On approximation by some Bernstein–Kantorovich exponential-type polynomials

Abstract

Since the introduction of Bernstein operators, many authors defined and/or studied Bernstein type operators and their generalizations, among them are Morigi and Neamtu (Adv Comput Math 12:133–149, 2000). They proposed an analog of classical Bernstein operator and proved some convergence results for continuous functions.

Herein, we introduce their integral extensions in Kantorovich sense by replacing the usual differential and integral operators with their more general analogues. By means of these operators, we are able to reconstruct the functions which are not necessarily continuous. It is shown that the operators form an approximation process in both C[0,1and Lp,μ[0,1], which is an exponentially weighted space.

Also, quantitative results are stated in terms of appropriate moduli of smoothness and K-functionals. Furthermore, a quantitative Voronovskaya type result is presented.

Authors

Ali Aral

Diana Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Ioan Raşa

Keywords

Bernstein–Kantorovich operator; uniform convergence; modulus of continuity.

References

See the expanding block below.

Paper coordinates

A. Aral, D. Otrocol, I. Raşa, On approximation by some Bernstein–Kantorovich exponential-type polynomials, Periodica Mathematica Hungarica, 79 (2019) 2, pp. 236-254,
doi: 10.1007/s10998-019-00284-3

PDF

not available yet.

About this paper

Journal

Periodica Mathematica Hungarica

Publisher Name

Springer

DOI
Print ISSN

0031-5303

Online ISSN

1588-2829

Google Scholar Profile

not yet

[1] T. Acar, A. Aral, S.A. Mohiuddine, Approximation by bivariate(p; q)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol. Trans. A Sci. 42(2), 655–662 (2018)MathSciNetCrossRefGoogle Scholar
[2] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and Its Applications (Walter de Gruyter, Berlin, 1994)CrossRefGoogle Scholar
[3] F. Altomare, V. Leonessa, On a sequence of positive linear operators associated with a continuous selection of Borel measures. Mediterr. J. Math. 3, 363–382 (2006)MathSciNetCrossRefGoogle Scholar
[4] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, A generalization of Kantorovich operators for convex compact subsets. Banach J. Math. Anal. 11(3), 591–614 (2017)MathSciNetCrossRefGoogle Scholar
[5] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators. J. Math. Anal. Appl. 458(1), 153–173 (2018)MathSciNetCrossRefGoogle Scholar
[6] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory (Springer, New York, 2013)CrossRefGoogle Scholar
[7] A. Aral, D. Cárdenas-Morales, P. Garrancho, Bernstein-type operators that reproduce exponential functions. J. Math. Inequal. (Accepted)Google Scholar
[8] R.A. Devore, “Degree of approximation,” in ApproximationTheory II (Academic Press, New York, 1976), pp. 117–161Google Scholar
[9] Z. Ditzian, X. Zhou, Kantorovich–Bernstein polynomials. Constr. Approx. 6, 421–435 (1990)MathSciNetCrossRefGoogle Scholar
[10] H. Gonska, P. Piţul, I. Raşa, On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators, in Proceedings of the International Conference on Numerical Analysis and Approximation Theory (Cluj Napoca, Romania), July 5–8, pp. 55–80 (2006)Google Scholar
[11] K.G. Ivanov, Approximation by Bernstein polynomials in Lp

[12] L.V. Kantorovich, Sur certains d’eveloppements suivant les polynmes de la forme de S. Bernstein, I, II. C. R. Acad. URSS, pp. 563–568 and 595–600 (1930)Google Scholar

[13] G.G. Lorentz, Approximation of Functions (Chelsea Publ. Co., New York, 1986)zbMATHGoogle Scholar

[14] S. Morigi, M. Neamtu, Some results for a class of generalized polynomials. Adv. Comput. Math. 12, 133–149 (2000)MathSciNetCrossRefGoogle Scholar
[15] J. Peetre, A theory of interpolation of normed spaces, Lecture Notes, Brasilia, 1963 (Notas de Matematica, 39 (1968)Google Scholar
[16] R. Păltănea, A note on Bernstein–Kantorovich operators. Bull. Univ. Transilvania of Braşov, Series III 6(55)(2), 27–32 (2013)zbMATHGoogle Scholar
[17] P.C. Sikkema, Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. Numer. Math. 3, 107–116 (1961)MathSciNetCrossRefGoogle Scholar
[18] E.M. Stein, Singular Integrals (Princeton, New Jersey, 1970)zbMATHGoogle Scholar
[19] A. Zygmund, Trigonometric Series I, II (Cambridge University Press, Cambridge, 1959)zbMATHGoogle Scholar

11institutetext: Ali Aral 22institutetext: Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, 71450, Kırıkkale-Turkey

22email: aliaral73@yahoo.com
33institutetext: Diana Otrocol 44institutetext: Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, Memorandumului St. no. 28, Cluj-Napoca 400114, Romania; Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania

44email: Diana.Otrocol@math.utcluj.ro
55institutetext: Ioan Raşa 66institutetext: Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, Memorandumului St. no. 28, Cluj-Napoca 400114, Romania

66email: ioan.rasa@math.utcluj.ro

On approximation by some Bernstein-Kantorovich exponential-type polynomials

Ali Aral    Diana Otrocol and Ioan Raşa
(Received: date / Accepted: date)
Abstract

Since the introduction of Bernstein operators, many authors defined and/or studied Bernstein type operators and their generalizations, among them are Morigi and Neamtu in 2000. They proposed an analog of classical Bernstein operator and proved some convergence results for continuous functions. Herein, we introduce their integral extensions in Kantorovich sense by replacing the usual differential and integral operators with their more general analogs. By means of these operators, we are able to reconstruct the functions which are not necessarily continuous. It is shown that the operators form an approximation process in both C[0,1]C\left[0,1\right] and Lp,μ[0,1]L_{p,\mu}\left[0,1\right], which is an exponentially weighted space. Also, quantitative results are stated in terms of appropriate moduli of smoothness and KK-functionals. Furthermore, a quantitative Voronovskaya type result is presented.

1 Introduction

The classical Bernstein operators associate the polynomial BnfB_{n}f to any function fC[0,1]f\in C[0,1] and the association is defined by

Bn(f)(x)=k=0nf(kn)pn,k(x),n,B_{n}\left(f\right)\left(x\right)=\sum\limits_{k=0}^{n}f\left(\frac{k}{n}\right)p_{n,k}\left(x\right),\ n\in\mathbb{N}, (1)

where

pn,k(x)=(nk)xk(1x)nk.p_{n,k}(x)={n\choose k}x^{k}(1-x)^{n-k}.

In fact, it defines a linear approximation process in the space of all continuous functions on [0,1].\left[0,1\right]. To obtain an approximation process for Lebesgue integrable functions, the Kantorovich version of (1) was defined in Kantorovich by replacing the sample values f(k/n)f(k/n) with the mean values of ff in the interval [kn,k+1n]\left[\frac{k}{n},\frac{k+1}{n}\right], that is

Kn(f)(x)=(n+1)k=0npn,k(x)kn+1k+1n+1f(t)𝑑t,x[0,1],n,K_{n}\left(f\right)\left(x\right)=\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(x\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}f\left(t\right)dt,x\in\left[0,1\right],\ n\in\mathbb{N},

where f:[0,1]f:\left[0,1\right]\rightarrow\mathbb{R} is a locally integrable function. We note that BnB_{n} and KnK_{n} are connected by the relation

Kn=DBn+1I,K_{n}=D\circ B_{n+1}\circ I, (2)

where DD is the differentiation operator (i.e. D(f)=fD\left(f\right)=f^{{}^{\prime}}, fC1[0,1]f\in C^{1}\left[0,1\right]) and II is the antiderivative operator (i.e. I(f;x)=0xf(t)𝑑t,I\left(f;x\right)=\int_{0}^{x}f\left(t\right)dt, fC[0,1]f\in C\left[0,1\right]) and x[0,1]x\in\left[0,1\right]. These operators allow us to reconstruct a Lebesgue integrable function by means of its mean values on the sets [kn,k+1n]\left[\frac{k}{n},\frac{k+1}{n}\right]. It is well known that Bernstein operators reproduce ei(x)=xi,e_{i}\left(x\right)=x^{i}, i=0,1i=0,1 whereas Bernstein-Kantorovich operators reproduce only e0(x)=1.e_{0}\left(x\right)=1.

Recently, Aral et al. Ar-Card-Gar studied a sequence of linear positive operators which generalize the classical Bernstein operators and perform better than BnB_{n} under sufficient conditions. These operators reproduce the exponential functions exp(μt)\exp(\mu t) and exp(2μt)\exp(2\mu t), μ>0,\mu>0, and are defined by

Gnf(x)=Gn(f;x)=k=0nf(kn)eμk/neμxpn,k(an(x)),x[0,1],n,G_{n}f\left(x\right)=G_{n}\left(f;x\right)=\sum\limits_{k=0}^{n}f\left(\frac{k}{n}\right)e^{-\mu k/n}e^{\mu x}p_{n,k}\left(a_{n}\left(x\right)\right),x\in\left[0,1\right],n\in\mathbb{N},

where

an(x)=eμx/n1eμ/n1.a_{n}\left(x\right)=\frac{e^{\mu x/n}-1}{e^{\mu/n}-1}. (3)

They have close connection with the Bernstein operators that is given by

Gnf(x)=expμ(x)Bn(fexpμ;an(x)),G_{n}f\left(x\right)=\exp_{\mu}\left(x\right)B_{n}\left(\frac{f}{\exp_{\mu}};a_{n}\left(x\right)\right), (4)

where for a fixed real parameter μ>0\mu>0, the exponential function is defined as expμ(x)=eμx\exp_{\mu}\left(x\right)=e^{\mu x}. We note that the generalization is a special case of the modification introduced by Morigi and Neamtu in Morigi-Nematu .

