Abstract Report issue for preceding element
Since the introduction of Bernstein operators, many authors defined and/or
studied Bernstein type operators and their generalizations, among them are
Morigi and Neamtu in 2000. They proposed an analog of classical Bernstein operator and
proved some convergence results for continuous functions. Herein, we introduce
their integral extensions in Kantorovich sense by replacing the usual
differential and integral operators with their more general analogs. By means
of these operators, we are able to reconstruct the functions which are not
necessarily continuous. It is shown that the operators form an approximation
process in both C ​ [ 0 , 1 ] C\left[0,1\right] and L p , μ ​ [ 0 , 1 ] L_{p,\mu}\left[0,1\right] ,
which is an exponentially weighted space. Also, quantitative results are
stated in terms of appropriate moduli of smoothness and K K -functionals.
Furthermore, a quantitative Voronovskaya type result is presented.
Report issue for preceding element
1 Introduction Report issue for preceding element
The classical Bernstein operators associate the polynomial B n ​ f B_{n}f to any
function f ∈ C ​ [ 0 , 1 ] f\in C[0,1] and the association is defined by
Report issue for preceding element
B n ​ ( f ) ​ ( x ) = ∑ k = 0 n f ​ ( k n ) ​ p n , k ​ ( x ) , n ∈ ℕ , B_{n}\left(f\right)\left(x\right)=\sum\limits_{k=0}^{n}f\left(\frac{k}{n}\right)p_{n,k}\left(x\right),\ n\in\mathbb{N},
(1)
where
Report issue for preceding element
p n , k ​ ( x ) = ( n k ) ​ x k ​ ( 1 − x ) n − k . p_{n,k}(x)={n\choose k}x^{k}(1-x)^{n-k}.
In fact, it defines a linear approximation process in the space of all
continuous functions on [ 0 , 1 ] . \left[0,1\right].
To obtain an approximation process for Lebesgue integrable functions, the
Kantorovich version of (1 ) was defined in Kantorovich
by replacing the sample values f ​ ( k / n ) f(k/n) with the mean values of f f in the
interval [ k n , k + 1 n ] \left[\frac{k}{n},\frac{k+1}{n}\right] , that is
Report issue for preceding element
K n ​ ( f ) ​ ( x ) = ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( x ) ​ ∫ k n + 1 k + 1 n + 1 f ​ ( t ) ​ 𝑑 t , x ∈ [ 0 , 1 ] , n ∈ ℕ , K_{n}\left(f\right)\left(x\right)=\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(x\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}f\left(t\right)dt,x\in\left[0,1\right],\ n\in\mathbb{N},
where f : [ 0 , 1 ] → ℝ f:\left[0,1\right]\rightarrow\mathbb{R} is a locally integrable function. We note that B n B_{n} and K n K_{n} are
connected by the relation
Report issue for preceding element
K n = D ∘ B n + 1 ∘ I , K_{n}=D\circ B_{n+1}\circ I,
(2)
where D D is the differentiation operator (i.e. D ​ ( f ) = f ′ D\left(f\right)=f^{{}^{\prime}} , f ∈ C 1 ​ [ 0 , 1 ] f\in C^{1}\left[0,1\right] ) and I I is the
antiderivative operator (i.e. I ​ ( f ; x ) = ∫ 0 x f ​ ( t ) ​ 𝑑 t , I\left(f;x\right)=\int_{0}^{x}f\left(t\right)dt, f ∈ C ​ [ 0 , 1 ] f\in C\left[0,1\right] ) and x ∈ [ 0 , 1 ] x\in\left[0,1\right] .
These operators allow us to reconstruct a Lebesgue integrable function by
means of its mean values on the sets [ k n , k + 1 n ] \left[\frac{k}{n},\frac{k+1}{n}\right] . It is well known that Bernstein operators reproduce
e i ​ ( x ) = x i , e_{i}\left(x\right)=x^{i}, i = 0 , 1 i=0,1 whereas Bernstein-Kantorovich
operators reproduce only e 0 ​ ( x ) = 1 . e_{0}\left(x\right)=1.
Report issue for preceding element
Recently, Aral et al. Ar-Card-Gar studied a sequence of linear positive
operators which generalize the classical Bernstein operators and perform
better than B n B_{n} under sufficient conditions. These operators reproduce the
exponential functions exp ( μ ​ t ) \exp(\mu t) and exp ( 2 ​ μ ​ t ) \exp(2\mu t) , μ > 0 , \mu>0, and are
defined by
Report issue for preceding element
G n ​ f ​ ( x ) = G n ​ ( f ; x ) = ∑ k = 0 n f ​ ( k n ) ​ e − μ ​ k / n ​ e μ ​ x ​ p n , k ​ ( a n ​ ( x ) ) , x ∈ [ 0 , 1 ] , n ∈ ℕ , G_{n}f\left(x\right)=G_{n}\left(f;x\right)=\sum\limits_{k=0}^{n}f\left(\frac{k}{n}\right)e^{-\mu k/n}e^{\mu x}p_{n,k}\left(a_{n}\left(x\right)\right),x\in\left[0,1\right],n\in\mathbb{N},
where
Report issue for preceding element
a n ​ ( x ) = e μ ​ x / n − 1 e μ / n − 1 . a_{n}\left(x\right)=\frac{e^{\mu x/n}-1}{e^{\mu/n}-1}.
(3)
They have close connection with the Bernstein operators that is given by
Report issue for preceding element
G n ​ f ​ ( x ) = exp μ ( x ) ​ B n ​ ( f exp μ ; a n ​ ( x ) ) , G_{n}f\left(x\right)=\exp_{\mu}\left(x\right)B_{n}\left(\frac{f}{\exp_{\mu}};a_{n}\left(x\right)\right),
(4)
where for a fixed real parameter μ > 0 \mu>0 , the exponential function is defined
as exp μ ( x ) = e μ ​ x \exp_{\mu}\left(x\right)=e^{\mu x} . We note that the generalization
is a special case of the modification introduced by Morigi and Neamtu in
Morigi-Nematu .
Report issue for preceding element
In order to give the generalization of the operators K n ​ ( f ) K_{n}\left(f\right) ,
in Radu2 Păltănea considered the operators D μ : C 1 ​ [ 0 , 1 ] → C ​ [ 0 , 1 ] D_{\mu}:C^{1}\left[0,1\right]\rightarrow C\left[0,1\right] and I μ : C ​ [ 0 , 1 ] → C 1 ​ [ 0 , 1 ] I_{\mu}:C\left[0,1\right]\rightarrow C^{1}\left[0,1\right] , and defined the
operators K n μ K_{n}^{\mu} as
Report issue for preceding element
K n μ = D μ ∘ B n + 1 ∘ I μ , K_{n}^{\mu}=D_{\mu}\circ B_{n+1}\circ I_{\mu},
(5)
where
Report issue for preceding element
I μ ​ ( f , x ) = e μ ​ x ​ ∫ 0 x e − μ ​ t ​ f ​ ( t ) ​ 𝑑 t , f ∈ C ​ [ 0 , 1 ] ​ and ​ x ∈ [ 0 , 1 ] , I_{\mu}\left(f,x\right)=e^{\mu x}\int_{0}^{x}e^{-\mu t}f\left(t\right)dt,f\in C\left[0,1\right]\mbox{and}\ x\in\left[0,1\right],
(6)
D μ ​ ( f , x ) = f ′ ​ ( x ) − μ ​ f ​ ( x ) , f ∈ C 1 ​ [ 0 , 1 ] ​ and ​ x ∈ [ 0 , 1 ] . D_{\mu}\left(f,x\right)=f^{{}^{\prime}}\left(x\right)-\mu f\left(x\right),f\in C^{1}\left[0,1\right]\mbox{and}\ x\in\left[0,1\right].
(7)
Using the technique given in Radu2 with the operators in (5 ), we
aim to construct a generalization of the operator G n G_{n} and call it as
generalized Bernstein Kantorovich operator. The construction is described in
Section 2. Moreover, certain elementary properties including exponential
moments are given in the same section. As we will see in Lemma
2 below, these operators reproduce only the function
exp ( 2 ​ μ ​ t ) \exp\left(2\mu t\right) , μ > 0 . \mu>0. In the same section, we also show that the new operator can be defined
with the help of classical Bernstein operator and Bernstein-Kantorovich
operator. In Section 3, it is shown that these operators form an approximation
process in C ​ [ 0 , 1 ] C\left[0,1\right] by obtaining uniform convergence of them
and an estimate in terms of modulus of continuity. In Section 4, a
quantitative Voronovskaya type result is presented. In Section 5, we show that
the new operators converge to the function in L p , μ L_{p,\mu} -norm. Furthermore,
the approximation error of the operators is expressed in terms of an
appropriate integral modulus of continuity.
Report issue for preceding element
The obtained results show that our technique is more convenient in order to
introduce a Kantorovich version of G n . G_{n}.
Report issue for preceding element
We mention that Kantorovich type operators have been object of the
investigation by several mathematicians. Altomare et al. in Altomare-Va
introduced a unitary approach to the study of the approximation properties for
a large class of Kantorovich type operators including the classical
Bernstein-Kantorovich operators and their various generalizations. Also, more
results related to the mentioned operators can be found in Altomare2
and Altomare 3 . Various results on Kantorovich-type operators were
given in Zhou and Ivanov . It is worth mentioning that
Kantorovich type operators in classical sense were considered in the
aforementioned more general framework, as well as in the context of the
q q -operators and ( p , q ) \left(p,q\right) -operators, a very active area of
research (see Aral-Gupta , tuncer- aral and the references therein).
Report issue for preceding element
2 Preliminaries Report issue for preceding element
Throughout this section, we introduce a new family of operators and present
some elementary properties.
Report issue for preceding element
Definition 1 Report issue for preceding element
Let μ > 0 \mu>0 . For any n ∈ ℕ n\in\mathbb{N} and x ∈ [ 0 , 1 ] x\in\left[0,1\right] consider the operator K ~ n : C ​ [ 0 , 1 ] → C ​ [ 0 , 1 ] \widetilde{K}_{n}:C\left[0,1\right]\rightarrow C\left[0,1\right] , defined by
Report issue for preceding element
K ~ n ​ f ​ ( x ) = a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ f ​ ( t ) ​ 𝑑 t , \widetilde{K}_{n}f\left(x\right)=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}f\left(t\right)dt,
(8)
where a n + 1 ​ ( x ) a_{n+1}\left(x\right) is given in (3 ).
