 x 6 = 0 c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + c 6 x 6 = 0 quadc_(0)+c_(1)x+c_(2)x^(2)+c_(3)x^(3)+c_(4)x^(4)+c_(5)x^(5)+c_(6)x^(6)=0\quad c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}=0c0+c1x+c2x2+c3x3+c4x4+c5x5+c6x6=0
to all its real roots we have
12 c 0 c 2 0 ˇ c 1 2 0 , 16 c c 4 9 c 3 2 0 , 12 c 4 c 6 5 c 5 2 0 12 c 0 c 2 0 ˇ c 1 2 0 , 16 c c 4 9 c 3 2 0 , 12 c 4 c 6 5 c 5 2 0 12c_(0)c_(2)-0^(ˇ)c_(1)^(2) <= 0,16 cc_(4)-9c_(3)^(2) <= 0,12c_(4)c_(6)-5c_(5)^(2) <= 012 c_{0} c_{2}-\check{0} c_{1}^{2} \leq 0,16 c c_{4}-9 c_{3}^{2} \leq 0,12 c_{4} c_{6}-5 c_{5}^{2} \leq 012c0c20ˇc120,16cc49c320,12c4c65c520
In this case S 4 ( x ) = 225 x 4 370 x 2 + 8 L S 4 ( x ) = 225 x 4 370 x 2 + 8 L S_(4)(x)=225x^(4)-370x^(2)+8L\mathrm{S}_{4}(x)=225 x^{4}-370 x^{2}+8 \mathrm{~L}S4(x)=225x4370x2+8 LEquation (3) therefore has all its roots imaginary when
c 0 > 0 , 12 μ c 0 c 2 5 c 1 2 > 0 , 16 μ c 2 c 4 9 c 3 2 > 0 , 12 μ c 4 c 6 5 c 5 2 > 0 c 0 > 0 , 12 μ c 0 c 2 5 c 1 2 > 0 , 16 μ c 2 c 4 9 c 3 2 > 0 , 12 μ c 4 c 6 5 c 5 2 > 0 c_(0) > 0,quad12 muc_(0)c_(2)-5c_(1)^(2) > 0,16 muc_(2)c_(4)-9c_(3)^(2) > 0,12 muc_(4)c_(6)-5c_(5)^(2) > 0c_{0}>0, \quad 12 \mu c_{0} c_{2}-5 c_{1}^{2}>0,16 \mu c_{2} c_{4}-9 c_{3}^{2}>0,12 \mu c_{4} c_{6}-5 c_{5}^{2}>0c0>0,12μc0c25c12>0,16μc2c49c32>0,12μc4c65c52>0
Or μ 5 ( 37 8 10 ) 81 = 0 , 7 , 23 μ 5 ( 37 8 10 ) 81 = 0 , 7 , 23 mu <= (5(37-8sqrt10))/(81)=0,7,23 dots\mu \leq \frac{5(37-8 \sqrt{10})}{81}=0,7,23 \ldotsμ5(37810)81=0,7,23
So finally m = 4 m = 4 m=4m=4m=4If equation
(4) c 0 + c 4 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + c 6 x 6 + c 7 x 7 + c 8 x 8 = 0 c 0 + c 4 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + c 6 x 6 + c 7 x 7 + c 8 x 8 = 0 quadc_(0)+c_(4)x+c_(2)x^(2)+c_(3)x^(3)+c_(4)x^(4)+c_(5)x^(5)+c_(6)x^(6)+c_(7)x^(7)+c_(8)x^(8)=0\quad c_{0}+c_{4} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+c_{7} x^{7}+c_{8} x^{8}=0c0+c4x+c2x2+c3x3+c4x4+c5x5+c6x6+c7x7+c8x8=0
to all its real roots we have
16 c 0 c 2 7 c 1 2 0 , 8 c 2 c 4 5 c 3 2 0 , 8 c 4 c 6 5 c 5 2 0 , 16 c 6 c 8 7 c 7 2 0 16 c 0 c 2 7 c 1 2 0 , 8 c 2 c 4 5 c 3 2 0 , 8 c 4 c 6 5 c 5 2 0 , 16 c 6 c 8 7 c 7 2 0 16c_(0)c_(2)-7c_(1)^(2) <= 0,quad8c_(2)c_(4)-5c_(3)^(2) <= 0,quad8c_(4)c_(6)-5c_(5)^(2) <= 0,quad16c_(6)c_(8)-7c_(7)^(2) <= 016 c_{0} c_{2}-7 c_{1}^{2} \leq 0, \quad 8 c_{2} c_{4}-5 c_{3}^{2} \leq 0, \quad 8 c_{4} c_{6}-5 c_{5}^{2} \leq 0, \quad 16 c_{6} c_{8}-7 c_{7}^{2} \leq 016c0c27c120,8c2c45c320,8c4c65c520,16c6c87c720.