In order to give the generalization of the operators Kn(f)K_{n}\left(f\right), in Radu2 Păltănea considered the operators Dμ:C1[0,1]C[0,1]D_{\mu}:C^{1}\left[0,1\right]\rightarrow C\left[0,1\right] and Iμ:C[0,1]C1[0,1]I_{\mu}:C\left[0,1\right]\rightarrow C^{1}\left[0,1\right], and defined the operators KnμK_{n}^{\mu} as

Knμ=DμBn+1Iμ,K_{n}^{\mu}=D_{\mu}\circ B_{n+1}\circ I_{\mu}, (5)

where

Iμ(f,x)=eμx0xeμtf(t)𝑑t,fC[0,1]andx[0,1],I_{\mu}\left(f,x\right)=e^{\mu x}\int_{0}^{x}e^{-\mu t}f\left(t\right)dt,f\in C\left[0,1\right]\mbox{and}\ x\in\left[0,1\right], (6)
Dμ(f,x)=f(x)μf(x),fC1[0,1]andx[0,1].D_{\mu}\left(f,x\right)=f^{{}^{\prime}}\left(x\right)-\mu f\left(x\right),f\in C^{1}\left[0,1\right]\mbox{and}\ x\in\left[0,1\right]. (7)

Using the technique given in Radu2 with the operators in (5), we aim to construct a generalization of the operator GnG_{n} and call it as generalized Bernstein Kantorovich operator. The construction is described in Section 2. Moreover, certain elementary properties including exponential moments are given in the same section. As we will see in Lemma 2 below, these operators reproduce only the function exp(2μt)\exp\left(2\mu t\right), μ>0.\mu>0. In the same section, we also show that the new operator can be defined with the help of classical Bernstein operator and Bernstein-Kantorovich operator. In Section 3, it is shown that these operators form an approximation process in C[0,1]C\left[0,1\right] by obtaining uniform convergence of them and an estimate in terms of modulus of continuity. In Section 4, a quantitative Voronovskaya type result is presented. In Section 5, we show that the new operators converge to the function in Lp,μL_{p,\mu}-norm. Furthermore, the approximation error of the operators is expressed in terms of an appropriate integral modulus of continuity.

The obtained results show that our technique is more convenient in order to introduce a Kantorovich version of Gn.G_{n}.

We mention that Kantorovich type operators have been object of the investigation by several mathematicians. Altomare et al. in Altomare-Va introduced a unitary approach to the study of the approximation properties for a large class of Kantorovich type operators including the classical Bernstein-Kantorovich operators and their various generalizations. Also, more results related to the mentioned operators can be found in Altomare2 and Altomare 3 . Various results on Kantorovich-type operators were given in Zhou and Ivanov . It is worth mentioning that Kantorovich type operators in classical sense were considered in the aforementioned more general framework, as well as in the context of the qq-operators and (p,q)\left(p,q\right)-operators, a very active area of research (see Aral-Gupta , tuncer- aral and the references therein).

2 Preliminaries

Throughout this section, we introduce a new family of operators and present some elementary properties.

Definition 1

Let μ>0\mu>0. For any nn\in\mathbb{N} and x[0,1]x\in\left[0,1\right] consider the operator K~n:C[0,1]C[0,1]\widetilde{K}_{n}:C\left[0,1\right]\rightarrow C\left[0,1\right], defined by

K~nf(x)=an+1(x)(n+1)eμxk=0npn,k(an+1(x))kn+1k+1n+1eμtf(t)𝑑t,\widetilde{K}_{n}f\left(x\right)=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}f\left(t\right)dt, (8)

where an+1(x)a_{n+1}\left(x\right) is given in (3).

To represent the operators in (8), we sometimes use the notation K~n(f;x)\widetilde{K}_{n}\left(f;x\right).

For a given fL1[0,1],f\in L_{1}\left[0,1\right], we define FμC[0,1]F_{\mu}\in C\left[0,1\right] as

Fμ(x)=0xeμtf(t)𝑑t.F_{\mu}\left(x\right)=\int_{0}^{x}e^{-\mu t}f\left(t\right)dt. (9)

Then, we have

K~nf(x)=an+1(x)(n+1)eμxk=0npn,k(an+1(x))[Fμ(k+1n+1)Fμ(kn+1)].\widetilde{K}_{n}f\left(x\right)=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\left[F_{\mu}\left(\frac{k+1}{n+1}\right)-F_{\mu}\left(\frac{k}{n+1}\right)\right].

Using the notation

δnμ(F)(x):=Fμ(nn+1x+1n+1)Fμ(nn+1x)\delta_{n}^{\mu}\left(F\right)\left(x\right):=F_{\mu}\left(\frac{n}{n+1}x+\frac{1}{n+1}\right)-F_{\mu}\left(\frac{n}{n+1}x\right) (10)

the operators K~n\widetilde{K}_{n} can be represented as

K~nf(x)\displaystyle\widetilde{K}_{n}f\left(x\right) =an+1(x)(n+1)expμ(x)k=0npn,k(an+1(x))δnμ(F)(kn)\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)\exp_{\mu}\left(x\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\delta_{n}^{\mu}\left(F\right)\left(\frac{k}{n}\right)
=an+1(x)expμ(x)Kn(expμ1()f();an+1(x))\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\exp_{\mu}\left(x\right)K_{n}\left(\exp_{\mu}^{-1}\left(\cdot\right)f\left(\cdot\right);a_{n+1}\left(x\right)\right)
=an+1(x)(n+1)expμ(x)Bn(δnμ(F);an+1(x)),\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)\exp_{\mu}\left(x\right)B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(x\right)\right), (11)

where BnB_{n}  and KnK_{n} denote Bernstein and Bernstein-Kantorovich operators, respectively. Note that K~nf(x)\widetilde{K}_{n}f(x) is an exponential polynomial, based on the representation of Bernstein polynomials.

When we compare with the definition of the operators in Radu2 , the above relationships show that the approach which will be used below is more convenient to apply to the generalized Bernstein operators Gn,G_{n}, which preserve exponential functions. As we can see in Radu2 , the operator KnμK_{n}^{\mu} preserves good properties of Kantorovich operator KnK_{n} . So we can expect that K~n\widetilde{K}_{n} also can preserve good properties of Kn.K_{n}.

Our process depends on the following lemma from Radu2 .

Lemma 1

Let nn\in\mathbb{N} and x[0,1]x\in\left[0,1\right]. Then

  1. a)

    (DμIμ)(f)(x)=f(x)\left(D_{\mu}\circ I_{\mu}\right)\left(f\right)\left(x\right)=f\left(x\right), for all fC[0,1]f\in C\left[0,1\right],

  2. b)

    (IμDμ)(f)(x)=f(x)\left(I_{\mu}\circ D_{\mu}\right)\left(f\right)\left(x\right)=f\left(x\right), for all fC1[0,1]f\in C^{1}\left[0,1\right], with f(0)=0f\left(0\right)=0.

Note that DμD_{\mu} and IμI_{\mu} in Lemma 1 are defined as in (6) and (7), respectively.

Theorem 2.1

Let nn\in\mathbb{N} and x[0,1]x\in\left[0,1\right]. Then

K~n=DμGn+1Iμ.\widetilde{K}_{n}=D_{\mu}\circ G_{n+1}\circ I_{\mu}.
Proof

Let fC[0,1]f\in C\left[0,1\right] and x[0,1].x\in\left[0,1\right]. With the help of the relations in Lemma 1 and the representation given in (4), we obtain

(DμGn+1Iμ)(f)(x)\displaystyle\left(D_{\mu}\circ G_{n+1}\circ I_{\mu}\right)\left(f\right)\left(x\right) =(Gn+1(Iμ(f);x))μGn+1(Iμ(f);x)\displaystyle=\left(G_{n+1}\left(I_{\mu}\left(f\right);x\right)\right)^{{}^{\prime}}-\mu G_{n+1}\left(I_{\mu}\left(f\right);x\right)
=(expμ(x)Bn+1(Fμ;an+1(x)))μexpμ(x)Bn+1(Fμ;an+1(x))\displaystyle\hskip-56.9055pt=\left(\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right)\right)^{{}^{\prime}}-\mu\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right)
=μexpμ(x)Bn+1(Fμ;an+1(x))+expμ(x)Bn+1(Fμ;an+1(x))\displaystyle\hskip-56.9055pt=\mu\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right)+\exp_{\mu}\left(x\right)B_{n+1}^{{}^{\prime}}\left(F_{\mu};a_{n+1}\left(x\right)\right)
μexpμ(x)Bn+1(Fμ;an+1(x)),\displaystyle-\mu\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right),

where FμF_{\mu} defined as in (9). Using the fact that

(pn+1,k(an+1(x)))=(n+1)an+1(x)(pn,k1(an+1(x))pn,k(an+1(x)))\left(p_{n+1,k}\left(a_{n+1}\left(x\right)\right)\right)^{{}^{\prime}}=\left(n+1\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(p_{n,k-1}\left(a_{n+1}\left(x\right)\right)-p_{n,k}\left(a_{n+1}\left(x\right)\right)\right)

we have

(DμGn+1Iμ)(x)\displaystyle\left(D_{\mu}\circ G_{n+1}\circ I_{\mu}\right)\left(x\right)
=eμxk=0n+1(pn+1,k(an+1(x)))Fμ(kn+1)\displaystyle\hskip-71.13188pt=e^{\mu x}\sum\limits_{k=0}^{n+1}\left(p_{n+1,k}\left(a_{n+1}\left(x\right)\right)\right)^{{}^{\prime}}F_{\mu}\left(\frac{k}{n+1}\right)
=(n+1)an+1(x)eμxk=0n+1(pn,k1(an+1(x))pn,k(an+1(x)))Fμ(kn+1)\displaystyle\hskip-71.13188pt=\left(n+1\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\sum\limits_{k=0}^{n+1}\left(p_{n,k-1}\left(a_{n+1}\left(x\right)\right)-p_{n,k}\left(a_{n+1}\left(x\right)\right)\right)F_{\mu}\left(\frac{k}{n+1}\right)
=(n+1)an+1(x)eμxk=0npn,k(an+1(x))[Fμ(k+1n+1)Fμ(kn+1)]\displaystyle\hskip-71.13188pt=\left(n+1\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\left[F_{\mu}\left(\frac{k+1}{n+1}\right)-F_{\mu}\left(\frac{k}{n+1}\right)\right]
=an+1(x)(n+1)eμxk=0npn,k(an+1(x))kn+1k+1n+1eμtf(t)𝑑t.\displaystyle\hskip-71.13188pt=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}f\left(t\right)dt.