Report issue for preceding element
To represent the operators in (8 ), we sometimes use the
notation K ~ n ​ ( f ; x ) \widetilde{K}_{n}\left(f;x\right) .
Report issue for preceding element
For a given f ∈ L 1 ​ [ 0 , 1 ] , f\in L_{1}\left[0,1\right], we define F μ ∈ C ​ [ 0 , 1 ] F_{\mu}\in C\left[0,1\right] as
Report issue for preceding element
F μ ​ ( x ) = ∫ 0 x e − μ ​ t ​ f ​ ( t ) ​ 𝑑 t . F_{\mu}\left(x\right)=\int_{0}^{x}e^{-\mu t}f\left(t\right)dt.
(9)
Then, we have
Report issue for preceding element
K ~ n ​ f ​ ( x ) = a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ [ F μ ​ ( k + 1 n + 1 ) − F μ ​ ( k n + 1 ) ] . \widetilde{K}_{n}f\left(x\right)=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\left[F_{\mu}\left(\frac{k+1}{n+1}\right)-F_{\mu}\left(\frac{k}{n+1}\right)\right].
Using the notation
Report issue for preceding element
δ n μ ​ ( F ) ​ ( x ) := F μ ​ ( n n + 1 ​ x + 1 n + 1 ) − F μ ​ ( n n + 1 ​ x ) \delta_{n}^{\mu}\left(F\right)\left(x\right):=F_{\mu}\left(\frac{n}{n+1}x+\frac{1}{n+1}\right)-F_{\mu}\left(\frac{n}{n+1}x\right)
(10)
the operators K ~ n \widetilde{K}_{n} can be represented as
Report issue for preceding element
K ~ n ​ f ​ ( x ) \displaystyle\widetilde{K}_{n}f\left(x\right)
= a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ exp μ ( x ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ δ n μ ​ ( F ) ​ ( k n ) \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)\exp_{\mu}\left(x\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\delta_{n}^{\mu}\left(F\right)\left(\frac{k}{n}\right)
= a n + 1 ′ ​ ( x ) ​ exp μ ( x ) ​ K n ​ ( exp μ − 1 ( ⋅ ) ​ f ​ ( ⋅ ) ; a n + 1 ​ ( x ) ) \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\exp_{\mu}\left(x\right)K_{n}\left(\exp_{\mu}^{-1}\left(\cdot\right)f\left(\cdot\right);a_{n+1}\left(x\right)\right)
= a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ exp μ ( x ) ​ B n ​ ( δ n μ ​ ( F ) ; a n + 1 ​ ( x ) ) , \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)\exp_{\mu}\left(x\right)B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(x\right)\right),
(11)
where B n B_{n} and K n K_{n} denote Bernstein and Bernstein-Kantorovich
operators, respectively. Note that K ~ n ​ f ​ ( x ) \widetilde{K}_{n}f(x) is an exponential polynomial, based on the representation of Bernstein polynomials.
Report issue for preceding element
When we compare with the definition of the operators in Radu2 , the
above relationships show that the approach which will be used below is more
convenient to apply to the generalized Bernstein operators G n , G_{n}, which
preserve exponential functions. As we can see in Radu2 , the operator
K n μ K_{n}^{\mu} preserves good properties of Kantorovich operator K n K_{n} . So
we can expect that K ~ n \widetilde{K}_{n} also can preserve good properties of
K n . K_{n}.
Report issue for preceding element
Our process depends on the following lemma from Radu2 .
Report issue for preceding element
Lemma 1 Report issue for preceding element
Let n ∈ ℕ n\in\mathbb{N} and x ∈ [ 0 , 1 ] x\in\left[0,1\right] . Then
Report issue for preceding element
a)
( D μ ∘ I μ ) ​ ( f ) ​ ( x ) = f ​ ( x ) \left(D_{\mu}\circ I_{\mu}\right)\left(f\right)\left(x\right)=f\left(x\right) , for all f ∈ C ​ [ 0 , 1 ] f\in C\left[0,1\right] ,
Report issue for preceding element
b)
( I μ ∘ D μ ) ​ ( f ) ​ ( x ) = f ​ ( x ) \left(I_{\mu}\circ D_{\mu}\right)\left(f\right)\left(x\right)=f\left(x\right) , for all f ∈ C 1 ​ [ 0 , 1 ] f\in C^{1}\left[0,1\right] ,
with f ​ ( 0 ) = 0 f\left(0\right)=0 .
Report issue for preceding element
Note that D μ D_{\mu} and I μ I_{\mu} in Lemma 1 are defined
as in (6 ) and (7 ), respectively.
Report issue for preceding element
Theorem 2.1 Report issue for preceding element
Let n ∈ ℕ n\in\mathbb{N} and x ∈ [ 0 , 1 ] x\in\left[0,1\right] . Then
Report issue for preceding element
K ~ n = D μ ∘ G n + 1 ∘ I μ . \widetilde{K}_{n}=D_{\mu}\circ G_{n+1}\circ I_{\mu}.
Proof Report issue for preceding element
Let f ∈ C ​ [ 0 , 1 ] f\in C\left[0,1\right] and x ∈ [ 0 , 1 ] . x\in\left[0,1\right]. With the help
of the relations in Lemma 1 and the representation given in
(4 ), we obtain
Report issue for preceding element
( D μ ∘ G n + 1 ∘ I μ ) ​ ( f ) ​ ( x ) \displaystyle\left(D_{\mu}\circ G_{n+1}\circ I_{\mu}\right)\left(f\right)\left(x\right)
= ( G n + 1 ​ ( I μ ​ ( f ) ; x ) ) ′ − μ ​ G n + 1 ​ ( I μ ​ ( f ) ; x ) \displaystyle=\left(G_{n+1}\left(I_{\mu}\left(f\right);x\right)\right)^{{}^{\prime}}-\mu G_{n+1}\left(I_{\mu}\left(f\right);x\right)
= ( exp μ ( x ) ​ B n + 1 ​ ( F μ ; a n + 1 ​ ( x ) ) ) ′ − μ ​ exp μ ( x ) ​ B n + 1 ​ ( F μ ; a n + 1 ​ ( x ) ) \displaystyle\hskip-56.9055pt=\left(\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right)\right)^{{}^{\prime}}-\mu\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right)
= μ ​ exp μ ( x ) ​ B n + 1 ​ ( F μ ; a n + 1 ​ ( x ) ) + exp μ ( x ) ​ B n + 1 ′ ​ ( F μ ; a n + 1 ​ ( x ) ) \displaystyle\hskip-56.9055pt=\mu\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right)+\exp_{\mu}\left(x\right)B_{n+1}^{{}^{\prime}}\left(F_{\mu};a_{n+1}\left(x\right)\right)
− μ ​ exp μ ( x ) ​ B n + 1 ​ ( F μ ; a n + 1 ​ ( x ) ) , \displaystyle-\mu\exp_{\mu}\left(x\right)B_{n+1}\left(F_{\mu};a_{n+1}\left(x\right)\right),
where F μ F_{\mu} defined as in (9 ). Using the fact that
Report issue for preceding element
( p n + 1 , k ​ ( a n + 1 ​ ( x ) ) ) ′ = ( n + 1 ) ​ a n + 1 ′ ​ ( x ) ​ ( p n , k − 1 ​ ( a n + 1 ​ ( x ) ) − p n , k ​ ( a n + 1 ​ ( x ) ) ) \left(p_{n+1,k}\left(a_{n+1}\left(x\right)\right)\right)^{{}^{\prime}}=\left(n+1\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(p_{n,k-1}\left(a_{n+1}\left(x\right)\right)-p_{n,k}\left(a_{n+1}\left(x\right)\right)\right)
we have
Report issue for preceding element
( D μ ∘ G n + 1 ∘ I μ ) ​ ( x ) \displaystyle\left(D_{\mu}\circ G_{n+1}\circ I_{\mu}\right)\left(x\right)
= e μ ​ x ​ ∑ k = 0 n + 1 ( p n + 1 , k ​ ( a n + 1 ​ ( x ) ) ) ′ ​ F μ ​ ( k n + 1 ) \displaystyle\hskip-71.13188pt=e^{\mu x}\sum\limits_{k=0}^{n+1}\left(p_{n+1,k}\left(a_{n+1}\left(x\right)\right)\right)^{{}^{\prime}}F_{\mu}\left(\frac{k}{n+1}\right)
= ( n + 1 ) ​ a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ∑ k = 0 n + 1 ( p n , k − 1 ​ ( a n + 1 ​ ( x ) ) − p n , k ​ ( a n + 1 ​ ( x ) ) ) ​ F μ ​ ( k n + 1 ) \displaystyle\hskip-71.13188pt=\left(n+1\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\sum\limits_{k=0}^{n+1}\left(p_{n,k-1}\left(a_{n+1}\left(x\right)\right)-p_{n,k}\left(a_{n+1}\left(x\right)\right)\right)F_{\mu}\left(\frac{k}{n+1}\right)
= ( n + 1 ) ​ a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ [ F μ ​ ( k + 1 n + 1 ) − F μ ​ ( k n + 1 ) ] \displaystyle\hskip-71.13188pt=\left(n+1\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\left[F_{\mu}\left(\frac{k+1}{n+1}\right)-F_{\mu}\left(\frac{k}{n+1}\right)\right]
= a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ f ​ ( t ) ​ 𝑑 t . \displaystyle\hskip-71.13188pt=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}f\left(t\right)dt.
For this family of operators, we give here some of their properties and results.
Report issue for preceding element
Lemma 2 Report issue for preceding element
Let n ∈ ℕ n\in\mathbb{N} and x ∈ [ 0 , 1 ] . x\in\left[0,1\right]. The following equalities hold.