In this case S 5 ( x ) = 45 x ( 7 x 2 4 ) ( 69 35 x 2 ) S 5 ( x ) = 45 x 7 x 2 4 69 35 x 2 S_(5)(x)=45 x(7x^(2)-4)(69-35x^(2))\mathrm{S}_{5}(x)=45 x\left(7 x^{2}-4\right)\left(69-35 x^{2}\right)S5(x)=45x(7x24)(6935x2)Equation (4) therefore has all its roots imaginary if
c 0 > 0 , 16 μ c 0 c 2 7 c 1 2 > 0 , 8 μ c 2 c 4 o ˇ c 3 2 > 0 8 μ c 4 c 6 5 c 5 2 > 0 , 16 μ c 6 c 8 7 c 7 2 > 0 c 0 > 0 , 16 μ c 0 c 2 7 c 1 2 > 0 , 8 μ c 2 c 4 o ˇ c 3 2 > 0 8 μ c 4 c 6 5 c 5 2 > 0 , 16 μ c 6 c 8 7 c 7 2 > 0 {:[c_(0) > 0","16 muc_(0)c_(2)-7c_(1)^(2) > 0","8muc_(2)c_(4)-o^(ˇ)c_(3)^(2) > 0],[8muc_(4)c_(6)-5c_(5)^(2) > 0","quad16 muc_(6)c_(8)-7c_(7)^(2) > 0]:}\begin{gathered} c_{0}>0,16 \mu c_{0} c_{2}-7 c_{1}^{2}>0,8 \mu c_{2} c_{4}-\check{o} c_{3}^{2}>0 \\ 8 \mu c_{4} c_{6}-5 c_{5}^{2}>0, \quad 16 \mu c_{6} c_{8}-7 c_{7}^{2}>0 \end{gathered}c0>0,16μc0c27c12>0,8μc2c4oˇc32>08μc4c65c52>0,16μc6c87c72>0
  • Or μ 35 69 = 0 , 5072 μ 35 69 = 0 , 5072 mu <= (35)/(69)=0,5072 dots\mu \leq \frac{35}{69}=0,5072 \ldotsμ3569=0,5072
    • Consider a polynomial of degree 2 m + 1 2 m + 1 2m+12 m+12m+1
F ( x ) = c 0 + c 1 x + + c 2 m + 1 x 2 m + 1 F ( x ) = c 0 + c 1 x + + c 2 m + 1 x 2 m + 1 F(x)=c_(0)+c_(1)x+dots+c_(2m+1)x^(2m+1)\mathrm{F}(x)=c_{0}+c_{1} x+\ldots+c_{2 m+1} x^{2 m+1}F(x)=c0+c1x++c2m+1x2m+1
We have
x 2 m + 1 F ( 1 x ) = c 0 x 2 m + 1 + + c 2 m + 1 x 2 m + 1 F 1 x = c 0 x 2 m + 1 + + c 2 m + 1 x^(2m+1)F((1)/(x))=c_(0)x^(2m+1)+dots+c_(2m+1)x^{2 m+1} \mathrm{~F}\left(\frac{1}{x}\right)=c_{0} x^{2 m+1}+\ldots+c_{2 m+1}x2m+1 F(1x)=c0x2m+1++c2m+1
Taking the derivative, we see that if
(5) ( 2 m + 1 ) c 0 + 2 m c 1 x + + c 2 m x 2 m (5) ( 2 m + 1 ) c 0 + 2 m c 1 x + + c 2 m x 2 m {:(5)(2m+1)c_(0)+2mc_(1)x+dots+c_(2m)x^(2m):}\begin{equation*} (2 m+1) c_{0}+2 m c_{1} x+\ldots+c_{2 m} x^{2 m} \tag{5} \end{equation*}(5)(2m+1)c0+2mc1x++c2mx2m
the polynomial is positive F ( x ) F ( x ) F(x)F(x)F(x)It changes sign at most once. More precisely, it only admits one real zero.