For this family of operators, we give here some of their properties and results.

Lemma 2

Let nn\in\mathbb{N} and x[0,1].x\in\left[0,1\right]. The following equalities hold.

K~n(e0;x)=eμ(xn1)/(n+1)eμx(eμ/(n+1)+1eμx/(n+1))n,\widetilde{K}_{n}\left(e_{0};x\right)=e^{\mu\left(x-n-1\right)/\left(n+1\right)}e^{\mu x}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n}, (12)
K~n(expμ;x)=μn+1eμx/(n+1)eμ/(n+1)1eμx,\mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu};x\right)=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}, (13)
K~n(expμ2;x)=e2μx,\mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu}^{2};x\right)=e^{2\mu x}, (14)
K~n(expμ3;x)\displaystyle\mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu}^{3};x\right) =12eμx+μx/(n+1)(1+eμ/(n+1))\displaystyle=\frac{1}{2}e^{\mu x+\mu x/\left(n+1\right)}\left(1+e^{\mu/\left(n+1\right)}\right) (15)
(eμ/(n+1)+eμx/(n+1)+eμ/(n+1)+μx/(n+1))n,\displaystyle\hskip 28.45274pt\left(-e^{\mu/\left(n+1\right)}+e^{\mu x/\left(n+1\right)}+e^{\mu/\left(n+1\right)+\mu x/\left(n+1\right)}\right)^{n},
K~n(expμ4;x)\displaystyle\mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu}^{4};x\right) =13eμx+μx/(n+1)(1+eμ/(n+1)+e2μ/(n+1))\displaystyle=\frac{1}{3}e^{\mu x+\mu x/\left(n+1\right)}\left(1+e^{\mu/\left(n+1\right)}+e^{2\mu/\left(n+1\right)}\right) (16)
×(eμ/(n+1)e2μ/(n+1)+eμx/(n+1)\displaystyle\times\left(-e^{\mu/\left(n+1\right)}-e^{2\mu/\left(n+1\right)}+e^{\mu x/\left(n+1\right)}\right.
+eμ/(n+1)+μx/(n+1)+e2μ/(n+1)+μx/(n+1))n.\displaystyle\left.+e^{\mu/\left(n+1\right)+\mu x/\left(n+1\right)}+e^{2\mu/\left(n+1\right)+\mu x/\left(n+1\right)}\right)^{n}.
Proof

It follows from (8) that if f=e0,f=e_{0}, then

K~n(e0;x)\displaystyle\widetilde{K}_{n}\left(e_{0};x\right) =μn+1eμx/(n+1)eμ/(n+1)1eμx(n+1)k=0npn,k(an+1(x))kn+1k+1n+1eμt𝑑t\displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}dt
=eμx/(n+1)eμ/(n+1)eμxk=0neμk/(n+1)pn,k(an+1(x))\displaystyle=\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}}e^{\mu x}\sum\limits_{k=0}^{n}e^{-\mu k/\left(n+1\right)}p_{n,k}\left(a_{n+1}\left(x\right)\right)
=eμx/(n+1)eμ/(n+1)eμxeμn/(n+1)(eμ/(n+1)+1eμx/(n+1))n\displaystyle=\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}}e^{\mu x}e^{-\mu n/\left(n+1\right)}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n}
=eμx/(n+1)eμ(x1)(eμ/(n+1)+1eμx/(n+1))n.\displaystyle=e^{\mu x/\left(n+1\right)}e^{\mu\left(x-1\right)}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n}.

If f(x)=eμx,f\left(x\right)=e^{\mu x}, then

K~n(eμt;x)\displaystyle\widetilde{K}_{n}\left(e^{\mu t};x\right) =an+1(x)eμx(n+1)k=0npn,k(an+1(x))kn+1k+1n+1𝑑t\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}dt
=μn+1eμx/(n+1)eμ/(n+1)1eμxk=0npn,k(an+1(x))\displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)
=μn+1eμx/(n+1)eμ/(n+1)1eμx.\displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}.

Finally, for f(x)=e2μxf\left(x\right)=e^{2\mu x}, we get

K~n(e2μt;x)\displaystyle\widetilde{K}_{n}\left(e^{2\mu t};x\right) =an+1(x)eμx(n+1)k=0npn,k(an+1(x))kn+1k+1n+1eμt𝑑t\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{\mu t}dt
=μn+1eμx/(n+1)eμ/(n+1)1eμx(n+1)k=0npn,k(an+1(x))\displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)
(1μeμk/(n+1)(eμ/(n+1)1))\displaystyle\quad\cdot\left(\frac{1}{\mu}e^{\mu k/\left(n+1\right)}\left(e^{\mu/\left(n+1\right)}-1\right)\right)
=eμx/(n+1)eμxk=0npn,k(an+1(x))eμk/(n+1)\displaystyle=e^{\mu x/\left(n+1\right)}e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)e^{\mu k/\left(n+1\right)}
=eμx/(n+1)eμxeμxn/(n+1)=e2μx.\displaystyle=e^{\mu x/\left(n+1\right)}e^{\mu x}e^{\mu xn/\left(n+1\right)}=e^{2\mu x}.

Other results are similar.

Lemma 3

Let expμ,x(t)=eμteμx.\exp_{\mu,x}\left(t\right)=e^{\mu t}-e^{\mu x}.   For nn\in\mathbb{N} and x[0,1],x\in\left[0,1\right], we have

limnn(K~n(e0;x)1)=μ(μx1)μx(μx2),\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)=\mu\left(\mu x-1\right)-\mu x\left(\mu x-2\right), (17)
limnn(K~n(expμ;x)eμx)=μ2(2x1)eμx,\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)=\frac{\mu}{2}\left(2x-1\right)e^{\mu x}, (18)

and

limnn2K~n(expμ,x4(x);x)=3μ2(1x)2x2e4μx.\lim_{n\rightarrow\infty}n^{2}\widetilde{K}_{n}\left(\exp_{\mu,x}^{4}\left(x\right);x\right)=3\mu^{2}\left(1-x\right)^{2}x^{2}e^{4\mu x}. (19)

Using the above limits, we get

limnnK~n(expμ,x;x)\displaystyle\lim_{n\rightarrow\infty}n\widetilde{K}_{n}\left(\exp_{\mu,x};x\right) =limnn(K~n(expμ;x)eμxK~n(e0;x))\displaystyle=\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\widetilde{K}_{n}\left(e_{0};x\right)\right)
=limnn(K~n(expμ;x)eμx)\displaystyle=\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)
limnneμx(K~n(e0;x)1)\displaystyle-\lim_{n\rightarrow\infty}ne^{\mu x}\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
=eμx[μ2(2x1)μ(μx1)+μx(μx2)]\displaystyle=e^{\mu x}\left[\frac{\mu}{2}\left(2x-1\right)-\mu\left(\mu x-1\right)+\mu x\left(\mu x-2\right)\right] (20)

and

limnnK~n(expμ,x2;x)\displaystyle\lim_{n\rightarrow\infty}n\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right) =eμxlimnn(K~n(expμ;x)eμx)\displaystyle=-e^{\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)
eμxlimnn(K~n(expμ;x)eμxK~n(e0;x))\displaystyle-e^{\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\widetilde{K}_{n}\left(e_{0};x\right)\right)
=2eμxlimnn(K~n(expμ;x)eμx)\displaystyle=-2e^{\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)
+e2μxlimnn(K~n(e0;x)1)\displaystyle+e^{2\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
=e2μx(μ(μx1)μx(μx2)μ(2x1)).\displaystyle=e^{2\mu x}\left(\mu\left(\mu x-1\right)-\mu x\left(\mu x-2\right)-\mu\left(2x-1\right)\right). (21)
Lemma 4

Let αn,μ:=K~ne0e0\alpha_{n,\mu}:={\left\|\widetilde{K}_{n}e_{0}-e_{0}\right\|}_{\infty}. The following relations hold as nn\rightarrow\infty:

αn,μ0,\alpha_{n,\mu}\rightarrow 0, (22)
K~n(expμ)expμ0{\left\|\widetilde{K}_{n}(\exp_{\mu})-\exp_{\mu}\right\|}_{\infty}\rightarrow 0 (23)

and

βn,μ:=supx[0,1]K~n(expμ,x2;x)0.\beta_{n,\mu}:=\sup_{x\in\left[0,1\right]}\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)\rightarrow 0. (24)
Proof

We have

(K~ne0)(x)\displaystyle\left(\widetilde{K}_{n}e_{0}\right)^{{}^{\prime}}\left(x\right) =μeμ(xn1)/(n+1)eμx(eμ/(n+1)+1eμx/(n+1))n1×\displaystyle=\mu e^{\mu\left(x-n-1\right)/\left(n+1\right)}e^{\mu x}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n-1}\times
((n+2)n+1(eμ/(n+1)+1)2eμx/(n+1)).\displaystyle\left(\frac{\left(n+2\right)}{n+1}\left(e^{\mu/\left(n+1\right)}+1\right)-2e^{\mu x/\left(n+1\right)}\right).

If

(K~ne0)(xn)=0,\left(\widetilde{K}_{n}e_{0}\right)^{{}^{\prime}}\left(x_{n}\right)=0,

then

xn=(n+1)μln((n+2)(n+1)(eμ/(n+1)+1)2).x_{n}=\frac{\left(n+1\right)}{\mu}\ln\left(\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\right).