Report issue for preceding element
K ~ n ​ ( e 0 ; x ) = e μ ​ ( x − n − 1 ) / ( n + 1 ) ​ e μ ​ x ​ ( e μ / ( n + 1 ) + 1 − e μ ​ x / ( n + 1 ) ) n , \widetilde{K}_{n}\left(e_{0};x\right)=e^{\mu\left(x-n-1\right)/\left(n+1\right)}e^{\mu x}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n},
(12)
K ~ n ​ ( exp μ ; x ) = μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 ​ e μ ​ x , \mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu};x\right)=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x},
(13)
K ~ n ​ ( exp μ 2 ; x ) = e 2 ​ μ ​ x , \mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu}^{2};x\right)=e^{2\mu x},
(14)
K ~ n ​ ( exp μ 3 ; x ) \displaystyle\mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu}^{3};x\right)
= 1 2 ​ e μ ​ x + μ ​ x / ( n + 1 ) ​ ( 1 + e μ / ( n + 1 ) ) \displaystyle=\frac{1}{2}e^{\mu x+\mu x/\left(n+1\right)}\left(1+e^{\mu/\left(n+1\right)}\right)
(15)
( − e μ / ( n + 1 ) + e μ ​ x / ( n + 1 ) + e μ / ( n + 1 ) + μ ​ x / ( n + 1 ) ) n , \displaystyle\hskip 28.45274pt\left(-e^{\mu/\left(n+1\right)}+e^{\mu x/\left(n+1\right)}+e^{\mu/\left(n+1\right)+\mu x/\left(n+1\right)}\right)^{n},
K ~ n ​ ( exp μ 4 ; x ) \displaystyle\mathcal{\ }\widetilde{K}_{n}\left(\exp_{\mu}^{4};x\right)
= 1 3 ​ e μ ​ x + μ ​ x / ( n + 1 ) ​ ( 1 + e μ / ( n + 1 ) + e 2 ​ μ / ( n + 1 ) ) \displaystyle=\frac{1}{3}e^{\mu x+\mu x/\left(n+1\right)}\left(1+e^{\mu/\left(n+1\right)}+e^{2\mu/\left(n+1\right)}\right)
(16)
× ( − e μ / ( n + 1 ) − e 2 ​ μ / ( n + 1 ) + e μ ​ x / ( n + 1 ) \displaystyle\times\left(-e^{\mu/\left(n+1\right)}-e^{2\mu/\left(n+1\right)}+e^{\mu x/\left(n+1\right)}\right.
+ e μ / ( n + 1 ) + μ ​ x / ( n + 1 ) + e 2 ​ μ / ( n + 1 ) + μ ​ x / ( n + 1 ) ) n . \displaystyle\left.+e^{\mu/\left(n+1\right)+\mu x/\left(n+1\right)}+e^{2\mu/\left(n+1\right)+\mu x/\left(n+1\right)}\right)^{n}.
Proof Report issue for preceding element
It follows from (8 ) that if f = e 0 , f=e_{0}, then
Report issue for preceding element
K ~ n ​ ( e 0 ; x ) \displaystyle\widetilde{K}_{n}\left(e_{0};x\right)
= μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 ​ e μ ​ x ​ ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ 𝑑 t \displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}dt
= e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n e − μ ​ k / ( n + 1 ) ​ p n , k ​ ( a n + 1 ​ ( x ) ) \displaystyle=\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}}e^{\mu x}\sum\limits_{k=0}^{n}e^{-\mu k/\left(n+1\right)}p_{n,k}\left(a_{n+1}\left(x\right)\right)
= e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) ​ e μ ​ x ​ e − μ ​ n / ( n + 1 ) ​ ( e μ / ( n + 1 ) + 1 − e μ ​ x / ( n + 1 ) ) n \displaystyle=\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}}e^{\mu x}e^{-\mu n/\left(n+1\right)}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n}
= e μ ​ x / ( n + 1 ) ​ e μ ​ ( x − 1 ) ​ ( e μ / ( n + 1 ) + 1 − e μ ​ x / ( n + 1 ) ) n . \displaystyle=e^{\mu x/\left(n+1\right)}e^{\mu\left(x-1\right)}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n}.
If f ​ ( x ) = e μ ​ x , f\left(x\right)=e^{\mu x}, then
Report issue for preceding element
K ~ n ​ ( e μ ​ t ; x ) \displaystyle\widetilde{K}_{n}\left(e^{\mu t};x\right)
= a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 𝑑 t \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}dt
= μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) \displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)
= μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 ​ e μ ​ x . \displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}.
Finally, for f ​ ( x ) = e 2 ​ μ ​ x f\left(x\right)=e^{2\mu x} , we get
Report issue for preceding element
K ~ n ​ ( e 2 ​ μ ​ t ; x ) \displaystyle\widetilde{K}_{n}\left(e^{2\mu t};x\right)
= a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 e μ ​ t ​ 𝑑 t \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{\mu t}dt
= μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 ​ e μ ​ x ​ ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) \displaystyle=\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)
⋅ ( 1 μ ​ e μ ​ k / ( n + 1 ) ​ ( e μ / ( n + 1 ) − 1 ) ) \displaystyle\quad\cdot\left(\frac{1}{\mu}e^{\mu k/\left(n+1\right)}\left(e^{\mu/\left(n+1\right)}-1\right)\right)
= e μ ​ x / ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ e μ ​ k / ( n + 1 ) \displaystyle=e^{\mu x/\left(n+1\right)}e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)e^{\mu k/\left(n+1\right)}
= e μ ​ x / ( n + 1 ) ​ e μ ​ x ​ e μ ​ x ​ n / ( n + 1 ) = e 2 ​ μ ​ x . \displaystyle=e^{\mu x/\left(n+1\right)}e^{\mu x}e^{\mu xn/\left(n+1\right)}=e^{2\mu x}.
Other results are similar.
Report issue for preceding element
Lemma 3 Report issue for preceding element
Let exp μ , x ( t ) = e μ ​ t − e μ ​ x . \exp_{\mu,x}\left(t\right)=e^{\mu t}-e^{\mu x}. For n ∈ ℕ n\in\mathbb{N} and x ∈ [ 0 , 1 ] , x\in\left[0,1\right], we have
Report issue for preceding element
lim n → ∞ n ​ ( K ~ n ​ ( e 0 ; x ) − 1 ) = μ ​ ( μ ​ x − 1 ) − μ ​ x ​ ( μ ​ x − 2 ) , \lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)=\mu\left(\mu x-1\right)-\mu x\left(\mu x-2\right),
(17)
lim n → ∞ n ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) = μ 2 ​ ( 2 ​ x − 1 ) ​ e μ ​ x , \lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)=\frac{\mu}{2}\left(2x-1\right)e^{\mu x},
(18)
and
Report issue for preceding element
lim n → ∞ n 2 ​ K ~ n ​ ( exp μ , x 4 ( x ) ; x ) = 3 ​ μ 2 ​ ( 1 − x ) 2 ​ x 2 ​ e 4 ​ μ ​ x . \lim_{n\rightarrow\infty}n^{2}\widetilde{K}_{n}\left(\exp_{\mu,x}^{4}\left(x\right);x\right)=3\mu^{2}\left(1-x\right)^{2}x^{2}e^{4\mu x}.
(19)
Using the above limits, we get
Report issue for preceding element
lim n → ∞ n ​ K ~ n ​ ( exp μ , x ; x ) \displaystyle\lim_{n\rightarrow\infty}n\widetilde{K}_{n}\left(\exp_{\mu,x};x\right)
= lim n → ∞ n ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ​ K ~ n ​ ( e 0 ; x ) ) \displaystyle=\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\widetilde{K}_{n}\left(e_{0};x\right)\right)
= lim n → ∞ n ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) \displaystyle=\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)
− lim n → ∞ n ​ e μ ​ x ​ ( K ~ n ​ ( e 0 ; x ) − 1 ) \displaystyle-\lim_{n\rightarrow\infty}ne^{\mu x}\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
= e μ ​ x ​ [ μ 2 ​ ( 2 ​ x − 1 ) − μ ​ ( μ ​ x − 1 ) + μ ​ x ​ ( μ ​ x − 2 ) ] \displaystyle=e^{\mu x}\left[\frac{\mu}{2}\left(2x-1\right)-\mu\left(\mu x-1\right)+\mu x\left(\mu x-2\right)\right]
(20)
and
Report issue for preceding element
lim n → ∞ n ​ K ~ n ​ ( exp μ , x 2 ; x ) \displaystyle\lim_{n\rightarrow\infty}n\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)
= − e μ ​ x ​ lim n → ∞ n ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) \displaystyle=-e^{\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)
− e μ ​ x ​ lim n → ∞ n ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ​ K ~ n ​ ( e 0 ; x ) ) \displaystyle-e^{\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\widetilde{K}_{n}\left(e_{0};x\right)\right)
= − 2 ​ e μ ​ x ​ lim n → ∞ n ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) \displaystyle=-2e^{\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)
+ e 2 ​ μ ​ x ​ lim n → ∞ n ​ ( K ~ n ​ ( e 0 ; x ) − 1 ) \displaystyle+e^{2\mu x}\lim_{n\rightarrow\infty}n\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
= e 2 ​ μ ​ x ​ ( μ ​ ( μ ​ x − 1 ) − μ ​ x ​ ( μ ​ x − 2 ) − μ ​ ( 2 ​ x − 1 ) ) . \displaystyle=e^{2\mu x}\left(\mu\left(\mu x-1\right)-\mu x\left(\mu x-2\right)-\mu\left(2x-1\right)\right).
(21)
Lemma 4 Report issue for preceding element
Let α n , μ := ‖ K ~ n ​ e 0 − e 0 ‖ ∞ \alpha_{n,\mu}:={\left\|\widetilde{K}_{n}e_{0}-e_{0}\right\|}_{\infty} . The following relations hold as n → ∞ n\rightarrow\infty :
Report issue for preceding element
α n , μ → 0 , \alpha_{n,\mu}\rightarrow 0,
(22)
‖ K ~ n ​ ( exp μ ) − exp μ ‖ ∞ → 0 {\left\|\widetilde{K}_{n}(\exp_{\mu})-\exp_{\mu}\right\|}_{\infty}\rightarrow 0
(23)
and
Report issue for preceding element
β n , μ := sup x ∈ [ 0 , 1 ] K ~ n ​ ( exp μ , x 2 ; x ) → 0 . \beta_{n,\mu}:=\sup_{x\in\left[0,1\right]}\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)\rightarrow 0.
(24)
Proof Report issue for preceding element
We have
Report issue for preceding element
( K ~ n ​ e 0 ) ′ ​ ( x ) \displaystyle\left(\widetilde{K}_{n}e_{0}\right)^{{}^{\prime}}\left(x\right)
= μ e μ ​ ( x − n − 1 ) / ( n + 1 ) e μ ​ x ( e μ / ( n + 1 ) + 1 − e μ ​ x / ( n + 1 ) ) n − 1 × \displaystyle=\mu e^{\mu\left(x-n-1\right)/\left(n+1\right)}e^{\mu x}\left(e^{\mu/\left(n+1\right)}+1-e^{\mu x/\left(n+1\right)}\right)^{n-1}\times
( ( n + 2 ) n + 1 ​ ( e μ / ( n + 1 ) + 1 ) − 2 ​ e μ ​ x / ( n + 1 ) ) . \displaystyle\left(\frac{\left(n+2\right)}{n+1}\left(e^{\mu/\left(n+1\right)}+1\right)-2e^{\mu x/\left(n+1\right)}\right).