Since polynomial (5) is positive, we can apply the result from No. 4 and we have the following property:
If the coefficients c 0 , c 1 , , c 2 n c 0 , c 1 , , c 2 n c_(0),c_(1),dots,c_(2n)c_{0}, c_{1}, \ldots, c_{2 n}c0,c1,,c2nof the equation
(6) c 0 + c 1 x + + c 2 m + 1 x 2 m + 1 = 0 (6) c 0 + c 1 x + + c 2 m + 1 x 2 m + 1 = 0 {:(6)c_(0)+c_(1)x+dots+c_(2m+1)x^(2m+1)=0:}\begin{equation*} c_{0}+c_{1} x+\ldots+c_{2 m+1} x^{2 m+1}=0 \tag{6} \end{equation*}(6)c0+c1x++c2m+1x2m+1=0
verify the inequalities
c 2 m > 0 , ( c 0 > 0 ) , 1 λ 2 c 2 i c 2 i + 2 c 2 i + 1 > 0 , i = 0 , 1 , , m 1 c 2 m > 0 , c 0 > 0 , 1 λ 2 c 2 i c 2 i + 2 c 2 i + 1 > 0 , i = 0 , 1 , , m 1 c_(2m) > 0,(c_(0) > 0),(1)/(lambda^(2))c_(2i)c_(2i+2)-c_(2^(i+1)) > 0,quad i=0,1,dots,m-1c_{2 m}>0,\left(c_{0}>0\right), \frac{1}{\lambda^{2}} c_{2 i} c_{2 i+2}-c_{2^{i+1}}>0, \quad i=0,1, \ldots, m-1c2m>0,(c0>0),1λ2c2ic2i+2c2i+1>0,i=0,1,,m1
Or λ λ lambda\lambdaλis at least equal to the maximum zero of the Legendre polynomial of degree m + 1 m + 1 m+1m+1m+1, the equation has at most one real root.
In particular, we deduce from this the second Van Vleck SEM theorem ( 2 2 ^(2){ }^{2}2).
If the coefficients c 0 , c 1 , , c 2 m c 0 , c 1 , , c 2 m c_(0),c_(1),dots,c_(2m)c_{0}, c_{1}, \ldots, c_{2 m}c0,c1,,c2mof equation (6) satisfy the inequalities
c 0 > 0 , c 2 i c 2 i + 2 c 2 i + 1 2 > 0 , i = 0 , 1 , , m 1 c 0 > 0 , c 2 i c 2 i + 2 c 2 i + 1 2 > 0 , i = 0 , 1 , , m 1 c_(0) > 0,quadc_(2i)c_(2i+2)-c_(2i+1)^(2) > 0,quad i=0,1,dots,m-1c_{0}>0, \quad c_{2 i} c_{2 i+2}-c_{2 i+1}^{2}>0, \quad i=0,1, \ldots, m-1c0>0,c2ic2i+2c2i+12>0,i=0,1,,m1
This equation has at most one real root.
8. - Consider the equation of degree n.
(7) g ( x ) = c 0 + ( n 1 ) c 1 x + , , + ( n k ) c k x k + , + c n x n = 0 g ( x ) = c 0 + ( n 1 ) c 1 x + , , + ( n k ) c k x k + , + c n x n = 0 quad g(x)=c_(0)+((n)/(1))c_(1)x+,dots,+((n)/(k))c_(k)x^(k)+dots,+c_(n)x^(n)=0\quad g(x)=c_{0}+\binom{n}{1} c_{1} x+, \ldots,+\binom{n}{k} c_{k} x^{k}+\ldots,+c_{n} x^{n}=0g(x)=c0+(n1)c1x+,,+(nk)ckxk+,+cnxn=0.
Let j , r j , r j,rj, rI,rtwo positive integers such that j 0 , j + 2 r n j 0 , j + 2 r n j >= 0,j+2r <= nj \geq 0, j+2 r \leq nI0,I+2rn, and let's take the derivative of order j j jjIof g ( x ) g ( x ) g(x)g(x)g(x)
g ( j ) ( x ) = n ! ( n j ) ! [ c j + ( n j 1 ) c j + i x + , , + c n x n j ] g ( j ) ( x ) = n ! ( n j ) ! c j + ( n j 1 ) c j + i x + , , + c n x n j g^((j))(x)=(n!)/((n-j)!)[c_(j)+((n-j)/(1))c_(j+i)x+,dots,+c_(n)x^(n-j)]g^{(j)}(x)=\frac{n!}{(n-j)!}\left[c_{j}+\binom{n-j}{1} c_{j+i} x+, \ldots,+c_{n} x^{n-j}\right]g(I)(x)=n!(nI)![cI+(nI1)cI+ix+,,+cnxnI]
Let us consider the transformation into 1 x 1 x (1)/(x)\frac{1}{x}1x(leaving aside one factor-
( 2 ) 2 (^(2))\left({ }^{2}\right)(2)loe cit ( 1 ) 1 (^(1))\left({ }^{1}\right)(1).