Also, we can write

K~ne0(0)1\displaystyle\widetilde{K}_{n}e_{0}\left(0\right)-1 =eμeμn/(n+1)1\displaystyle=e^{-\mu}e^{\mu n/\left(n+1\right)}-1 (25)
=eμ/(n+1)1,\displaystyle=e^{-\mu/\left(n+1\right)}-1,
K~ne0(1)1=eμ/(n+1)1\widetilde{K}_{n}e_{0}\left(1\right)-1=e^{\mu/\left(n+1\right)}-1 (26)

and

K~ne0(xn)1\displaystyle\widetilde{K}_{n}e_{0}\left(x_{n}\right)-1 =(n+2)(n+1)(eμ/(n+1)+1)2((n+2)(n+1)(eμ/(n+1)+1)2)n+1eμ\displaystyle=\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\left(\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\right)^{n+1}e^{-\mu}
×(eμ/(n+1)+1(n+2)(n+1)(eμ/(n+1)+1)2)n1\displaystyle\quad\times\left(e^{\mu/\left(n+1\right)}+1-\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\right)^{n}-1
=(eμ/(n+1)+12)2n+2(n+2n+1)n+2(nn+1)neμ1.\displaystyle=\left(\frac{e^{\mu/\left(n+1\right)}+1}{2}\right)^{2n+2}\left(\frac{n+2}{n+1}\right)^{n+2}\left(\frac{n}{n+1}\right)^{n}e^{-\mu}-1. (27)

Since K~ne0(x)1\widetilde{K}_{n}e_{0}\left(x\right)-1   is a continuous function, it attains its extreme values at either endpoints 0 and 11 or critical point xnx_{n}.

Since the limits of (25), (26) and ( 27) are equal to zero, (22) is proved.

(23) and (24) follow similarly from

K~n(expμ;x)eμx=eμx(μn+1eμx/(n+1)eμ/(n+1)11),\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}=e^{\mu x}\left(\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}-1\right),

and

K~n(expμ,x2;x)\displaystyle\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right) =2eμx(eμxK~n(expμ;x))+e2μx(K~n(e0;x)1)\displaystyle=2e^{\mu x}\left(e^{\mu x}-\widetilde{K}_{n}\left(\exp_{\mu};x\right)\right)+e^{2\mu x}\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
=2e2μx(1μn+1eμx/(n+1)eμ/(n+1)1)+e2μx(K~n(e0;x)1).\displaystyle=2e^{2\mu x}\left(1-\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}\right)+e^{2\mu x}\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right).

3 Convergence in C[0,1]C\left[0,1\right]

We shall denote by C[0,1]C[0,1] the space of all real valued continuous functions on the interval [0,1][0,1] endowed with the sup-norm .\left\|\cdot\right\|_{\infty}.

Considering the calculations in the proof of Lemma 4, we get K~ne0=αn,μ+1\left\|\widetilde{K}_{n}e_{0}\right\|_{\infty}=\alpha_{n,\mu}+1, where αn,μ\alpha_{n,\mu} is defined as in that proof. So we can say that the linear operator K~n\widetilde{K}_{n} maps C[0,1]C\left[0,1\right] into itself and it is continuous with respect to the sup-norm. Since the sequence αn,μ\alpha_{n,\mu} is convergent, we get K~nd,\left\|\widetilde{K}_{n}\right\|\leq d, dd is a positive constant.

In the following theorem, we establish the convergence of the operators K~n\widetilde{K}_{n} towards the identity operator.

Theorem 3.1

If fC[0,1],f\in C\left[0,1\right], then K~nf\widetilde{K}_{n}f converges to ff uniformly on [0,1]\left[0,1\right].

Proof

Since {e0,expμ,expμ2}\left\{e_{0},\exp_{\mu},\exp_{\mu}^{2}\right\} is an extended complete Chebyshev system, from Korovkin’s theorem we have to prove that the thesis is fulfilled for the functions e0,expμ,expμ2.e_{0},\exp_{\mu},\exp_{\mu}^{2}. But this is a consequence of Lemma 2 and Lemma 4, and so the theorem is proved.

Theorem 3.2

For every nn\in\mathbb{N} and fC[0,1],f\in C\left[0,1\right], we have

K~nff\displaystyle\left\|\widetilde{K}_{n}f-f\right\|_{\infty} bneμf+2eμω(expμ1f,nn+1γn+1n+1)+\displaystyle\leq b_{n}e^{\mu}\left\|f\right\|_{\infty}+2e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\gamma_{n}+\frac{1}{n+1}\right)+
+3eμω(expμ1f,n+1n+1)\displaystyle\quad+3e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{\sqrt{n}+1}{n+1}\right)

where

bn=μn+1eμ/(n+1)eμ/(n+1)11b_{n}=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}-1

and

γn=(eμ/(n+1)1)(n+1)μ1eμ/(n+1)1(n+1)μln[(eμ/(n+1)1)(n+1)μ].\gamma_{n}=\frac{\left(e^{\mu/\left(n+1\right)}-1\right)\frac{\left(n+1\right)}{\mu}-1}{e^{\mu/\left(n+1\right)}-1}-\frac{\left(n+1\right)}{\mu}\ln\left[\left(e^{\mu/\left(n+1\right)}-1\right)\frac{\left(n+1\right)}{\mu}\right]. (28)
Proof

Using the representation (11) and the fact that bn=supx[0,1](an+1(x)1)=b_{n}=\sup_{x\in\left[0,1\right]}\!\!\left(a_{n+1}^{{}^{\prime}}(x)-1\right)==μn+1eμ/(n+1)eμ/(n+1)11,=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}-1, we have

K~nff\displaystyle\left\|\widetilde{K}_{n}f-f\right\|_{\infty} supx[0,1](an+1(x)1)eμBn((n+1)δnμ(F);an+1())\displaystyle\leq\sup_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)-1\right)e^{\mu}\left\|B_{n}\left(\left(n+1\right)\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)\right\|_{\infty}
+(n+1)eμBn(δnμ(F);an+1())δnμ(F)\displaystyle\quad+\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)-\delta_{n}^{\mu}\left(F\right)\right\|_{\infty}
+eμ(n+1)δnμ(F)eμf\displaystyle\quad+e^{\mu}\left\|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)-e^{-\mu\cdot}f\right\|_{\infty}
bneμeμf+(n+1)eμBn(δnμ(F);an+1())Bn(δnμ(F);)\displaystyle\leq b_{n}e^{\mu}\left\|e^{-\mu\cdot}f\right\|_{\infty}+\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)-B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)\right\|_{\infty}
+(n+1)eμBn(δnμ(F);)δnμ(F)\displaystyle\quad+\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)-\delta_{n}^{\mu}\left(F\right)\right\|_{\infty}
+eμ(n+1)δnμ(F)eμf\displaystyle\quad+e^{\mu}\left\|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)-e^{-\mu\cdot}f\right\|_{\infty}
:=bneμf+I1+I2+I3.\displaystyle:=b_{n}e^{\mu}\left\|f\right\|_{\infty}+I_{1}+I_{2}+I_{3}.

To estimate I1,I_{1}, we use the following inequality given by (6.1.966.1.96) in Altomare Kitap for Bernstein operators in the case of an arbitrary continuous function on [0,1]\left[0,1\right]:

ω(Bn(f),δ)2ω(f,δ), δ>0.\omega\left(B_{n}\left(f\right),\delta\right)\leq 2\omega\left(f,\delta\right),\text{ \ \ \ }\delta>0.

Thus we have

|Bn(δnμ(F);an+1(x))Bn(δnμ(F);x)|\displaystyle\left|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(x\right)\right)-B_{n}\left(\delta_{n}^{\mu}\left(F\right);x\right)\right|
ω(Bn(δnμ(F)),|an+1(x)x|)\displaystyle\leq\omega\left(B_{n}\left(\delta_{n}^{\mu}\left(F\right)\right),\left|a_{n+1}\left(x\right)-x\right|\right)
2ω(δnμ(F),|an+1(x)x|)\displaystyle\leq 2\omega\left(\delta_{n}^{\mu}\left(F\right),\left|a_{n+1}\left(x\right)-x\right|\right)
2ω(δnμ(F),γn),\displaystyle\leq 2\omega\left(\delta_{n}^{\mu}\left(F\right),\gamma_{n}\right), (29)

where

γn=maxx[0,1]|an+1(x)x|.\gamma_{n}=\underset{x\in\left[0,1\right]}{\max}\left|a_{n+1}\left(x\right)-x\right|.

an+1(x)xa_{n+1}\left(x\right)-x attains its maximum value within [0,1]\left[0,1\right] at the point

x0=n+1μln[(eμ/(n+1)1)(n+1)μ]x_{0}=\frac{n+1}{\mu}\ln\left[\left(e^{\mu/\left(n+1\right)}-1\right)\frac{\left(n+1\right)}{\mu}\right]

and thus γn\gamma_{n} is defined as in (28). It is easily seen that

limnγn=0.\lim_{n\rightarrow\infty}\gamma_{n}=\allowbreak 0.

Let us estimate ω(δnμ(F),δ).\omega\left(\delta_{n}^{\mu}\left(F\right),\delta\right). For fixed δ>0\delta>0 and x,y[0,1],x,y\in\left[0,1\right], |xy|δ\left|x-y\right|\leq\delta then

|δnμ(F)(x)δnμ(F)(y)|\displaystyle\left|\delta_{n}^{\mu}\left(F\right)\left(x\right)-\delta_{n}^{\mu}\left(F\right)\left(y\right)\right| =1n+1|eμξn,xf(ξn,x)eμηn,yf(ηn,y)|\displaystyle=\frac{1}{n+1}\left|e^{-\mu\xi_{n,x}}f\left(\xi_{n,x}\right)-e^{-\mu\eta_{n,y}}f\left(\eta_{n,y}\right)\right|
1n+1ω(expμ1f,|ξn,xηn,y|),\displaystyle\leq\frac{1}{n+1}\omega\left(\exp_{\mu}^{-1}f,\left|\xi_{n,x}-\eta_{n,y}\right|\right),

where ξn,x[nn+1x,nn+1x+1n+1]\xi_{n,x}\in\Big[\frac{n}{n+1}x,\frac{n}{n+1}x+\frac{1}{n+1}\Big] and ηn,y[nn+1y,nn+1y+1n+1].\eta_{n,y}\in\left[\frac{n}{n+1}y,\frac{n}{n+1}y+\frac{1}{n+1}\right]. Noting that

|ξn,xηn,y|nn+1|xy|+1n+1nn+1δ+1n+1\left|\xi_{n,x}-\eta_{n,y}\right|\leq\frac{n}{n+1}\left|x-y\right|+\frac{1}{n+1}\leq\frac{n}{n+1}\delta+\frac{1}{n+1}

we get

|δnμ(F)(x)δnμ(F)(y)|1n+1ω(expμ1f,nn+1δ+1n+1).\left|\delta_{n}^{\mu}\left(F\right)\left(x\right)-\delta_{n}^{\mu}\left(F\right)\left(y\right)\right|\leq\frac{1}{n+1}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\delta+\frac{1}{n+1}\right).