If
Report issue for preceding element
( K ~ n ​ e 0 ) ′ ​ ( x n ) = 0 , \left(\widetilde{K}_{n}e_{0}\right)^{{}^{\prime}}\left(x_{n}\right)=0,
then
Report issue for preceding element
x n = ( n + 1 ) μ ​ ln ( ( n + 2 ) ( n + 1 ) ​ ( e μ / ( n + 1 ) + 1 ) 2 ) . x_{n}=\frac{\left(n+1\right)}{\mu}\ln\left(\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\right).
Also, we can write
Report issue for preceding element
K ~ n ​ e 0 ​ ( 0 ) − 1 \displaystyle\widetilde{K}_{n}e_{0}\left(0\right)-1
= e − μ ​ e μ ​ n / ( n + 1 ) − 1 \displaystyle=e^{-\mu}e^{\mu n/\left(n+1\right)}-1
(25)
= e − μ / ( n + 1 ) − 1 , \displaystyle=e^{-\mu/\left(n+1\right)}-1,
K ~ n ​ e 0 ​ ( 1 ) − 1 = e μ / ( n + 1 ) − 1 \widetilde{K}_{n}e_{0}\left(1\right)-1=e^{\mu/\left(n+1\right)}-1
(26)
and
Report issue for preceding element
K ~ n ​ e 0 ​ ( x n ) − 1 \displaystyle\widetilde{K}_{n}e_{0}\left(x_{n}\right)-1
= ( n + 2 ) ( n + 1 ) ​ ( e μ / ( n + 1 ) + 1 ) 2 ​ ( ( n + 2 ) ( n + 1 ) ​ ( e μ / ( n + 1 ) + 1 ) 2 ) n + 1 ​ e − μ \displaystyle=\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\left(\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\right)^{n+1}e^{-\mu}
× ( e μ / ( n + 1 ) + 1 − ( n + 2 ) ( n + 1 ) ​ ( e μ / ( n + 1 ) + 1 ) 2 ) n − 1 \displaystyle\quad\times\left(e^{\mu/\left(n+1\right)}+1-\frac{\left(n+2\right)}{\left(n+1\right)}\frac{\left(e^{\mu/\left(n+1\right)}+1\right)}{2}\right)^{n}-1
= ( e μ / ( n + 1 ) + 1 2 ) 2 ​ n + 2 ​ ( n + 2 n + 1 ) n + 2 ​ ( n n + 1 ) n ​ e − μ − 1 . \displaystyle=\left(\frac{e^{\mu/\left(n+1\right)}+1}{2}\right)^{2n+2}\left(\frac{n+2}{n+1}\right)^{n+2}\left(\frac{n}{n+1}\right)^{n}e^{-\mu}-1.
(27)
Since K ~ n ​ e 0 ​ ( x ) − 1 \widetilde{K}_{n}e_{0}\left(x\right)-1 is a continuous
function, it attains its extreme values at either endpoints 0 and 1 1 or
critical point x n x_{n} .
Report issue for preceding element
Since the limits of (25 ), (26 ) and ( 27 ) are equal to zero,
(22 ) is proved.
Report issue for preceding element
(23 ) and (24 ) follow similarly from
Report issue for preceding element
K ~ n ​ ( exp μ ; x ) − e μ ​ x = e μ ​ x ​ ( μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 − 1 ) , \widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}=e^{\mu x}\left(\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}-1\right),
and
Report issue for preceding element
K ~ n ​ ( exp μ , x 2 ; x ) \displaystyle\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)
= 2 ​ e μ ​ x ​ ( e μ ​ x − K ~ n ​ ( exp μ ; x ) ) + e 2 ​ μ ​ x ​ ( K ~ n ​ ( e 0 ; x ) − 1 ) \displaystyle=2e^{\mu x}\left(e^{\mu x}-\widetilde{K}_{n}\left(\exp_{\mu};x\right)\right)+e^{2\mu x}\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
= 2 ​ e 2 ​ μ ​ x ​ ( 1 − μ n + 1 ​ e μ ​ x / ( n + 1 ) e μ / ( n + 1 ) − 1 ) + e 2 ​ μ ​ x ​ ( K ~ n ​ ( e 0 ; x ) − 1 ) . \displaystyle=2e^{2\mu x}\left(1-\frac{\mu}{n+1}\frac{e^{\mu x/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}\right)+e^{2\mu x}\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right).
3 Convergence in C ​ [ 0 , 1 ] C\left[0,1\right]
Report issue for preceding element
We shall denote by C ​ [ 0 , 1 ] C[0,1] the space of all real valued continuous functions
on the interval [ 0 , 1 ] [0,1] endowed with the sup-norm ∥ ⋅ ∥ ∞ . \left\|\cdot\right\|_{\infty}.
Report issue for preceding element
Considering the calculations in the proof of Lemma 4, we get ‖ K ~ n ​ e 0 ‖ ∞ = α n , μ + 1 \left\|\widetilde{K}_{n}e_{0}\right\|_{\infty}=\alpha_{n,\mu}+1 , where α n , μ \alpha_{n,\mu} is defined as in that proof. So we can say that the
linear operator K ~ n \widetilde{K}_{n} maps C ​ [ 0 , 1 ] C\left[0,1\right] into itself
and it is continuous with respect to the sup-norm. Since the sequence
α n , μ \alpha_{n,\mu} is convergent, we get ‖ K ~ n ‖ ≤ d , \left\|\widetilde{K}_{n}\right\|\leq d, d d is a positive constant.
Report issue for preceding element
In the following theorem, we establish the convergence of the operators
K ~ n \widetilde{K}_{n} towards the identity operator.
Report issue for preceding element
Theorem 3.1 Report issue for preceding element
If f ∈ C ​ [ 0 , 1 ] , f\in C\left[0,1\right], then K ~ n ​ f \widetilde{K}_{n}f converges to f f
uniformly on [ 0 , 1 ] \left[0,1\right] .
Report issue for preceding element
Proof Report issue for preceding element
Since { e 0 , exp μ , exp μ 2 } \left\{e_{0},\exp_{\mu},\exp_{\mu}^{2}\right\} is an extended
complete Chebyshev system, from Korovkin’s theorem we have to prove that the
thesis is fulfilled for the functions e 0 , exp μ , exp μ 2 . e_{0},\exp_{\mu},\exp_{\mu}^{2}. But
this is a consequence of Lemma 2 and Lemma 4, and so the theorem is proved.
Report issue for preceding element
Theorem 3.2 Report issue for preceding element
For every n ∈ ℕ n\in\mathbb{N} and f ∈ C ​ [ 0 , 1 ] , f\in C\left[0,1\right], we have
Report issue for preceding element
‖ K ~ n ​ f − f ‖ ∞ \displaystyle\left\|\widetilde{K}_{n}f-f\right\|_{\infty}
≤ b n ​ e μ ​ ‖ f ‖ ∞ + 2 ​ e μ ​ ω ​ ( exp μ − 1 f , n n + 1 ​ γ n + 1 n + 1 ) + \displaystyle\leq b_{n}e^{\mu}\left\|f\right\|_{\infty}+2e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\gamma_{n}+\frac{1}{n+1}\right)+
+ 3 ​ e μ ​ ω ​ ( exp μ − 1 f , n + 1 n + 1 ) \displaystyle\quad+3e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{\sqrt{n}+1}{n+1}\right)
where
Report issue for preceding element
b n = μ n + 1 ​ e μ / ( n + 1 ) e μ / ( n + 1 ) − 1 − 1 b_{n}=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}-1
and
Report issue for preceding element
γ n = ( e μ / ( n + 1 ) − 1 ) ​ ( n + 1 ) μ − 1 e μ / ( n + 1 ) − 1 − ( n + 1 ) μ ​ ln [ ( e μ / ( n + 1 ) − 1 ) ​ ( n + 1 ) μ ] . \gamma_{n}=\frac{\left(e^{\mu/\left(n+1\right)}-1\right)\frac{\left(n+1\right)}{\mu}-1}{e^{\mu/\left(n+1\right)}-1}-\frac{\left(n+1\right)}{\mu}\ln\left[\left(e^{\mu/\left(n+1\right)}-1\right)\frac{\left(n+1\right)}{\mu}\right].
(28)
Proof Report issue for preceding element
Using the representation (11 ) and the fact that b n = sup x ∈ [ 0 , 1 ] ( a n + 1 ′ ​ ( x ) − 1 ) = b_{n}=\sup_{x\in\left[0,1\right]}\!\!\left(a_{n+1}^{{}^{\prime}}(x)-1\right)= = μ n + 1 ​ e μ / ( n + 1 ) e μ / ( n + 1 ) − 1 − 1 , =\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}-1, we have
Report issue for preceding element
‖ K ~ n ​ f − f ‖ ∞ \displaystyle\left\|\widetilde{K}_{n}f-f\right\|_{\infty}
≤ sup x ∈ [ 0 , 1 ] ( a n + 1 ′ ​ ( x ) − 1 ) ​ e μ ​ ‖ B n ​ ( ( n + 1 ) ​ δ n μ ​ ( F ) ; a n + 1 ​ ( ⋅ ) ) ‖ ∞ \displaystyle\leq\sup_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)-1\right)e^{\mu}\left\|B_{n}\left(\left(n+1\right)\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)\right\|_{\infty}
+ ( n + 1 ) ​ e μ ​ ‖ B n ​ ( δ n μ ​ ( F ) ; a n + 1 ​ ( ⋅ ) ) − δ n μ ​ ( F ) ‖ ∞ \displaystyle\quad+\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)-\delta_{n}^{\mu}\left(F\right)\right\|_{\infty}
+ e μ ​ ‖ ( n + 1 ) ​ δ n μ ​ ( F ) − e − μ ⋅ ​ f ‖ ∞ \displaystyle\quad+e^{\mu}\left\|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)-e^{-\mu\cdot}f\right\|_{\infty}
≤ b n ​ e μ ​ ‖ e − μ ⋅ ​ f ‖ ∞ + ( n + 1 ) ​ e μ ​ ‖ B n ​ ( δ n μ ​ ( F ) ; a n + 1 ​ ( ⋅ ) ) − B n ​ ( δ n μ ​ ( F ) ; ⋅ ) ‖ ∞ \displaystyle\leq b_{n}e^{\mu}\left\|e^{-\mu\cdot}f\right\|_{\infty}+\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)-B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)\right\|_{\infty}
+ ( n + 1 ) ​ e μ ​ ‖ B n ​ ( δ n μ ​ ( F ) ; ⋅ ) − δ n μ ​ ( F ) ‖ ∞ \displaystyle\quad+\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)-\delta_{n}^{\mu}\left(F\right)\right\|_{\infty}
+ e μ ​ ‖ ( n + 1 ) ​ δ n μ ​ ( F ) − e − μ ⋅ ​ f ‖ ∞ \displaystyle\quad+e^{\mu}\left\|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)-e^{-\mu\cdot}f\right\|_{\infty}
:= b n ​ e μ ​ ‖ f ‖ ∞ + I 1 + I 2 + I 3 . \displaystyle:=b_{n}e^{\mu}\left\|f\right\|_{\infty}+I_{1}+I_{2}+I_{3}.