constant)
g 1 ( x ) = c j x n 1 + ( n j 1 ) c i + 1 x n 1 1 + , + c n g 1 ( x ) = c j x n 1 + ( n j 1 ) c i + 1 x n 1 1 + , + c n g_(1)(x)=c_(j)x^(n-1)+((n-j)/(1))c_(i+1)x^(n-1-1)+dots,+c_(n)g_{1}(x)=c_{j} x^{n-1}+\binom{n-j}{1} c_{i+1} x^{n-1-1}+\ldots,+c_{n}g1(x)=cIxn1+(nI1)ci+1xn11+,+cn
and let's take the derivative of order n j 2 r n j 2 r n-j-2rn-j-2 rnI2rof this polynomial
g 1 ( n j 2 r ) ( x ) = ( n j ) ! ( 2 r ) ! [ c j x 2 r + ( 2 r 1 ) c j + 1 x 2 r 1 + , + c j + 2 r ] g 1 ( n j 2 r ) ( x ) = ( n j ) ! ( 2 r ) ! c j x 2 r + ( 2 r 1 ) c j + 1 x 2 r 1 + , + c j + 2 r g_(1)^((n-j-2r))(x)=((n-j)!)/((2r)!)[c_(j)x^(2r)+((2r)/(1))c_(j+1)x^(2r-1)+dots,+c_(j+2r)]g_{1}^{(n-j-2 r)}(x)=\frac{(n-j)!}{(2 r)!}\left[c_{j} x^{2 r}+\binom{2 r}{1} c_{j+1} x^{2 r-1}+\ldots,+c_{j+2 r}\right]g1(nI2r)(x)=(nI)!(2r)![cIx2r+(2r1)cI+1x2r1+,+cI+2r]
So finally
g 2 ( x ) = c j + ( 2 r 1 ) c j + 1 x + , + ( 2 r k ) c j + k x k + , + c j + 2 r x 2 r g 2 ( x ) = c j + ( 2 r 1 ) c j + 1 x + , + ( 2 r k ) c j + k x k + , + c j + 2 r x 2 r g_(2)(x)=c_(j)+((2r)/(1))c_(j+1)x+,dots+((2r)/(k))c_(j+k)x^(k)+dots,+c_(j+2r)x^(2r)g_{2}(x)=c_{j}+\binom{2 r}{1} c_{j+1} x+, \ldots+\binom{2 r}{k} c_{j+k} x^{k}+\ldots,+c_{j+2 r} x^{2 r}g2(x)=cI+(2r1)cI+1x+,+(2rk)cI+kxk+,+cI+2rx2r
Suppose that equation (7) has p p pppreal roots. The equation g ( 1 ) ( x ) = 0 g ( 1 ) ( x ) = 0 g^((1))(x)=0g^{(1)}(x)=0g(1)(x)=0, therefore also g 1 ( x ) = 0 g 1 ( x ) = 0 g_(1)(x)=0g_{1}(x)=0g1(x)=0, then at least p j p j p-jp-jpIreal roots.
We can deduce that the equation g 2 ( x ) = 0 g 2 ( x ) = 0 g_(2)(x)=0g_{2}(x)=0g2(x)=0has at least p n + 2 r p n + 2 r p-n+2rp-n+2 rpn+2rreal roots. It follows that if the polynomial g 2 ( x ) g 2 ( x ) g_(2)(x)g_{2}(x)g2(x)equation (7) has all its imaginary roots and at most n 2 r n 2 r n-2rn-2 rn2rreal roots.