So it follows that

ω(δnμ(F),δ)1n+1ω(expμ1f,nn+1δ+1n+1).\omega\left(\delta_{n}^{\mu}\left(F\right),\delta\right)\leq\frac{1}{n+1}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\delta+\frac{1}{n+1}\right). (30)

Using (29) and (30), we get

I1\displaystyle I_{1} =(n+1)eμBn(δnμ(F);an+1())Bn(δnμ(F);)\displaystyle=\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)-B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)\right\|_{\infty}
2eμ(n+1)ω(δnμ(F),γn)\displaystyle\leq 2e^{\mu}\left(n+1\right)\omega\left(\delta_{n}^{\mu}\left(F\right),\gamma_{n}\right)
2eμω(expμ1f,nn+1γn+1n+1).\displaystyle\leq 2e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\gamma_{n}+\frac{1}{n+1}\right).

Let us estimate I2I_{2}. Using (30), we have

I2\displaystyle I_{2} =eμ(n+1)Bn(δnμ(F);)δnμ(F)\displaystyle=e^{\mu}\left(n+1\right)\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)-\delta_{n}^{\mu}\left(F\right)\right\|_{\infty}
2eμ(n+1)ω(δnμ(F),1n)\displaystyle\leq 2e^{\mu}\left(n+1\right)\omega\left(\delta_{n}^{\mu}\left(F\right),\frac{1}{\sqrt{n}}\right)
2eμω(expμ1f,n+1n+1).\displaystyle\leq 2e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{\sqrt{n}+1}{n+1}\right).

Now we proceed to estimate I3.I_{3}. For x[0,1],x\in\left[0,1\right], by using Lagrange’s theorem we have

(n+1)δnμ(F)(x)\displaystyle\left(n+1\right)\delta_{n}^{\mu}\left(F\right)\left(x\right) =(n+1)[Fμ(nn+1x+1n+1)Fμ(nn+1x)]\displaystyle=\left(n+1\right)\left[F_{\mu}\left(\frac{n}{n+1}x+\frac{1}{n+1}\right)-F_{\mu}\left(\frac{n}{n+1}x\right)\right]
=Fμ(ξn,x)=eμξn,xf(ξn,x),\displaystyle=F_{\mu}^{{}^{\prime}}\left(\xi_{n,x}\right)=e^{-\mu\xi_{n,x}}f\left(\xi_{n,x}\right), (31)

where ξn,x[nn+1x,nn+1x+1n+1].\xi_{n,x}\in\left[\frac{n}{n+1}x,\frac{n}{n+1}x+\frac{1}{n+1}\right]. Since |ξn,xx|<1n+1\left|\xi_{n,x}-x\right|<\frac{1}{n+1} we get

|(n+1)δnμ(F)(x)eμxf(x)|\displaystyle\left|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)\left(x\right)-e^{-\mu x}f\left(x\right)\right| |eμξn,xf(ξn,x)eμxf(x)|\displaystyle\leq\left|e^{-\mu\xi_{n,x}}f\left(\xi_{n,x}\right)-e^{-\mu x}f\left(x\right)\right|
ω(expμ1f,1n+1)\displaystyle\leq\omega\left(\exp_{\mu}^{-1}f,\frac{1}{n+1}\right)

and so

I3=eμ(n+1)δnμ(F)eμfeμω(expμ1f,1n+1).I_{3}=e^{\mu}\left\|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)-e^{-\mu\cdot}f\right\|_{\infty}\leq e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{1}{n+1}\right).

Collecting all the estimates of I1,I_{1}, I2 I_{2\text{ }} and I3,I_{3}, we have the desired result.

Remark 1

It is easy to verify that the sequences bnb_{n} and γn\gamma_{n} in Theorem 3.2 satisfy bn=𝒪(1n)b_{n}={\cal O}(\tfrac{1}{n}) and γn=𝒪(1n)\gamma_{n}={\cal O}(\tfrac{1}{n}) as nn\rightarrow\infty.

4 Quantitative Voronovskaya theorem

To describe the rate of pointwise convergence of the operators, we give a quantitative version of Voronovskaya theorem. Note that for a general linear positive operators similar results were given in Go-Pi-Ra .

For fC2[0,1]f\in C^{2}\left[0,1\right] and x0,x_{0}, x[0,1],x\in\left[0,1\right], we use the following version of the Taylor formula:

f(x)\displaystyle f\left(x\right) =(flogμ)(eμx0)+(flogμ)(eμx0)expμ,x0(x)+\displaystyle=\left(f\circ\log_{\mu}\right)\left(e^{\mu x_{0}}\right)+\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x_{0}}\right)\exp_{\mu,x_{0}}\left(x\right)+
+12(flogμ)′′(eμx0)expμ,x02(x)+R(f;x0;x),\displaystyle\quad+\frac{1}{2}\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x_{0}}\right)\exp_{\mu,x_{0}}^{2}\left(x\right)+R\left(f;x_{0};x\right),

where logμ\log_{\mu} is the inverse function of eμe^{\mu} and the remainder R(f;x0;x)R\left(f;x_{0};x\right) is

R(f;x0;x)=12expμ,x02(x)((flogμ)′′(eμξx)(flogμ)′′(eμx0)),R\left(f;x_{0};x\right)=\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu\xi_{x}}\right)-\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x_{0}}\right)\right),

with ξx\xi_{x} between xx and x0.x_{0}. Thus, we can write

|R(f,x0;x)|\displaystyle\left|R\left(f,x_{0};x\right)\right| =12expμ,x02(x)|(flogμ)′′(eμξx)(flogμ)′′(eμx)|\displaystyle=\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\left|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu\xi_{x}}\right)-\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x}\right)\right|
12expμ,x02(x)ω((flogμ)′′;|expμ,x(ξx)|)\displaystyle\leq\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\omega\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\left|\exp_{\mu,x}\left(\xi_{x}\right)\right|\right)
12expμ,x02(x)ω((flogμ)′′;|expμ,x(x0)|),\displaystyle\leq\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\omega\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\left|\exp_{\mu,x}\left(x_{0}\right)\right|\right), (32)

where ω(f;)\omega\left(f;\cdot\right) is the classical modulus of continuity.

We will need the following KK-functional introduced by J. Peetre petre and defined by

K(f;ε,C,C1):=inf{fg+εg:gC1}K\left(f;\varepsilon,C,C^{1}\right):=\inf\left\{\left\|f-g\right\|_{\infty}+\varepsilon\left\|g^{{}^{\prime}}\right\|_{\infty}:g\in C^{1}\right\} (33)

for fC[0,1]f\in C\left[0,1\right] and ε0.\varepsilon\geq 0. The KK-functional and the modulus of continuity are related by the relation

K(f;ε/2,C,C1)=12ω~(f;ε).K\left(f;\varepsilon/2,C,C^{1}\right)=\frac{1}{2}\widetilde{\omega}\left(f;\varepsilon\right). (34)

Here ω~(f;)\widetilde{\omega}\left(f;\cdot\right) denotes the least concave majorant of ω(f;),\omega\left(f;\cdot\right), see Lorentz .

The remainder R(f,x0;x)R\left(f,x_{0};x\right) can be estimated in terms of ω~.\widetilde{\omega}.

Lemma 5

Let fC2[0,1]f\in C^{2}\left[0,1\right] and x0,x_{0}, x[0,1].x\in\left[0,1\right]. Then we have

|R(f,x0;x)|12expμ,x02(x)ω~((flogμ)′′;13|expμ,x0(x)|).\left|R\left(f,x_{0};x\right)\right|\leq\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\left|\exp_{\mu,x_{0}}\left(x\right)\right|\right).
Proof

From (32),we have

|R(f,x0;x)|expμ,x02(x)(flogμ)′′.\left|R\left(f,x_{0};x\right)\right|\leq\exp_{\mu,x_{0}}^{2}\left(x\right)\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}.

For gC3[0,1],g\in C^{3}\left[0,1\right], using the Lagrange form of remainder we have

|R(g,x0;x)|\displaystyle\left|R\left(g,x_{0};x\right)\right| =16|expμ,x03(x)||(glogμ)′′′(θx)|\displaystyle=\frac{1}{6}\left|\exp_{\mu,x_{0}}^{3}\left(x\right)\right|\left|\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime\prime}}}\left(\theta_{x}\right)\right|
16|expμ,x03(x)|(glogμ)′′′,\displaystyle\leq\frac{1}{6}\left|\exp_{\mu,x_{0}}^{3}\left(x\right)\right|\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty},

where θx\theta_{x} is between xx and x0.x_{0}. Keeping ff fixed and letting gg arbitrary in C3[0,1],C^{3}\left[0,1\right], we have

|R(f,x0;x)|\displaystyle\left|R\left(f,x_{0};x\right)\right| |R(fg,x0;x)|+|R(g,x0;x)|\displaystyle\leq\left|R\left(f-g,x_{0};x\right)\right|+\left|R\left(g,x_{0};x\right)\right|
expμ,x02(x)(flogμ)′′(glogμ)′′\displaystyle\leq\exp_{\mu,x_{0}}^{2}\left(x\right)\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}
+16|expμ,x03(x)|(glogμ)′′′.\displaystyle\quad+\frac{1}{6}\left|\exp_{\mu,x_{0}}^{3}\left(x\right)\right|\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}.