To estimate I 1 , I_{1}, we use the following inequality given by (6.1.96 6.1.96 ) in
Altomare Kitap for Bernstein operators in the case of an arbitrary
continuous function on [ 0 , 1 ] \left[0,1\right] :
Report issue for preceding element
ω ​ ( B n ​ ( f ) , δ ) ≤ 2 ​ ω ​ ( f , δ ) , ​ δ > 0 . \omega\left(B_{n}\left(f\right),\delta\right)\leq 2\omega\left(f,\delta\right),\text{ \ \ \ }\delta>0.
Thus we have
Report issue for preceding element
| B n ​ ( δ n μ ​ ( F ) ; a n + 1 ​ ( x ) ) − B n ​ ( δ n μ ​ ( F ) ; x ) | \displaystyle\left|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(x\right)\right)-B_{n}\left(\delta_{n}^{\mu}\left(F\right);x\right)\right|
≤ ω ​ ( B n ​ ( δ n μ ​ ( F ) ) , | a n + 1 ​ ( x ) − x | ) \displaystyle\leq\omega\left(B_{n}\left(\delta_{n}^{\mu}\left(F\right)\right),\left|a_{n+1}\left(x\right)-x\right|\right)
≤ 2 ​ ω ​ ( δ n μ ​ ( F ) , | a n + 1 ​ ( x ) − x | ) \displaystyle\leq 2\omega\left(\delta_{n}^{\mu}\left(F\right),\left|a_{n+1}\left(x\right)-x\right|\right)
≤ 2 ​ ω ​ ( δ n μ ​ ( F ) , γ n ) , \displaystyle\leq 2\omega\left(\delta_{n}^{\mu}\left(F\right),\gamma_{n}\right),
(29)
where
Report issue for preceding element
γ n = max x ∈ [ 0 , 1 ] ​ | a n + 1 ​ ( x ) − x | . \gamma_{n}=\underset{x\in\left[0,1\right]}{\max}\left|a_{n+1}\left(x\right)-x\right|.
a n + 1 ​ ( x ) − x a_{n+1}\left(x\right)-x attains its maximum value within [ 0 , 1 ] \left[0,1\right] at the point
Report issue for preceding element
x 0 = n + 1 μ ​ ln [ ( e μ / ( n + 1 ) − 1 ) ​ ( n + 1 ) μ ] x_{0}=\frac{n+1}{\mu}\ln\left[\left(e^{\mu/\left(n+1\right)}-1\right)\frac{\left(n+1\right)}{\mu}\right]
and thus γ n \gamma_{n} is defined as in (28 ). It is easily seen that
Report issue for preceding element
lim n → ∞ γ n = 0 . \lim_{n\rightarrow\infty}\gamma_{n}=\allowbreak 0.
Let us estimate ω ​ ( δ n μ ​ ( F ) , δ ) . \omega\left(\delta_{n}^{\mu}\left(F\right),\delta\right). For fixed δ > 0 \delta>0 and x , y ∈ [ 0 , 1 ] , x,y\in\left[0,1\right],
| x − y | ≤ δ \left|x-y\right|\leq\delta then
Report issue for preceding element
| δ n μ ​ ( F ) ​ ( x ) − δ n μ ​ ( F ) ​ ( y ) | \displaystyle\left|\delta_{n}^{\mu}\left(F\right)\left(x\right)-\delta_{n}^{\mu}\left(F\right)\left(y\right)\right|
= 1 n + 1 ​ | e − μ ​ ξ n , x ​ f ​ ( ξ n , x ) − e − μ ​ η n , y ​ f ​ ( η n , y ) | \displaystyle=\frac{1}{n+1}\left|e^{-\mu\xi_{n,x}}f\left(\xi_{n,x}\right)-e^{-\mu\eta_{n,y}}f\left(\eta_{n,y}\right)\right|
≤ 1 n + 1 ​ ω ​ ( exp μ − 1 f , | ξ n , x − η n , y | ) , \displaystyle\leq\frac{1}{n+1}\omega\left(\exp_{\mu}^{-1}f,\left|\xi_{n,x}-\eta_{n,y}\right|\right),
where ξ n , x ∈ [ n n + 1 ​ x , n n + 1 ​ x + 1 n + 1 ] \xi_{n,x}\in\Big[\frac{n}{n+1}x,\frac{n}{n+1}x+\frac{1}{n+1}\Big] and
η n , y ∈ [ n n + 1 ​ y , n n + 1 ​ y + 1 n + 1 ] . \eta_{n,y}\in\left[\frac{n}{n+1}y,\frac{n}{n+1}y+\frac{1}{n+1}\right].
Noting that
Report issue for preceding element
| ξ n , x − η n , y | ≤ n n + 1 ​ | x − y | + 1 n + 1 ≤ n n + 1 ​ δ + 1 n + 1 \left|\xi_{n,x}-\eta_{n,y}\right|\leq\frac{n}{n+1}\left|x-y\right|+\frac{1}{n+1}\leq\frac{n}{n+1}\delta+\frac{1}{n+1}
we get
Report issue for preceding element
| δ n μ ​ ( F ) ​ ( x ) − δ n μ ​ ( F ) ​ ( y ) | ≤ 1 n + 1 ​ ω ​ ( exp μ − 1 f , n n + 1 ​ δ + 1 n + 1 ) . \left|\delta_{n}^{\mu}\left(F\right)\left(x\right)-\delta_{n}^{\mu}\left(F\right)\left(y\right)\right|\leq\frac{1}{n+1}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\delta+\frac{1}{n+1}\right).
So it follows that
Report issue for preceding element
ω ​ ( δ n μ ​ ( F ) , δ ) ≤ 1 n + 1 ​ ω ​ ( exp μ − 1 f , n n + 1 ​ δ + 1 n + 1 ) . \omega\left(\delta_{n}^{\mu}\left(F\right),\delta\right)\leq\frac{1}{n+1}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\delta+\frac{1}{n+1}\right).
(30)
Using (29 ) and (30 ), we get
Report issue for preceding element
I 1 \displaystyle I_{1}
= ( n + 1 ) ​ e μ ​ ‖ B n ​ ( δ n μ ​ ( F ) ; a n + 1 ​ ( ⋅ ) ) − B n ​ ( δ n μ ​ ( F ) ; ⋅ ) ‖ ∞ \displaystyle=\left(n+1\right)e^{\mu}\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);a_{n+1}\left(\cdot\right)\right)-B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)\right\|_{\infty}
≤ 2 ​ e μ ​ ( n + 1 ) ​ ω ​ ( δ n μ ​ ( F ) , γ n ) \displaystyle\leq 2e^{\mu}\left(n+1\right)\omega\left(\delta_{n}^{\mu}\left(F\right),\gamma_{n}\right)
≤ 2 ​ e μ ​ ω ​ ( exp μ − 1 f , n n + 1 ​ γ n + 1 n + 1 ) . \displaystyle\leq 2e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{n}{n+1}\gamma_{n}+\frac{1}{n+1}\right).
Let us estimate I 2 I_{2} . Using (30 ), we have
Report issue for preceding element
I 2 \displaystyle I_{2}
= e μ ​ ( n + 1 ) ​ ‖ B n ​ ( δ n μ ​ ( F ) ; ⋅ ) − δ n μ ​ ( F ) ‖ ∞ \displaystyle=e^{\mu}\left(n+1\right)\left\|B_{n}\left(\delta_{n}^{\mu}\left(F\right);\cdot\right)-\delta_{n}^{\mu}\left(F\right)\right\|_{\infty}
≤ 2 ​ e μ ​ ( n + 1 ) ​ ω ​ ( δ n μ ​ ( F ) , 1 n ) \displaystyle\leq 2e^{\mu}\left(n+1\right)\omega\left(\delta_{n}^{\mu}\left(F\right),\frac{1}{\sqrt{n}}\right)
≤ 2 ​ e μ ​ ω ​ ( exp μ − 1 f , n + 1 n + 1 ) . \displaystyle\leq 2e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{\sqrt{n}+1}{n+1}\right).