The results of No. 5 therefore allow us to state the following general property:
If j = 0 , j + 2 r n j = 0 , j + 2 r n j=0,j+2r <= nj=0, j+2 r \leq nI=0,I+2rnand if the coefficients ci of equation (7) satisfy the inequalities
c j > 0 , 1 λ 2 c j + 2 i c j + 2 i + 2 c j + 2 i + 1 2 > 0 , i = 0 , 1 , , r 1 c j > 0 , 1 λ 2 c j + 2 i c j + 2 i + 2 c j + 2 i + 1 2 > 0 , i = 0 , 1 , , r 1 c_(j) > 0,(1)/(lambda2)c_(j+2i)c_(j+2i+2)-c_(j+2i+1)^(2) > 0,quad i=0,1,dots,r-1c_{j}>0, \frac{1}{\lambda 2} c_{j+2 i} c_{j+2 i+2}-c_{j+2 i+1}^{2}>0, \quad i=0,1, \ldots, r-1cI>0,1λ2cI+2icI+2i+2cI+2i+12>0,i=0,1,,r1
Or, λ λ lambda\lambdaλis at least equal to the largest root of the equation S r + 1 ( x ) = 0 S r + 1 ( x ) = 0 S_(r+1)(x)=0\mathrm{S}_{r+1}(x)=0Sr+1(x)=0, this equation (7) has at most n 2 r n 2 r n-2rn-2 rn2rreal roots. We can also say that in this case equation (7) has at least r r rrrpairs of imaginary conjugated roots.
For r = 1 r = 1 r=1r=1r=1we have this property, obvious a priori, that if we can find a j j jjIsuch as
c j > 0 , c j c j + 2 c j + 1 2 > 0 c j > 0 , c j c j + 2 c j + 1 2 > 0 c_(j) > 0,quadc_(j)c_(j+2)-c_(j+1)^(2) > 0c_{j}>0, \quad c_{j} c_{j+2}-c_{\mathrm{j}+1}^{2}>0cI>0,cIcI+2cI+12>0
equation (7) has at least one pair of imaginary conjugate roots.
For r = 2 r = 2 r=2r=2r=2, we find that if
c j > 0 , μ c i + 2 i c j + 2 i + 2 c j + 2 i + 1 2 > 0 , i = 0 , 1 μ 3 4 = 0 , 75 , ( j 0 , j + 4 n ) c j > 0 , μ c i + 2 i c j + 2 i + 2 c j + 2 i + 1 2 > 0 , i = 0 , 1 μ 3 4 = 0 , 75 , ( j 0 , j + 4 n ) {:[c_(j) > 0","quad muc_(i+2i)c_(j+2i+2)-c_(j+2i+1)^(2) > 0","quad i=0","1],[mu <= (3)/(4)=0","75","quad(j >= 0","quad j+4 <= n)]:}\begin{gathered} c_{j}>0, \quad \mu c_{i+2 i} c_{j+2 i+2}-c_{j+2 i+1}^{2}>0, \quad i=0,1 \\ \mu \leq \frac{3}{4}=0,75, \quad(j \geq 0, \quad j+4 \leq n) \end{gathered}cI>0,μci+2icI+2i+2cI+2i+12>0,i=0,1μ34=0,75,(I0,I+4n)
equation (7) has at least two pairs of imaginary conjugate roots.
For r = 3 , 4 r = 3 , 4 r=3,4r=3,4r=3,4We similarly find analogous sufficient conditions for the existence of three or four pairs of imaginary
conjugate roots. The values ​​of the coefficients μ μ mu\muμwhich are included in the respective inequalities are those specified in No. 6.9
. - Finally, if we write equation (7) in the form
c 0 + c 1 x + c 2 x 2 + + c n x n = 0 c 0 + c 1 x + c 2 x 2 + + c n x n = 0 c_(0)+c_(1)x+c_(2)x^(2)+cdots+c_(n)x^(n)=0c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}=0c0+c1x+c2x2++cnxn=0
He polynomial g 2 ( x ) g 2 ( x ) g_(2)(x)g_{2}(x)g2(x)will be written in the form
1 ( n j ) c j + ( 2 r 1 ) ( n j + 1 ) c j + 1 x + + ( 2 r k ) ( n j + k ) c j + k x k + + 1 ( n j + 2 r ) c j + 2 r x 2 r . 1 ( n j ) c j + ( 2 r 1 ) ( n j + 1 ) c j + 1 x + + ( 2 r k ) ( n j + k ) c j + k x k + + 1 ( n j + 2 r ) c j + 2 r x 2 r . (1)/(((n)/(j)))c_(j)+(((2r)/(1)))/(((n)/(j+1)))c_(j+1)x+cdots+(((2r)/(k)))/(((n)/(j+k)))c_(j+k)x^(k)+cdots+(1)/(((n)/(j+2r)))c_(j+2r)x^(2r).\frac{1}{\binom{n}{j}} c_{j}+\frac{\binom{2 r}{1}}{\binom{n}{j+1}} c_{j+1} x+\cdots+\frac{\binom{2 r}{k}}{\binom{n}{j+k}} c_{j+k} x^{k}+\cdots+\frac{1}{\binom{n}{j+2 r}} c_{j+2 r} x^{2 r} .1(nI)cI+(2r1)(nI+1)cI+1x++(2rk)(nI+k)cI+kxk++1(nI+2r)cI+2rx2r.