Considering (33), (34) and passing to infimum over gC3[0,1]g\in C^{3}\left[0,1\right] yields

|R(f,x0;x)|\displaystyle\left|R\left(f,x_{0};x\right)\right| expμ,x02(x)K((flogμ)′′;16|expμ,x0(x)|,C,C1)\displaystyle\leq\exp_{\mu,x_{0}}^{2}\left(x\right)K\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{6}\left|\exp_{\mu,x_{0}}(x)\right|,C,C^{1}\right)
=12expμ,x02(x)ω~((flogμ)′′;13|expμ,x0(x)|).\displaystyle=\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\left|\exp_{\mu,x_{0}}\left(x\right)\right|\right).
Theorem 4.1

If fC2[0,1]f\in C^{2}\left[0,1\right] and x[0,1],x\in\left[0,1\right], then

|K~n(f;x)f(x)(K~n(e0;x)1)12μ2[f′′(x)3μf(x)+2μ2f(x)]\displaystyle\left|\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\frac{1}{2\mu^{2}}\left[f^{{}^{\prime\prime}}\left(x\right)-3\mu f^{{}^{\prime}}\left(x\right)+2\mu^{2}f\left(x\right)\right]\right.
eμx(K~n(expμ;x)eμx)1μ2[2μf(x)f′′(x)]|\displaystyle\left.-e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\frac{1}{\mu^{2}}\left[2\mu f^{{}^{\prime}}\left(x\right)-f^{{}^{\prime\prime}}\left(x\right)\right]\right|
12K~n(expμ,x4;x)K~n(e0;x)ω~((flogμ)′′;13K~n(expμ,x2;x)K~n(e0;x)).\displaystyle\leq\frac{1}{2}\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}}\right).
Proof

For fC2[0,1],f\in C^{2}\left[0,1\right], we can write

R(f,x;t)=f(t)(flogμ)(eμx)(flogμ)(eμx)expμ,x(t)12(flogμ)′′(eμx)expμ,x2(t).R\left(f,x;t\right)=f\left(t\right)-\left(f\circ\log_{\mu}\right)\left(e^{\mu x}\right)-\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x}\right)\exp_{\mu,x}\left(t\right)-\frac{1}{2}\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x}\right)\exp_{\mu,x}^{2}\left(t\right).

This equality leads to

K~n(R(f,x;t);x)\displaystyle\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right) =K~n(f;x)f(x)K~n(e0;x)(flogμ)(eμx)K~n(expμ,x;x)\displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)\widetilde{K}_{n}\left(e_{0};x\right)-\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x}\right)\widetilde{K}_{n}\left(\exp_{\mu,x};x\right)
12(flogμ)′′(eμx)K~n(expμ,x2;x).\displaystyle\text{\ }-\frac{1}{2}\left(f\circ\log_{\mu}\right)^{{}^{\prime\prime}}\left(e^{\mu x}\right)\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)\text{.}

Since

(flogμ)(eμx)=eμxμf(x)\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x}\right)=\frac{e^{-\mu x}}{\mu}f^{{}^{\prime}}\left(x\right)

and

(flogμ)′′(eμx)=e2μx(1μ2f′′(x)1μf(x)),\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x}\right)=e^{-2\mu x}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right),

we can write

K~n(R(f,x;t);x)\displaystyle\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right) =K~n(f;x)f(x)K~n(e0;x)eμxμf(x)K~n(expμ,x;x)\displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)\widetilde{K}_{n}\left(e_{0};x\right)-\frac{e^{-\mu x}}{\mu}f^{{}^{\prime}}\left(x\right)\widetilde{K}_{n}\left(\exp_{\mu,x};x\right)
e2μx2(1μ2f′′(x)1μf(x))K~n(expμ,x2;x).\displaystyle-\frac{e^{-2\mu x}}{2}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right).

It can be rearranged as

K~n(R(f,x;t);x)=\displaystyle\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)=
=K~n(f;x)f(x)f(x)(K~n(e0;x)1)\displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-f\left(x\right)\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
1μf(x)[eμx(K~n(expμ;x)eμx)(K~n(e0;x)1)]\displaystyle\quad-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\left[e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\right]
12(1μ2f′′(x)1μf(x))[((K~n(e0;x)1)2eμx(K~n(expμ;x)eμx))]\displaystyle\quad-\frac{1}{2}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)\left[\left(\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)-2e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\right)\right]
=K~n(f;x)f(x)(K~n(e0;x)1)[f(x)+12(1μ2f′′(x)1μf(x))1μf(x)]\displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\left[f\left(x\right)+\frac{1}{2}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right]
eμx(K~n(expμ;x)eμx)[1μf(x)(1μ2f′′(x)1μf(x))]\displaystyle\quad-e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\left[\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)-\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)\right]
=K~n(f;x)f(x)(K~n(e0;x)1)12μ2[f′′(x)3μf(x)+2μ2f(x)]\displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\frac{1}{2\mu^{2}}\left[f^{{}^{\prime\prime}}\left(x\right)-3\mu f^{{}^{\prime}}\left(x\right)+2\mu^{2}f\left(x\right)\right]
eμx(K~n(expμ;x)eμx)1μ2[2μf(x)f′′(x)].\displaystyle\quad-e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\frac{1}{\mu^{2}}\left[2\mu f^{{}^{\prime}}\left(x\right)-f^{{}^{\prime\prime}}\left(x\right)\right].

On the other hand, from Lemma 5 we have

|K~n(R(f,x;t);x)|K~n(12expμ,x2(t)ω~((flogμ)′′;13|expμ,x(t)|);x).\left|\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)\right|\leq\widetilde{K}_{n}\left(\frac{1}{2}\exp_{\mu,x}^{2}\left(t\right)\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\left|\exp_{\mu,x}\left(t\right)\right|\right);x\right).

For arbitrary gC3[0,1],g\in C^{3}\left[0,1\right], we get

|K~n(R(f,x;t);x)|=\displaystyle\left|\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)\right|=
=K~n(expμ,x2(t)K((flogμ)′′;16|expμ,x(t)|,C,C1);x)\displaystyle=\widetilde{K}_{n}\left(\exp_{\mu,x}^{2}\left(t\right)K\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{6}\left|\exp_{\mu,x}\left(t\right)\right|,C,C^{1}\right);x\right)
K~n(expμ,x2(t){(flogμ)′′(glogμ)′′+|expμ,x(t)|6(glogμ)′′′};x)\displaystyle\leq\widetilde{K}_{n}\left(\exp_{\mu,x}^{2}\left(t\right)\left\{\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}+\frac{\left|\exp_{\mu,x}\left(t\right)\right|}{6}\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}\right\};x\right)
=K~n(expμ,x2;x)(flogμ)′′(glogμ)′′+16K~n(|expμ,x3|;x)(glogμ)′′′\displaystyle=\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}+\frac{1}{6}\widetilde{K}_{n}\left(\left|\exp_{\mu,x}^{3}\right|;x\right)\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}
K~n(expμ,x4;x)K~n(e0;x){(flogμ)′′(glogμ)′′\displaystyle\leq\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}\left\{\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}\right.
+16K~n(expμ,x2;x)K~n(e0;x)(glogμ)′′′}.\displaystyle\quad+\frac{1}{6}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}}\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}\Bigg\}.

Passing to the infimum over gC3[0,1]g\in C^{3}\left[0,1\right] again, we get

|K~n(R(f,x;t);x)|\displaystyle\left|\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)\right|\leq
K~n(expμ,x4;x)K~n(e0;x)K((flogμ)′′;16K~n(expμ,x2;x)K~n(e0;x),C,C1)\displaystyle\leq\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}K\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{6}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}},C,C^{1}\right)
=12K~n(expμ,x4;x)K~n(e0;x)ω~((flogμ)′′;13K~n(expμ,x2;x)K~n(e0;x)).\displaystyle=\frac{1}{2}\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}}\right).

Using (17), (18), (21) and (19) in Theorem 4.1, respectively, and considering

limnK~n(expμ,x2;x)K~n(e0;x)=0\lim_{n\rightarrow\infty}\frac{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}{\widetilde{K}_{n}\left(e_{0};x\right)}=0

we have:

Corollary 1

If fC2[0,1]f\in C^{2}\left[0,1\right] and x[0,1],x\in\left[0,1\right], then

limn2nμ2(K~n(f;x)f(x))=\displaystyle\lim_{n\rightarrow\infty}2n\mu^{2}\left(\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)\right)=
=(μ(μx1)μx(μx2))[f′′(x)3μf(x)+2μ2f(x)]\displaystyle=\left(\mu\left(\mu x-1\right)-\mu x\left(\mu x-2\right)\right)\left[f^{{}^{\prime\prime}}\left(x\right)-3\mu f^{{}^{\prime}}\left(x\right)+2\mu^{2}f\left(x\right)\right]
+μ(2x1)[2μf(x)f′′(x)].\displaystyle\quad+\mu\left(2x-1\right)\left[2\mu f^{{}^{\prime}}\left(x\right)-f^{{}^{\prime\prime}}\left(x\right)\right].

5 Convergence in Lp,μ[0,1]L_{p,\mu}\left[0,1\right] and Lp[0,1]L_{p}\left[0,1\right]

Let 1p<1\leq p<\infty be fixed and Lp,μ[0,1]L_{p,\mu}\left[0,1\right] be the space of all functions for which expμf\exp_{\mu}f is Lebesgue integrable with the pp-power over [0,1].\left[0,1\right]. The norm in Lp,μ[0,1]L_{p,\mu}\left[0,1\right] is defined as

fp,μ:=(01|eμxf(x)|p𝑑x)1/p.\left\|f\right\|_{p,\mu}:=\left(\int_{0}^{1}\left|e^{-\mu x}f\left(x\right)\right|^{p}dx\right)^{1/p}.

The norm of a linear operator LnL_{n} acting from the space Lp,μL_{p,\mu} to Lp,μL_{p,\mu} given by

LnLp,μ,Lp,μ:=supfp,μ0Lnfp,μfp,μ.\left\|L_{n}\right\|_{L_{p,\mu},L_{p,\mu}}:=\underset{\left\|f\right\|_{p,\mu}\neq 0}{\sup}\frac{\left\|L_{n}f\right\|_{p,\mu}}{\left\|f\right\|_{p,\mu}}.

Also, K~n\widetilde{K}_{n} maps the space L1,μ[0,1]L_{1,\mu}\left[0,1\right] into the space C[0,1].C\left[0,1\right].