Now we proceed to estimate I 3 . I_{3}. For x ∈ [ 0 , 1 ] , x\in\left[0,1\right], by using
Lagrange’s theorem we have
Report issue for preceding element
( n + 1 ) ​ δ n μ ​ ( F ) ​ ( x ) \displaystyle\left(n+1\right)\delta_{n}^{\mu}\left(F\right)\left(x\right)
= ( n + 1 ) ​ [ F μ ​ ( n n + 1 ​ x + 1 n + 1 ) − F μ ​ ( n n + 1 ​ x ) ] \displaystyle=\left(n+1\right)\left[F_{\mu}\left(\frac{n}{n+1}x+\frac{1}{n+1}\right)-F_{\mu}\left(\frac{n}{n+1}x\right)\right]
= F μ ′ ​ ( ξ n , x ) = e − μ ​ ξ n , x ​ f ​ ( ξ n , x ) , \displaystyle=F_{\mu}^{{}^{\prime}}\left(\xi_{n,x}\right)=e^{-\mu\xi_{n,x}}f\left(\xi_{n,x}\right),
(31)
where ξ n , x ∈ [ n n + 1 ​ x , n n + 1 ​ x + 1 n + 1 ] . \xi_{n,x}\in\left[\frac{n}{n+1}x,\frac{n}{n+1}x+\frac{1}{n+1}\right]. Since | ξ n , x − x | < 1 n + 1 \left|\xi_{n,x}-x\right|<\frac{1}{n+1} we get
Report issue for preceding element
| ( n + 1 ) ​ δ n μ ​ ( F ) ​ ( x ) − e − μ ​ x ​ f ​ ( x ) | \displaystyle\left|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)\left(x\right)-e^{-\mu x}f\left(x\right)\right|
≤ | e − μ ​ ξ n , x ​ f ​ ( ξ n , x ) − e − μ ​ x ​ f ​ ( x ) | \displaystyle\leq\left|e^{-\mu\xi_{n,x}}f\left(\xi_{n,x}\right)-e^{-\mu x}f\left(x\right)\right|
≤ ω ​ ( exp μ − 1 f , 1 n + 1 ) \displaystyle\leq\omega\left(\exp_{\mu}^{-1}f,\frac{1}{n+1}\right)
and so
Report issue for preceding element
I 3 = e μ ​ ‖ ( n + 1 ) ​ δ n μ ​ ( F ) − e − μ ⋅ ​ f ‖ ∞ ≤ e μ ​ ω ​ ( exp μ − 1 f , 1 n + 1 ) . I_{3}=e^{\mu}\left\|\left(n+1\right)\delta_{n}^{\mu}\left(F\right)-e^{-\mu\cdot}f\right\|_{\infty}\leq e^{\mu}\omega\left(\exp_{\mu}^{-1}f,\frac{1}{n+1}\right).
Collecting all the estimates of I 1 , I_{1}, I 2 ​ I_{2\text{ }} and I 3 , I_{3}, we have
the desired result.
Report issue for preceding element
4 Quantitative Voronovskaya theorem Report issue for preceding element
To describe the rate of pointwise convergence of the operators, we give a
quantitative version of Voronovskaya theorem. Note that for a general linear
positive operators similar results were given in Go-Pi-Ra .
Report issue for preceding element
For f ∈ C 2 ​ [ 0 , 1 ] f\in C^{2}\left[0,1\right] and x 0 , x_{0}, x ∈ [ 0 , 1 ] , x\in\left[0,1\right],
we use the following version of the Taylor formula:
Report issue for preceding element
f ​ ( x ) \displaystyle f\left(x\right)
= ( f ∘ log μ ) ​ ( e μ ​ x 0 ) + ( f ∘ log μ ) ′ ​ ( e μ ​ x 0 ) ​ exp μ , x 0 ( x ) + \displaystyle=\left(f\circ\log_{\mu}\right)\left(e^{\mu x_{0}}\right)+\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x_{0}}\right)\exp_{\mu,x_{0}}\left(x\right)+
+ 1 2 ​ ( f ∘ log μ ) ′′ ​ ( e μ ​ x 0 ) ​ exp μ , x 0 2 ( x ) + R ​ ( f ; x 0 ; x ) , \displaystyle\quad+\frac{1}{2}\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x_{0}}\right)\exp_{\mu,x_{0}}^{2}\left(x\right)+R\left(f;x_{0};x\right),
where log μ \log_{\mu} is the inverse function of e μ e^{\mu} and the remainder
R ​ ( f ; x 0 ; x ) R\left(f;x_{0};x\right) is
Report issue for preceding element
R ​ ( f ; x 0 ; x ) = 1 2 ​ exp μ , x 0 2 ( x ) ​ ( ( f ∘ log μ ) ′′ ​ ( e μ ​ ξ x ) − ( f ∘ log μ ) ′′ ​ ( e μ ​ x 0 ) ) , R\left(f;x_{0};x\right)=\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu\xi_{x}}\right)-\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x_{0}}\right)\right),
with ξ x \xi_{x} between x x and x 0 . x_{0}. Thus, we can write
Report issue for preceding element
| R ​ ( f , x 0 ; x ) | \displaystyle\left|R\left(f,x_{0};x\right)\right|
= 1 2 ​ exp μ , x 0 2 ( x ) ​ | ( f ∘ log μ ) ′′ ​ ( e μ ​ ξ x ) − ( f ∘ log μ ) ′′ ​ ( e μ ​ x ) | \displaystyle=\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\left|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu\xi_{x}}\right)-\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x}\right)\right|
≤ 1 2 ​ exp μ , x 0 2 ( x ) ​ ω ​ ( ( f ∘ log μ ) ′′ ; | exp μ , x ( ξ x ) | ) \displaystyle\leq\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\omega\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\left|\exp_{\mu,x}\left(\xi_{x}\right)\right|\right)
≤ 1 2 ​ exp μ , x 0 2 ( x ) ​ ω ​ ( ( f ∘ log μ ) ′′ ; | exp μ , x ( x 0 ) | ) , \displaystyle\leq\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\omega\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\left|\exp_{\mu,x}\left(x_{0}\right)\right|\right),
(32)
where ω ​ ( f ; ⋅ ) \omega\left(f;\cdot\right) is the classical modulus of continuity.
Report issue for preceding element
We will need the following K K -functional introduced by J. Peetre petre
and defined by
Report issue for preceding element
K ( f ; ε , C , C 1 ) := inf { ∥ f − g ∥ ∞ + ε ∥ g ′ ∥ ∞ : g ∈ C 1 } K\left(f;\varepsilon,C,C^{1}\right):=\inf\left\{\left\|f-g\right\|_{\infty}+\varepsilon\left\|g^{{}^{\prime}}\right\|_{\infty}:g\in C^{1}\right\}
(33)
for f ∈ C ​ [ 0 , 1 ] f\in C\left[0,1\right] and ε ≥ 0 . \varepsilon\geq 0. The K K -functional
and the modulus of continuity are related by the relation
Report issue for preceding element
K ​ ( f ; ε / 2 , C , C 1 ) = 1 2 ​ ω ~ ​ ( f ; ε ) . K\left(f;\varepsilon/2,C,C^{1}\right)=\frac{1}{2}\widetilde{\omega}\left(f;\varepsilon\right).
(34)
Here ω ~ ​ ( f ; ⋅ ) \widetilde{\omega}\left(f;\cdot\right) denotes the least concave
majorant of ω ​ ( f ; ⋅ ) , \omega\left(f;\cdot\right), see Lorentz .
Report issue for preceding element
The remainder R ​ ( f , x 0 ; x ) R\left(f,x_{0};x\right) can be estimated in terms of
ω ~ . \widetilde{\omega}.
Report issue for preceding element
Lemma 5 Report issue for preceding element
Let f ∈ C 2 ​ [ 0 , 1 ] f\in C^{2}\left[0,1\right] and x 0 , x_{0}, x ∈ [ 0 , 1 ] . x\in\left[0,1\right]. Then we have
Report issue for preceding element
| R ​ ( f , x 0 ; x ) | ≤ 1 2 ​ exp μ , x 0 2 ( x ) ​ ω ~ ​ ( ( f ∘ log μ ) ′′ ; 1 3 ​ | exp μ , x 0 ( x ) | ) . \left|R\left(f,x_{0};x\right)\right|\leq\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\left|\exp_{\mu,x_{0}}\left(x\right)\right|\right).
Proof Report issue for preceding element
From (32 ),we have
Report issue for preceding element
| R ​ ( f , x 0 ; x ) | ≤ exp μ , x 0 2 ( x ) ​ ‖ ( f ∘ log μ ) ′′ ‖ ∞ . \left|R\left(f,x_{0};x\right)\right|\leq\exp_{\mu,x_{0}}^{2}\left(x\right)\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}.
For g ∈ C 3 ​ [ 0 , 1 ] , g\in C^{3}\left[0,1\right], using the Lagrange form of remainder we
have
Report issue for preceding element
| R ​ ( g , x 0 ; x ) | \displaystyle\left|R\left(g,x_{0};x\right)\right|
= 1 6 ​ | exp μ , x 0 3 ( x ) | ​ | ( g ∘ log μ ) ′′′ ​ ( θ x ) | \displaystyle=\frac{1}{6}\left|\exp_{\mu,x_{0}}^{3}\left(x\right)\right|\left|\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime\prime}}}\left(\theta_{x}\right)\right|
≤ 1 6 ​ | exp μ , x 0 3 ( x ) | ​ ‖ ( g ∘ log μ ) ′′′ ‖ ∞ , \displaystyle\leq\frac{1}{6}\left|\exp_{\mu,x_{0}}^{3}\left(x\right)\right|\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty},
where θ x \theta_{x} is between x x and x 0 . x_{0}. Keeping f f fixed and letting
g g arbitrary in C 3 ​ [ 0 , 1 ] , C^{3}\left[0,1\right], we have
Report issue for preceding element
| R ​ ( f , x 0 ; x ) | \displaystyle\left|R\left(f,x_{0};x\right)\right|
≤ | R ​ ( f − g , x 0 ; x ) | + | R ​ ( g , x 0 ; x ) | \displaystyle\leq\left|R\left(f-g,x_{0};x\right)\right|+\left|R\left(g,x_{0};x\right)\right|
≤ exp μ , x 0 2 ( x ) ​ ‖ ( f ∘ log μ ) ′′ − ( g ∘ log μ ) ′′ ‖ ∞ \displaystyle\leq\exp_{\mu,x_{0}}^{2}\left(x\right)\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}
+ 1 6 ​ | exp μ , x 0 3 ( x ) | ​ ‖ ( g ∘ log μ ) ′′′ ‖ ∞ . \displaystyle\quad+\frac{1}{6}\left|\exp_{\mu,x_{0}}^{3}\left(x\right)\right|\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}.
Considering (33 ), (34 ) and passing to infimum over g ∈ C 3 ​ [ 0 , 1 ] g\in C^{3}\left[0,1\right] yields
Report issue for preceding element
| R ​ ( f , x 0 ; x ) | \displaystyle\left|R\left(f,x_{0};x\right)\right|
≤ exp μ , x 0 2 ( x ) ​ K ​ ( ( f ∘ log μ ) ′′ ; 1 6 ​ | exp μ , x 0 ( x ) | , C , C 1 ) \displaystyle\leq\exp_{\mu,x_{0}}^{2}\left(x\right)K\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{6}\left|\exp_{\mu,x_{0}}(x)\right|,C,C^{1}\right)
= 1 2 ​ exp μ , x 0 2 ( x ) ​ ω ~ ​ ( ( f ∘ log μ ) ′′ ; 1 3 ​ | exp μ , x 0 ( x ) | ) . \displaystyle=\frac{1}{2}\exp_{\mu,x_{0}}^{2}\left(x\right)\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\left|\exp_{\mu,x_{0}}\left(x\right)\right|\right).