Let us turn our attention to the case where j = 0 j = 0 j=0j=0I=0The preceding polynomial can then be written in the following form:
( 2 r + 1 ) ( 2 r + 2 ) n c j + 2 r ( 2 r + 1 ) ( n 1 ) c j + 1 x + + ( 2 r + 1 ) ( 2 r + 2 ) n c j + 2 r ( 2 r + 1 ) ( n 1 ) c j + 1 x + + (2r+1)(2r+2)dots nc_(j)+2r(2r+1)dots(n-1)c_(j+1)x+cdots+(2 r+1)(2 r+2) \ldots n c_{j}+2 r(2 r+1) \ldots(n-1) c_{j+1} x+\cdots+(2r+1)(2r+2)ncI+2r(2r+1)(n1)cI+1x++
+ ( 2 r k + 1 ) ( 2 r k + 2 ) ( n k ) c j + k x k + + 1 , 2 ( n 2 r ) c j + 2 r x 2 r + ( 2 r k + 1 ) ( 2 r k + 2 ) ( n k ) c j + k x k + + 1 , 2 ( n 2 r ) c j + 2 r x 2 r cdots+(2r-k+1)(2r-k+2)dots(n-k)c_(j+k)x^(k)+cdots+1,2dots(n-2r)c_(j+2r)x^(2r)\cdots+(2 r-k+1)(2 r-k+2) \ldots(n-k) c_{j+k} x^{k}+\cdots+1,2 \ldots(n-2 r) c_{j+2 r} x^{2 r}+(2rk+1)(2rk+2)(nk)cI+kxk++1,2(n2r)cI+2rx2r.

Posing

m = r , a i = ( i + 1 ) ( i + 2 ) ( n 2 r + i ) , i = 0 , 1 , , 2 r m = r , a i = ( i + 1 ) ( i + 2 ) ( n 2 r + i ) , i = 0 , 1 , , 2 r m=r,a_(i)=(i+1)(i+2)dots(n-2r+i),quad i=0,1,dots,2rm=r, a_{i}=(i+1)(i+2) \ldots(n-2 r+i), \quad i=0,1, \ldots, 2 rm=r,hasi=(i+1)(i+2)(n2r+i),i=0,1,,2r
the polynomial Q i ( λ ) Q i ( λ ) Q_(i)(lambda)Q_{i}(\lambda)Qi(λ)the corresponding is given by the recurrence relations (8) Q 0 ( λ ) = 1 , Q 1 ( λ ) = λ , Q i + 2 ( λ ) λ Q i + 1 ( λ ) + ( i + 1 ) ( n 2 r + 2 i + 1 ) 2 ( 2 i + 1 ) ( n 2 r + 2 i + 2 ) Q 1 ( λ ) = 0 Q 0 ( λ ) = 1 , Q 1 ( λ ) = λ , Q i + 2 ( λ ) λ Q i + 1 ( λ ) + ( i + 1 ) ( n 2 r + 2 i + 1 ) 2 ( 2 i + 1 ) ( n 2 r + 2 i + 2 ) Q 1 ( λ ) = 0 Q_(0)(lambda)=1,Q_(1)(lambda)=lambda,Q_(i+2)(lambda)-lambdaQ_(i+1)(lambda)+((i+1)(n-2r+2i+1))/(2(2i+1)(n-2r+2i+2))Q_(1)(lambda)=0Q_{0}(\lambda)=1, Q_{1}(\lambda)=\lambda, Q_{i+2}(\lambda)-\lambda Q_{i+1}(\lambda)+\frac{(i+1)(n-2 r+2 i+1)}{2(2 i+1)(n-2 r+2 i+2)} Q_{1}(\lambda)=0Q0(λ)=1,Q1(λ)=λ,Qi+2(λ)λQi+1(λ)+(i+1)(n2r+2i+1)2(2i+1)(n2r+2i+2)Q1(λ)=0.