Lemma 6

For fLp,μ[0,1],f\in L_{p,\mu}\left[0,1\right], we haveK~n(f)Lp,μ[0,1]\mathcal{\ }\widetilde{K}_{n}\left(f\right)\in L_{p,\mu}\left[0,1\right] and for all n,n\in\mathbb{N}, K~nLp,μ,Lp,μeμ(p1)p.\left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}\leq e^{\mu\frac{\left(p-1\right)}{p}}.

Proof

Applying the Jensen’s inequality to the measure (n+1)dt(n+1)dt, we get

|K~n(f;x)|p\displaystyle\left|\widetilde{K}_{n}\left(f;x\right)\right|^{p} (k=0npn,k(an+1(x))an+1(x)(n+1)eμxkn+1k+1n+1eμt|f(t)|𝑑t)p\displaystyle\leq\left(\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\left|f\left(t\right)\right|dt\right)^{p}
k=0npn,k(an+1(x))(an+1(x)(n+1)eμxkn+1k+1n+1eμt|f(t)|𝑑t)p\displaystyle\leq\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\left(a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\left|f\left(t\right)\right|dt\right)^{p}
maxx[0,1](an+1(x))p1k=0npn,k(an+1(x))an+1(x)eμpx(n+1)\displaystyle\leq\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu px}\left(n+1\right)
kn+1k+1n+1eμpt|f(t)|pdt.\displaystyle\quad\cdot\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt. (35)

If we take the integral on the interval [0,1]\left[0,1\right], we obtain

01|eμxK~n(f;x)|p𝑑x\displaystyle\int_{0}^{1}\left|e^{-\mu x}\widetilde{K}_{n}\left(f;x\right)\right|^{p}dx
maxx[0,1](an+1(x))p1k=0n01pn,k(an+1(x))an+1(x)dx\displaystyle\leq\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}\int_{0}^{1}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)dx
[(n+1)kn+1k+1n+1eμpt|f(t)|p𝑑t]\displaystyle\quad\cdot\left[\left(n+1\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt\right]
=maxx[0,1](an+1(x))p1k=0nkn+1k+1n+1eμpt|f(t)|pdt\displaystyle=\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt
=maxx[0,1](an+1(x))p101eμpt|f(t)|pdt.\displaystyle=\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\int_{0}^{1}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt.

Since

maxx[0,1](an+1(x))=μn+1eμ/(n+1)eμ/(n+1)1,\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1},

using the inequality ueu1,u\leq e^{u}-1, u>0,u>0, we have

maxx[0,1](an+1(x))\displaystyle\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right) =μn+1eμ/(n+1)eμ/(n+1)1μn+1(eμ/(n+1)μ/(n+1))\displaystyle=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}\leq\frac{\mu}{n+1}\left(\frac{e^{\mu/\left(n+1\right)}}{\mu/\left(n+1\right)}\right)
eμ/(n+1).\displaystyle\leq e^{\mu/\left(n+1\right)}. (36)

Consequently we get

K~n(f)p,μeμn+1(p1)pfp,μ.\left\|\widetilde{K}_{n}\left(f\right)\right\|_{p,\mu}\leq e^{\frac{\mu}{n+1}\frac{\left(p-1\right)}{p}}\left\|f\right\|_{p,\mu}.

In view of this inequality, for all nn\in\mathbb{N} we can write

K~nLp,μ,Lp,μeμ(p1)p.\left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}\leq e^{\mu\frac{\left(p-1\right)}{p}}.
Theorem 5.1

Let fLp,μ[0,1]f\in L_{p,\mu}\left[0,1\right] for 1p<.1\leq p<\infty. Then we have

limnK~n(f)fp,μ=0.\lim_{n\rightarrow\infty}\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p,\mu}=0.
Proof

From the Luzin theorem for a given ε>0\varepsilon>0, there exists gC[0,1]g\in C[0,1] such that

fgp,μ<ε.\left\|f-g\right\|_{p,\mu}<\varepsilon.

On the other hand, since K~ng\widetilde{K}_{n}g converges to gg uniformly on [0,1],\left[0,1\right], there exists an n0Nn_{0}\in N such that, for nn0n\geq n_{0}

K~n(g)g<ε.\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{\infty}<\varepsilon.

In view of the above inequalities

K~n(f)fp,μ\displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p,\mu} K~n(f)K~n(g)p,μ+K~n(g)g+fgp,μ\displaystyle\leq\left\|\widetilde{K}_{n}\left(f\right)-\widetilde{K}_{n}\left(g\right)\right\|_{p,\mu}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{\infty}+\left\|f-g\right\|_{p,\mu}
(K~nLp,μ,Lp,μ+1)fgp,μ+K~n(g)g\displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}+1\right)\left\|f-g\right\|_{p,\mu}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{\infty}
(K~nLp,μ,Lp,μ+2)ε.\displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}+2\right)\varepsilon.

for nn0.n\geq n_{0}. Thus, we have the desired result.

Now we want to give a quantitative approximation theorem for (8) in the space Lp[0,1].L_{p}\left[0,1\right]. To describe our results we will use the following integral modulus of continuity defined by

ω(f;t)Lp=sup0h<tf(+h)f()Lp[0,1].\omega\left(f;t\right)_{L_{p}}=\sup_{0\leq h<t}\left\|f\left(\cdot+h\right)-f\left(\cdot\right)\right\|_{L_{p}\left[0,1\right].}

Lp\left\|\cdot\right\|_{L_{p}} denotes the usual LpL_{p} norm and the corresponding KK-functionals is defined by

Kp(f;t):=infgAC[0,1],gLp{fgLp+tgLp},K_{p}\left(f;t\right):=\inf_{g\in AC\left[0,1\right],g^{{}^{\prime}}\in L_{p}}\left\{\left\|f-g\right\|_{L_{p}}+t\left\|g^{{}^{\prime}}\right\|_{L_{p}}\right\},

where AC[0,1]AC\left[0,1\right] indicates the set of all absolute continuous functions on the interval [0,1]\left[0,1\right]. We know that Kp(f;t)K_{p}\left(f;t\right) and ω(f;t)Lp\omega\left(f;t\right)_{L_{p}} are equivalent (see (Devore, , Theorem 2.1)), i.e., there is a constant CC such that

C1ω(f;t)LpKp(f;t)Cω(f;t)Lp.C^{-1}\omega\left(f;t\right)_{L_{p}}\leq K_{p}\left(f;t\right)\leq C\omega\left(f;t\right)_{L_{p}}. (37)

For given fLp[0,1]f\in L_{p}\left[0,1\right], the Hardy-Littlewood maximum function is defined by

M(f;x)=sup0t1tx1txxt|f(u)|𝑑u.M\left(f;x\right)=\underset{t\neq x}{\sup_{0\leq t\leq 1}}\frac{1}{t-x}\int_{x}^{t}\left|f\left(u\right)\right|du. (38)

It is well known that (see Stein )

M(f)LpCpfLp.\left\|M\left(f\right)\right\|_{L_{p}}\leq C_{p}\left\|f\right\|_{L_{p}}. (39)

Also, as in (35), considering (36) we can write

|K~n(f;x)|p\displaystyle\left|\widetilde{K}_{n}\left(f;x\right)\right|^{p} maxx[0,1](an+1(x))p1k=0npn,k(an+1(x))an+1(x)eμpx(n+1)\displaystyle\leq\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu px}\left(n+1\right)
kn+1k+1n+1eμpt|f(t)|pdt\displaystyle\quad\cdot\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt
eμpeμn+1(p1)k=0npn,k(an+1(x))an+1(x)(n+1)kn+1k+1n+1|f(t)|p𝑑t.\displaystyle\leq e^{\mu p}e^{\frac{\mu}{n+1}\left(p-1\right)}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|f\left(t\right)\right|^{p}dt.

Integrating, we have

01|K~n(f;x)|p𝑑x\displaystyle\int_{0}^{1}\left|\widetilde{K}_{n}\left(f;x\right)\right|^{p}dx eμpeμn+1(p1)k=0n((n+1)01pn,k(an+1(x))an+1(x)𝑑x)\displaystyle\leq e^{\mu p}e^{\frac{\mu}{n+1}\left(p-1\right)}\sum\limits_{k=0}^{n}\left(\left(n+1\right)\int_{0}^{1}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)dx\right)
kn+1k+1n+1|f(t)|pdt\displaystyle\quad\cdot\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|f\left(t\right)\right|^{p}dt
eμpeμn+1(p1)k=0nkn+1k+1n+1|f(t)|p𝑑t\displaystyle\leq e^{\mu p}e^{\frac{\mu}{n+1}\left(p-1\right)}\sum\limits_{k=0}^{n}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|f\left(t\right)\right|^{p}dt

and

K~n(f)peμeμn+1(p1)pfp.\left\|\widetilde{K}_{n}\left(f\right)\right\|_{p}\leq e^{\mu}e^{\frac{\mu}{n+1}\frac{\left(p-1\right)}{p}}\left\|f\right\|_{p}.

Consequently, for all nn\in\mathbb{N} we can write

K~nLp,Lpeμeμ(p1)p.\left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}\leq e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}. (40)
Lemma 7

Let gAC[0,1]g\in AC[0,1] and gLp[0,1],g^{{}^{\prime}}\in L_{p}[0,1], p>1.p>1. Then we have

K~n(g)gpαn,μgp+μ1(βn,μ)1/2eμ2(2+1n+1)Cpgp.\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}\leq\alpha_{n,\mu}\left\|g\right\|_{p}+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}.

where αn,μ\alpha_{n,\mu}, βn,μ\beta_{n,\mu} are defined as in Lemma 4 and CpC_{p} is defined in (39).

Proof

Using the equality g(t)=g(x)+xtg(u)𝑑u,g\left(t\right)=g\left(x\right)+\int_{x}^{t}g^{{}^{\prime}}\left(u\right)du, we can write

K~n(g;x)g(x)+g(x)g(x)K~n(e0;x)=\displaystyle\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)+g\left(x\right)-g\left(x\right)\widetilde{K}_{n}\left(e_{0};x\right)=
=an+1(x)(n+1)eμxk=0npn,k(an+1(x))kn+1k+1n+1eμt(g(t)g(x))𝑑t\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\left(g\left(t\right)-g\left(x\right)\right)dt
=an+1(x)(n+1)eμxk=0npn,k(an+1(x))kn+1k+1n+1eμtxtg(u)𝑑u𝑑t.\displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\int_{x}^{t}g^{{}^{\prime}}\left(u\right)dudt.