Theorem 4.1 Report issue for preceding element
If f ∈ C 2 ​ [ 0 , 1 ] f\in C^{2}\left[0,1\right] and x ∈ [ 0 , 1 ] , x\in\left[0,1\right], then
Report issue for preceding element
| K ~ n ( f ; x ) − f ( x ) − ( K ~ n ( e 0 ; x ) − 1 ) 1 2 ​ μ 2 [ f ′′ ( x ) − 3 μ f ′ ( x ) + 2 μ 2 f ( x ) ] \displaystyle\left|\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\frac{1}{2\mu^{2}}\left[f^{{}^{\prime\prime}}\left(x\right)-3\mu f^{{}^{\prime}}\left(x\right)+2\mu^{2}f\left(x\right)\right]\right.
− e − μ ​ x ( K ~ n ( exp μ ; x ) − e μ ​ x ) 1 μ 2 [ 2 μ f ′ ( x ) − f ′′ ( x ) ] | \displaystyle\left.-e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\frac{1}{\mu^{2}}\left[2\mu f^{{}^{\prime}}\left(x\right)-f^{{}^{\prime\prime}}\left(x\right)\right]\right|
≤ 1 2 ​ K ~ n ​ ( exp μ , x 4 ; x ) ​ K ~ n ​ ( e 0 ; x ) ​ ω ~ ​ ( ( f ∘ log μ ) ′′ ; 1 3 ​ K ~ n ​ ( exp μ , x 2 ; x ) K ~ n ​ ( e 0 ; x ) ) . \displaystyle\leq\frac{1}{2}\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}}\right).
Proof Report issue for preceding element
For f ∈ C 2 ​ [ 0 , 1 ] , f\in C^{2}\left[0,1\right], we can write
Report issue for preceding element
R ​ ( f , x ; t ) = f ​ ( t ) − ( f ∘ log μ ) ​ ( e μ ​ x ) − ( f ∘ log μ ) ′ ​ ( e μ ​ x ) ​ exp μ , x ( t ) − 1 2 ​ ( f ∘ log μ ) ′′ ​ ( e μ ​ x ) ​ exp μ , x 2 ( t ) . R\left(f,x;t\right)=f\left(t\right)-\left(f\circ\log_{\mu}\right)\left(e^{\mu x}\right)-\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x}\right)\exp_{\mu,x}\left(t\right)-\frac{1}{2}\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x}\right)\exp_{\mu,x}^{2}\left(t\right).
This equality leads to
Report issue for preceding element
K ~ n ​ ( R ​ ( f , x ; t ) ; x ) \displaystyle\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)
= K ~ n ​ ( f ; x ) − f ​ ( x ) ​ K ~ n ​ ( e 0 ; x ) − ( f ∘ log μ ) ′ ​ ( e μ ​ x ) ​ K ~ n ​ ( exp μ , x ; x ) \displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)\widetilde{K}_{n}\left(e_{0};x\right)-\left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x}\right)\widetilde{K}_{n}\left(\exp_{\mu,x};x\right)
− 1 2 ​ ( f ∘ log μ ) ′′ ​ ( e μ ​ x ) ​ K ~ n ​ ( exp μ , x 2 ; x ) ​ . \displaystyle\text{\ }-\frac{1}{2}\left(f\circ\log_{\mu}\right)^{{}^{\prime\prime}}\left(e^{\mu x}\right)\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)\text{.}
Since
Report issue for preceding element
( f ∘ log μ ) ′ ​ ( e μ ​ x ) = e − μ ​ x μ ​ f ′ ​ ( x ) \left(f\circ\log_{\mu}\right)^{{}^{\prime}}\left(e^{\mu x}\right)=\frac{e^{-\mu x}}{\mu}f^{{}^{\prime}}\left(x\right)
and
Report issue for preceding element
( f ∘ log μ ) ′′ ​ ( e μ ​ x ) = e − 2 ​ μ ​ x ​ ( 1 μ 2 ​ f ′′ ​ ( x ) − 1 μ ​ f ′ ​ ( x ) ) , \left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\left(e^{\mu x}\right)=e^{-2\mu x}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right),
we can write
Report issue for preceding element
K ~ n ​ ( R ​ ( f , x ; t ) ; x ) \displaystyle\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)
= K ~ n ​ ( f ; x ) − f ​ ( x ) ​ K ~ n ​ ( e 0 ; x ) − e − μ ​ x μ ​ f ′ ​ ( x ) ​ K ~ n ​ ( exp μ , x ; x ) \displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)\widetilde{K}_{n}\left(e_{0};x\right)-\frac{e^{-\mu x}}{\mu}f^{{}^{\prime}}\left(x\right)\widetilde{K}_{n}\left(\exp_{\mu,x};x\right)
− e − 2 ​ μ ​ x 2 ​ ( 1 μ 2 ​ f ′′ ​ ( x ) − 1 μ ​ f ′ ​ ( x ) ) ​ K ~ n ​ ( exp μ , x 2 ; x ) . \displaystyle-\frac{e^{-2\mu x}}{2}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right).
It can be rearranged as
Report issue for preceding element
K ~ n ​ ( R ​ ( f , x ; t ) ; x ) = \displaystyle\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)=
= K ~ n ​ ( f ; x ) − f ​ ( x ) − f ​ ( x ) ​ ( K ~ n ​ ( e 0 ; x ) − 1 ) \displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-f\left(x\right)\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)
− 1 μ ​ f ′ ​ ( x ) ​ [ e − μ ​ x ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) − ( K ~ n ​ ( e 0 ; x ) − 1 ) ] \displaystyle\quad-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\left[e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\right]
− 1 2 ​ ( 1 μ 2 ​ f ′′ ​ ( x ) − 1 μ ​ f ′ ​ ( x ) ) ​ [ ( ( K ~ n ​ ( e 0 ; x ) − 1 ) − 2 ​ e − μ ​ x ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) ) ] \displaystyle\quad-\frac{1}{2}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)\left[\left(\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)-2e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\right)\right]
= K ~ n ​ ( f ; x ) − f ​ ( x ) − ( K ~ n ​ ( e 0 ; x ) − 1 ) ​ [ f ​ ( x ) + 1 2 ​ ( 1 μ 2 ​ f ′′ ​ ( x ) − 1 μ ​ f ′ ​ ( x ) ) − 1 μ ​ f ′ ​ ( x ) ] \displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\left[f\left(x\right)+\frac{1}{2}\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right]
− e − μ ​ x ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) ​ [ 1 μ ​ f ′ ​ ( x ) − ( 1 μ 2 ​ f ′′ ​ ( x ) − 1 μ ​ f ′ ​ ( x ) ) ] \displaystyle\quad-e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\left[\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)-\left(\frac{1}{\mu^{2}}f^{{}^{\prime\prime}}\left(x\right)-\frac{1}{\mu}f^{{}^{\prime}}\left(x\right)\right)\right]
= K ~ n ​ ( f ; x ) − f ​ ( x ) − ( K ~ n ​ ( e 0 ; x ) − 1 ) ​ 1 2 ​ μ 2 ​ [ f ′′ ​ ( x ) − 3 ​ μ ​ f ′ ​ ( x ) + 2 ​ μ 2 ​ f ​ ( x ) ] \displaystyle=\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)-\left(\widetilde{K}_{n}\left(e_{0};x\right)-1\right)\frac{1}{2\mu^{2}}\left[f^{{}^{\prime\prime}}\left(x\right)-3\mu f^{{}^{\prime}}\left(x\right)+2\mu^{2}f\left(x\right)\right]
− e − μ ​ x ​ ( K ~ n ​ ( exp μ ; x ) − e μ ​ x ) ​ 1 μ 2 ​ [ 2 ​ μ ​ f ′ ​ ( x ) − f ′′ ​ ( x ) ] . \displaystyle\quad-e^{-\mu x}\left(\widetilde{K}_{n}\left(\exp_{\mu};x\right)-e^{\mu x}\right)\frac{1}{\mu^{2}}\left[2\mu f^{{}^{\prime}}\left(x\right)-f^{{}^{\prime\prime}}\left(x\right)\right].
On the other hand, from Lemma 5 we have
Report issue for preceding element
| K ~ n ​ ( R ​ ( f , x ; t ) ; x ) | ≤ K ~ n ​ ( 1 2 ​ exp μ , x 2 ( t ) ​ ω ~ ​ ( ( f ∘ log μ ) ′′ ; 1 3 ​ | exp μ , x ( t ) | ) ; x ) . \left|\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)\right|\leq\widetilde{K}_{n}\left(\frac{1}{2}\exp_{\mu,x}^{2}\left(t\right)\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\left|\exp_{\mu,x}\left(t\right)\right|\right);x\right).
For arbitrary g ∈ C 3 ​ [ 0 , 1 ] , g\in C^{3}\left[0,1\right], we get
Report issue for preceding element
| K ~ n ​ ( R ​ ( f , x ; t ) ; x ) | = \displaystyle\left|\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)\right|=
= K ~ n ​ ( exp μ , x 2 ( t ) ​ K ​ ( ( f ∘ log μ ) ′′ ; 1 6 ​ | exp μ , x ( t ) | , C , C 1 ) ; x ) \displaystyle=\widetilde{K}_{n}\left(\exp_{\mu,x}^{2}\left(t\right)K\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{6}\left|\exp_{\mu,x}\left(t\right)\right|,C,C^{1}\right);x\right)
≤ K ~ n ​ ( exp μ , x 2 ( t ) ​ { ‖ ( f ∘ log μ ) ′′ − ( g ∘ log μ ) ′′ ‖ ∞ + | exp μ , x ( t ) | 6 ​ ‖ ( g ∘ log μ ) ′′′ ‖ ∞ } ; x ) \displaystyle\leq\widetilde{K}_{n}\left(\exp_{\mu,x}^{2}\left(t\right)\left\{\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}+\frac{\left|\exp_{\mu,x}\left(t\right)\right|}{6}\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}\right\};x\right)
= K ~ n ​ ( exp μ , x 2 ; x ) ​ ‖ ( f ∘ log μ ) ′′ − ( g ∘ log μ ) ′′ ‖ ∞ + 1 6 ​ K ~ n ​ ( | exp μ , x 3 | ; x ) ​ ‖ ( g ∘ log μ ) ′′′ ‖ ∞ \displaystyle=\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}+\frac{1}{6}\widetilde{K}_{n}\left(\left|\exp_{\mu,x}^{3}\right|;x\right)\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}
≤ K ~ n ​ ( exp μ , x 4 ; x ) K ~ n ​ ( e 0 ; x ) { ∥ ( f ∘ log μ ) ′′ − ( g ∘ log μ ) ′′ ∥ ∞ \displaystyle\leq\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}\left\{\left\|\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}-\left(g\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}}\right\|_{\infty}\right.