We therefore have the following property:
If j 0 , j + 2 r n j 0 , j + 2 r n j >= 0,j+2r <= nj \geq 0, j+2 r \leq nI0,I+2rnand if the coefficients c i c i c_(i)c_{\mathrm{i}}ciof the equation
c 0 + c 1 x + + c n x n = 0 c 0 + c 1 x + + c n x n = 0 c_(0)+c_(1)x+dots+c_(n)x^(n)=0c_{0}+c_{1} x+\ldots+c_{n} x^{n}=0c0+c1x++cnxn=0
verify the inequalities
c j > 0 , 1 λ 2 c j + 2 i c j + 2 i + 2 c j + 2 i + i 2 > 0 , i = 0 , 1 , , r c j > 0 , 1 λ 2 c j + 2 i c j + 2 i + 2 c j + 2 i + i 2 > 0 , i = 0 , 1 , , r c_(j) > 0,(1)/(lambda^(2))c_(j+2i)c_(j+2i+2)-c_(j+2i+i)^(2) > 0,quad i=0,1,dots,rc_{\mathrm{j}}>0, \frac{1}{\lambda^{2}} c_{\mathrm{j}+2 \mathrm{i}} c_{\mathrm{j}+2 \mathrm{i}+2}-c_{\mathrm{j}+2 \mathrm{i}+\mathrm{i}}^{2}>0, \quad i=0,1, \ldots, rcI>0,1λ2cI+2icI+2i+2cI+2i+i2>0,i=0,1,,r
Or, λ λ lambda\lambdaλis at least equal to the greatest zero of the polynomial Q r + 1 ( λ ) = 0 Q r + 1 ( λ ) = 0 Q_(r+1)(lambda)=0Q_{r+1}(\lambda)=0Qr+1(λ)=0defined by relations (8), this equation has at most n n nnn-er real roots.
The largest root of the equation Q r + 1 ( λ ) = 0 Q r + 1 ( λ ) = 0 Q_(r+1)(lambda)=0Q_{r+1}(\lambda)=0Qr+1(λ)=0no, does not depend on j j jjIand is bounded above. It follows from this, in effect, by a known theorem. ( 3 ) ( 3 ) ^((3)){ }^{(3)}(3)that the zeros of Q + 1 ( λ ) Q + 1 ( λ ) Q_(+1)(lambda)Q_{+1}(\lambda)Q+1(λ)are in modulo at most equal to
max . ( b 2 + b 3 , b 3 + b 4 , , b r + b r + 1 ) max . b 2 + b 3 , b 3 + b 4 , , b r + b r + 1 ¯ max.(sqrt(b_(2))+sqrt(b_(3)),sqrt(b_(3))+sqrt(b_(4)),dots,sqrt(b_(r))+sqrt( bar(b_(r+1))))\operatorname{max.}\left(\sqrt{b_{2}}+\sqrt{b_{3}}, \sqrt{b_{3}}+\sqrt{b_{4}}, \ldots, \sqrt{b_{r}}+\sqrt{\overline{b_{r+1}}}\right)max.(b2+b3,b3+b4,,br+br+1)
(3) See e.g. Wolgang Hahn „Bericht über die Nullstellen der Laguerreschen und der Hermiteschen Polynome” Jahresbericht d. DMV Bd. 44 p. 215-236, sp. p. 227.