Hence

|K~n(g;x)g(x)|\displaystyle\left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq
maxx[0,1]|K~n(e0;x)1||g(x)|\displaystyle\leq\max_{x\in\left[0,1\right]}\left|\widetilde{K}_{n}\left(e_{0};x\right)-1\right|\left|g\left(x\right)\right|
+M(g;x)an+1(x)(n+1)eμxk=0npn,k(an+1(x))kn+1k+1n+1|tx|𝑑t,\displaystyle\quad+M\left(g^{{}^{\prime}};x\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|t-x\right|dt,

where

M(g;x)=sup0t1xt1txxt|g(u)|𝑑uM\left(g^{{}^{\prime}};x\right)=\underset{x\neq t}{\sup_{0\leq t\leq 1}}\frac{1}{t-x}\int_{x}^{t}\left|g^{{}^{\prime}}\left(u\right)\right|du

is defined as in (38). By Lagrange’s theorem for x(0,1)x\in\left(0,1\right) and t[0,1],t\in\left[0,1\right], we get

μ|tx||expμ,x(t)|.\mu\left|t-x\right|\leq\left|\exp_{\mu,x}\left(t\right)\right|.

Considering (22) and using the above inequality with Cauchy-Schwarz inequality, we get

|K~n(g;x)g(x)|\displaystyle\left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq
αn,μ|g(x)|+μ1M(g;x)(an+1(x)(n+1)eμxk=0npn,k(an+1(x))kn+1k+1n+1𝑑t)1/2\displaystyle\leq\alpha_{n,\mu}\left|g\left(x\right)\right|+\mu^{-1}M\left(g^{{}^{\prime}};x\right)\left(a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}dt\right)^{1/2}
×(an+1(x)eμx(n+1)k=0npn,k(an+1(x))kn+1k+1n+1expμ,x2(t)𝑑t)1/2\displaystyle\quad\times\left(a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\exp_{\mu,x}^{2}\left(t\right)dt\right)^{1/2}
αn,μ|g(x)|\displaystyle\leq\alpha_{n,\mu}\left|g\left(x\right)\right|
+μ1M(g;x)(an+1(x)eμxk=0npn,k(an+1(x)))1/2\displaystyle\quad+\mu^{-1}M\left(g^{{}^{\prime}};x\right)\left(a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\right)^{1/2}
×(an+1(x)eμx(n+1)k=0npn,k(an+1(x))kn+1k+1n+1expμ,x2(t)𝑑t)1/2.\displaystyle\times\left(a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\exp_{\mu,x}^{2}\left(t\right)dt\right)^{1/2}.

Using (36) we have

|K~n(g;x)g(x)|αn,μ|g(x)|+μ1M(g;x)eμ2(2+1n+1)(K~n(expμ,x2(t);x))1/2.\left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq\alpha_{n,\mu}\left|g\left(x\right)\right|+\mu^{-1}M\left(g^{{}^{\prime}};x\right)e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}\left(\widetilde{K}_{n}\left(\exp_{\mu,x}^{2}\left(t\right);x\right)\right)^{1/2}.

From (24) we can write

|K~n(g;x)g(x)|αn,μ|g(x)|+μ1M(g;x)eμ2(2+1n+1)(βn,μ)1/2.\left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq\alpha_{n,\mu}\left|g\left(x\right)\right|+\mu^{-1}M\left(g^{{}^{\prime}};x\right)e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}\left(\beta_{n,\mu}\right)^{1/2}.

Considering (39), we get

K~n(g)gpαn,μgp+μ1(βn,μ)1/2eμ2(2+1n+1)Cpgp.\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}\leq\alpha_{n,\mu}\left\|g\right\|_{p}+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}.
Theorem 5.2

Let fLp[0,1],f\in L_{p}\left[0,1\right], p>1.p>1. Then we have

K~n(f)fpαn,μfp+CKω(f;(βn,μ)1/2)Lp,\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p}\leq\alpha_{n,\mu}\left\|f\right\|_{p}+CK\omega\left(f;\left(\beta_{n,\mu}\right)^{1/2}\right)_{L_{p}},

where K:=max{eμeμ(p1)p+αn,μ+1,μ1eμ2(2+1n+1)Cp}.K:=\max\left\{e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}+\alpha_{n,\mu}+1,\mu^{-1}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\right\}.

Proof

For gAC[0,1],gLpg\in AC\left[0,1\right],\ g^{\prime}\in L_{p}, we can write

K~n(f)fp\displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p} =K~n(fg+g)fp\displaystyle=\left\|\widetilde{K}_{n}\left(f-g+g\right)-f\right\|_{p}
K~n(fg)(fg)+(K~n(g)g)p\displaystyle\leq\left\|\widetilde{K}_{n}\left(f-g\right)-\left(f-g\right)+\left(\widetilde{K}_{n}\left(g\right)-g\right)\right\|_{p}
K~n(fg)p+fgp+K~n(g)gp\displaystyle\leq\left\|\widetilde{K}_{n}\left(f-g\right)\right\|_{p}+\left\|f-g\right\|_{p}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}
(K~nLp,Lp+1)fgp+K~n(g)gp\displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}+1\right)\left\|f-g\right\|_{p}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}

Using the fact that K~nLp,Lpeμeμ(p1)p\left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}\leq e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}} (see (40)) and Lemma 7, we get

K~n(f)fp\displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p}\leq
(K~nLp,Lp+1)fgp+αn,μgp+μ1(βn,μ)1/2eμ2(2+1n+1)Cpgp\displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}+1\right)\left\|f-g\right\|_{p}+\alpha_{n,\mu}\left\|g\right\|_{p}+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}
(eμeμ(p1)p+1)fgp+αn,μfgp+αn,μfp+\displaystyle\leq\left(e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}+1\right)\left\|f-g\right\|_{p}+\alpha_{n,\mu}\left\|f-g\right\|_{p}+\alpha_{n,\mu}\left\|f\right\|_{p}+
+μ1(βn,μ)1/2eμ2(2+1n+1)Cpgp.\displaystyle\quad+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}.

Define max{eμeμ(p1)p+αn,μ+1,μ1eμ2(2+1n+1)Cp}:=K\max\left\{e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}+\alpha_{n,\mu}+1,\mu^{-1}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\right\}:=K, we have (see (5.3))

K~n(f)fp\displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p} αn,μfp+K(fgp+(βn,μ)1/2gp)\displaystyle\leq\alpha_{n,\mu}\left\|f\right\|_{p}+K\left(\left\|f-g\right\|_{p}+\left(\beta_{n,\mu}\right)^{1/2}\left\|g^{{}^{\prime}}\right\|_{p}\right)
αn,μfp+CKω(f;(βn,μ)1/2)Lp.\displaystyle\leq\alpha_{n,\mu}\left\|f\right\|_{p}+CK\omega\left(f;\left(\beta_{n,\mu}\right)^{1/2}\right)_{L_{p}}.
Remark 2

The sequences βn,μ\beta_{n,\mu} and αn,μ\alpha_{n,\mu} in Theorem 5.2 satisfy βn,μ=𝒪(1n)\beta_{n,\mu}={\cal{O}}(\tfrac{1}{n}) and αn,μ=𝒪(1n)\alpha_{n,\mu}={\cal{O}}(\tfrac{1}{n}) as nn\rightarrow\infty.

Acknowledgements.
We are grateful to the referee for very helpful comments and suggestions.

References

  • (1) T. Acar, A. Aral, S. A. Mohiuddine, Approximation By Bivariate(p; q)-Bernstein-Kantorovichoperators, Iranian Journal of Science and Technology, Transactions A: Science, 1–8, (2016)
  • (2) F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin-New York, 1994.
  • (3) F. Altomare V. Leonessa, On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. J. Math. 3, 363–382, (2006)
  • (4) F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal. 11, no. 3, 591–614, (2017).
  • (5) F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl. 458, No. 1, 153–173, (2018).
  • (6) A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
  • (7) A. Aral, D. Cárdenas-Morales and P. Garrancho, Bernstein-type operators that reproduce exponential functions, J. Math. Inequal. (Accepted.)
  • (8) R. A. Devore, “Degree of approximation,” in ApproximationTheory II, pp. 117–161, Academic Press, New York, NY, USA, 1976.
  • (9) Z. Ditzian and X. Zhou, Kantorovich-Bernstein polynomials. Constr. Approx. 6, 421–435, (1990).
  • (10) H. Gonska, P. Piţul, and I. Raşa On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. In Proceedings of the International Conference on Numerical Analysis and Approximation Theory. Cluj Napoca, Romania, July 5–8, pp. 55–80, (2006).
  • (11) K. G. Ivanov, Approximation by Bernstein polynomials in LpL_{p} metric. Constructive Function Theory ’84, Sofia, 421–429, (1984)
  • (12) L. V. Kantorovich, Sur certains d’eveloppements suivant les polynmes de la forme de S. Bernstein, I, II. C. R. Acad. URSS, 563-568 and 595–600, (1930).
  • (13) G.G. Lorentz, Approximation of functions, Chelsea Publ. Co., New York, 1986.
  • (14) S. Morigi and M. Neamtu, Some results for a class of generalized polynomials, Adv.Comput. Math. 12, 133–149, (2000).
  • (15) J. Peetre, A theory of interpolation of normed spaces, Lecture Notes, Brasilia, 1963 (Notas de Matematica, 39, (1968).
  • (16) R. Păltănea, A note on Bernstein Kantorovich operators, Bull. Univ. Transilvania of Braşov, Series III, Vol 6(55), No. 2, 27–32, (2013).
  • (17) P. C. Sikkema, Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math. 3, 107–116, (1961).
  • (18) E. M. Stein, Singular Integrals, Princeton, New Jersey, NJ, USA, 1970.
  • (19) A. Zygmund, Trigonometric Series I, II. Cambridge University Press, Cambridge, UK, (1959).
2019

Related Posts