where
b i + 2 = ( i + 1 ) ( 2 i + n 2 r + 1 ) 2 ( 2 i + 1 ) ( 2 i + n 2 r + 2 ) , i = 0 , 1 , , r 1 b i + 2 = ( i + 1 ) ( 2 i + n 2 r + 1 ) 2 ( 2 i + 1 ) ( 2 i + n 2 r + 2 ) , i = 0 , 1 , , r 1 b_(i+2)=((i+1)(2i+n-2r+1))/(2(2i+1)(2i+n-2r+2)),quad i=0,1,dots,r-1b_{\mathrm{i}+2}=\frac{(i+1)(2 i+n-2 r+1)}{2(2 i+1)(2 i+n-2 r+2)}, \quad i=0,1, \ldots, r-1bi+2=(i+1)(2i+n2r+1)2(2i+1)(2i+n2r+2),i=0,1,,r1
It is immediately apparent that ( n > 2 r n > 2 r n > 2rn>2 rn>2r)
b 2 > b 3 > > b r + 1 b 2 > b 3 > > b r + 1 b_(2) > b_(3) > dots > b_(r+1)b_{2}>b_{3}>\ldots>b_{r+1}b2>b3>>br+1
The largest root of the equation Q r + 1 ( λ ) = 0 Q r + 1 ( λ ) = 0 Q_(r+1)(lambda)=0Q_{r+1}(\lambda)=0Qr+1(λ)=0is therefore at most equal to
b 2 + b 3 = α + 1 2 ( α + 2 ) + α + 3 3 ( α + 4 ) < 1 2 + 1 3 = 1 , 24 b 2 + b 3 = α + 1 2 ( α + 2 ) + α + 3 3 ( α + 4 ) < 1 2 + 1 3 = 1 , 24 sqrt(b_(2))+sqrt(b_(3))=sqrt((alpha+1)/(2(alpha+2)))+sqrt((alpha+3)/(3(alpha+4))) < sqrt((1)/(2))+sqrt((1)/(3))=1,24 dots\sqrt{b_{2}}+\sqrt{b_{3}}=\sqrt{\frac{\alpha+1}{2(\alpha+2)}}+\sqrt{\frac{\alpha+3}{3(\alpha+4)}}<\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{3}}=1,24 \ldotsb2+b3=α+12(α+2)+α+33(α+4)<12+13=1,24
It can also be demonstrated that the true upper limit in question is > 1 > 1 > 1>1>1Indeed, if we make it tender n n nnntowards oo\inftywe obtain the polynomials
Q 0 ( λ ) = 1 , Q 1 ( λ ) = ( λ ) , Q i + 2 ( λ ) λ Q i + 1 ( λ ) + i + 1 2 ( 2 i + 1 ) Q i ( λ ) = 0 Q 0 ( λ ) = 1 , Q 1 ( λ ) = ( λ ) , Q i + 2 ( λ ) λ Q i + 1 ( λ ) + i + 1 2 ( 2 i + 1 ) Q i ( λ ) = 0 Q_(0)(lambda)=1,quadQ_(1)(lambda)=(lambda),quadQ_(i+2)(lambda)-lambdaQ_(i+1)(lambda)+(i+1)/(2(2i+1))Q_(i)(lambda)=0Q_{0}(\lambda)=1, \quad Q_{1}(\lambda)=(\lambda), \quad Q_{i+2}(\lambda)-\lambda Q_{i+1}(\lambda)+\frac{i+1}{2(2 i+1)} Q_{i}(\lambda)=0Q0(λ)=1,Q1(λ)=(λ),Qi+2(λ)λQi+1(λ)+i+12(2i+1)Qi(λ)=0
and we deduce from this
Q 0 ( 1 ) = 1 , Q 1 ( 1 ) = 1 , Q 2 ( 1 ) = 1 2 , Q 3 ( 1 ) = 1 2 1 3 = 1 6 Q 4 ( 1 ) = 1 6 3 10 1 2 = 1 60 , Q 5 ( 1 ) = 1 60 2 7 1 6 = 13 420 < 0 Q 0 ( 1 ) = 1 , Q 1 ( 1 ) = 1 , Q 2 ( 1 ) = 1 2 , Q 3 ( 1 ) = 1 2 1 3 = 1 6 Q 4 ( 1 ) = 1 6 3 10 1 2 = 1 60 , Q 5 ( 1 ) = 1 60 2 7 1 6 = 13 420 < 0 {:[Q_(0)(1)=1","quadQ_(1)(1)=1","quadQ_(2)(1)=(1)/(2)","quadQ_(3)(1)=(1)/(2)-(1)/(3)=(1)/(6)],[Q_(4)(1)=(1)/(6)-(3)/(10)*(1)/(2)=(1)/(60)","quadQ_(5)(1)=(1)/(60)-(2)/(7)*(1)/(6)=-(13)/(420) < 0]:}\begin{gathered} Q_{0}(1)=1, \quad Q_{1}(1)=1, \quad Q_{2}(1)=\frac{1}{2}, \quad Q_{3}(1)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} \\ Q_{4}(1)=\frac{1}{6}-\frac{3}{10} \cdot \frac{1}{2}=\frac{1}{60}, \quad Q_{5}(1)=\frac{1}{60}-\frac{2}{7} \cdot \frac{1}{6}=-\frac{13}{420}<0 \end{gathered}Q0(1)=1,Q1(1)=1,Q2(1)=12,Q3(1)=1213=16Q4(1)=1631012=160,Q5(1)=1602716=13420<0
which proves our claim.
1935

Related Posts