+ 1 6 K ~ n ​ ( exp μ , x 2 ; x ) K ~ n ​ ( e 0 ; x ) ∥ ( g ∘ log μ ) ′′′ ∥ ∞ } . \displaystyle\quad+\frac{1}{6}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}}\left\|\left(g\circ\log_{\mu}\right)^{{}^{{}^{{}^{\prime\prime\prime}}}}\right\|_{\infty}\Bigg\}.
Passing to the infimum over g ∈ C 3 ​ [ 0 , 1 ] g\in C^{3}\left[0,1\right] again, we get
Report issue for preceding element
| K ~ n ​ ( R ​ ( f , x ; t ) ; x ) | ≤ \displaystyle\left|\widetilde{K}_{n}\left(R\left(f,x;t\right);x\right)\right|\leq
≤ K ~ n ​ ( exp μ , x 4 ; x ) ​ K ~ n ​ ( e 0 ; x ) ​ K ​ ( ( f ∘ log μ ) ′′ ; 1 6 ​ K ~ n ​ ( exp μ , x 2 ; x ) K ~ n ​ ( e 0 ; x ) , C , C 1 ) \displaystyle\leq\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}K\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{6}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}},C,C^{1}\right)
= 1 2 ​ K ~ n ​ ( exp μ , x 4 ; x ) ​ K ~ n ​ ( e 0 ; x ) ​ ω ~ ​ ( ( f ∘ log μ ) ′′ ; 1 3 ​ K ~ n ​ ( exp μ , x 2 ; x ) K ~ n ​ ( e 0 ; x ) ) . \displaystyle=\frac{1}{2}\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{4};x\right)}\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}\widetilde{\omega}\left(\left(f\circ\log_{\mu}\right)^{{}^{{}^{\prime\prime}}};\frac{1}{3}\frac{\sqrt{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}}{\sqrt{\widetilde{K}_{n}\left(e_{0};x\right)}}\right).
Using (17 ), (18 ), (21 ) and (19 ) in Theorem
4.1 , respectively, and considering
Report issue for preceding element
lim n → ∞ K ~ n ​ ( exp μ , x 2 ; x ) K ~ n ​ ( e 0 ; x ) = 0 \lim_{n\rightarrow\infty}\frac{\widetilde{K}_{n}\left(\exp_{\mu,x}^{2};x\right)}{\widetilde{K}_{n}\left(e_{0};x\right)}=0
we have:
Report issue for preceding element
Corollary 1 Report issue for preceding element
If f ∈ C 2 ​ [ 0 , 1 ] f\in C^{2}\left[0,1\right] and x ∈ [ 0 , 1 ] , x\in\left[0,1\right], then
Report issue for preceding element
lim n → ∞ 2 ​ n ​ μ 2 ​ ( K ~ n ​ ( f ; x ) − f ​ ( x ) ) = \displaystyle\lim_{n\rightarrow\infty}2n\mu^{2}\left(\widetilde{K}_{n}\left(f;x\right)-f\left(x\right)\right)=
= ( μ ​ ( μ ​ x − 1 ) − μ ​ x ​ ( μ ​ x − 2 ) ) ​ [ f ′′ ​ ( x ) − 3 ​ μ ​ f ′ ​ ( x ) + 2 ​ μ 2 ​ f ​ ( x ) ] \displaystyle=\left(\mu\left(\mu x-1\right)-\mu x\left(\mu x-2\right)\right)\left[f^{{}^{\prime\prime}}\left(x\right)-3\mu f^{{}^{\prime}}\left(x\right)+2\mu^{2}f\left(x\right)\right]
+ μ ​ ( 2 ​ x − 1 ) ​ [ 2 ​ μ ​ f ′ ​ ( x ) − f ′′ ​ ( x ) ] . \displaystyle\quad+\mu\left(2x-1\right)\left[2\mu f^{{}^{\prime}}\left(x\right)-f^{{}^{\prime\prime}}\left(x\right)\right].
5 Convergence in L p , μ ​ [ 0 , 1 ] L_{p,\mu}\left[0,1\right] and L p ​ [ 0 , 1 ] L_{p}\left[0,1\right]
Report issue for preceding element
Let 1 ≤ p < ∞ 1\leq p<\infty be fixed and L p , μ ​ [ 0 , 1 ] L_{p,\mu}\left[0,1\right] be
the space of all functions for which exp μ f \exp_{\mu}f is Lebesgue integrable with
the p p -power over [ 0 , 1 ] . \left[0,1\right]. The norm in L p , μ ​ [ 0 , 1 ] L_{p,\mu}\left[0,1\right] is defined as
Report issue for preceding element
‖ f ‖ p , μ := ( ∫ 0 1 | e − μ ​ x ​ f ​ ( x ) | p ​ 𝑑 x ) 1 / p . \left\|f\right\|_{p,\mu}:=\left(\int_{0}^{1}\left|e^{-\mu x}f\left(x\right)\right|^{p}dx\right)^{1/p}.
The norm of a linear operator L n L_{n} acting from the space L p , μ L_{p,\mu} to
L p , μ L_{p,\mu} given by
Report issue for preceding element
‖ L n ‖ L p , μ , L p , μ := sup ‖ f ‖ p , μ ≠ 0 ​ ‖ L n ​ f ‖ p , μ ‖ f ‖ p , μ . \left\|L_{n}\right\|_{L_{p,\mu},L_{p,\mu}}:=\underset{\left\|f\right\|_{p,\mu}\neq 0}{\sup}\frac{\left\|L_{n}f\right\|_{p,\mu}}{\left\|f\right\|_{p,\mu}}.
Also, K ~ n \widetilde{K}_{n} maps the space L 1 , μ ​ [ 0 , 1 ] L_{1,\mu}\left[0,1\right] into
the space C ​ [ 0 , 1 ] . C\left[0,1\right].
Report issue for preceding element
Lemma 6 Report issue for preceding element
For f ∈ L p , μ ​ [ 0 , 1 ] , f\in L_{p,\mu}\left[0,1\right], we haveK ~ n ​ ( f ) ∈ L p , μ ​ [ 0 , 1 ] \mathcal{\ }\widetilde{K}_{n}\left(f\right)\in L_{p,\mu}\left[0,1\right] and for all n ∈ ℕ , n\in\mathbb{N}, ‖ K ~ n ‖ L p , μ , L p , μ ≤ e μ ​ ( p − 1 ) p . \left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}\leq e^{\mu\frac{\left(p-1\right)}{p}}.
Report issue for preceding element
Proof Report issue for preceding element
Applying the Jensen’s inequality to the measure ( n + 1 ) ​ d ​ t (n+1)dt , we get
Report issue for preceding element
| K ~ n ​ ( f ; x ) | p \displaystyle\left|\widetilde{K}_{n}\left(f;x\right)\right|^{p}
≤ ( ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ | f ​ ( t ) | ​ 𝑑 t ) p \displaystyle\leq\left(\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\left|f\left(t\right)\right|dt\right)^{p}
≤ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ( a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ | f ​ ( t ) | ​ 𝑑 t ) p \displaystyle\leq\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\left(a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\left|f\left(t\right)\right|dt\right)^{p}
≤ max x ∈ [ 0 , 1 ] ( a n + 1 ′ ( x ) ) p − 1 ∑ k = 0 n p n , k ( a n + 1 ( x ) ) a n + 1 ′ ( x ) e μ ​ p ​ x ( n + 1 ) \displaystyle\leq\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu px}\left(n+1\right)
⋅ ∫ k n + 1 k + 1 n + 1 e − μ ​ p ​ t | f ( t ) | p d t . \displaystyle\quad\cdot\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt.
(35)
If we take the integral on the interval [ 0 , 1 ] \left[0,1\right] , we
obtain
Report issue for preceding element
∫ 0 1 | e − μ ​ x ​ K ~ n ​ ( f ; x ) | p ​ 𝑑 x \displaystyle\int_{0}^{1}\left|e^{-\mu x}\widetilde{K}_{n}\left(f;x\right)\right|^{p}dx
≤ max x ∈ [ 0 , 1 ] ( a n + 1 ′ ( x ) ) p − 1 ∑ k = 0 n ∫ 0 1 p n , k ( a n + 1 ( x ) ) a n + 1 ′ ( x ) d x \displaystyle\leq\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}\int_{0}^{1}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)dx
⋅ [ ( n + 1 ) ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ p ​ t ​ | f ​ ( t ) | p ​ 𝑑 t ] \displaystyle\quad\cdot\left[\left(n+1\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt\right]
= max x ∈ [ 0 , 1 ] ( a n + 1 ′ ( x ) ) p − 1 ∑ k = 0 n ∫ k n + 1 k + 1 n + 1 e − μ ​ p ​ t | f ( t ) | p d t \displaystyle=\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt
= max x ∈ [ 0 , 1 ] ( a n + 1 ′ ( x ) ) p − 1 ∫ 0 1 e − μ ​ p ​ t | f ( t ) | p d t . \displaystyle=\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\int_{0}^{1}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt.
Since
Report issue for preceding element
max x ∈ [ 0 , 1 ] ( a n + 1 ′ ​ ( x ) ) = μ n + 1 ​ e μ / ( n + 1 ) e μ / ( n + 1 ) − 1 , \max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1},
using the inequality u ≤ e u − 1 , u\leq e^{u}-1, u > 0 , u>0, we have
Report issue for preceding element
max x ∈ [ 0 , 1 ] ( a n + 1 ′ ​ ( x ) ) \displaystyle\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)
= μ n + 1 ​ e μ / ( n + 1 ) e μ / ( n + 1 ) − 1 ≤ μ n + 1 ​ ( e μ / ( n + 1 ) μ / ( n + 1 ) ) \displaystyle=\frac{\mu}{n+1}\frac{e^{\mu/\left(n+1\right)}}{e^{\mu/\left(n+1\right)}-1}\leq\frac{\mu}{n+1}\left(\frac{e^{\mu/\left(n+1\right)}}{\mu/\left(n+1\right)}\right)
≤ e μ / ( n + 1 ) . \displaystyle\leq e^{\mu/\left(n+1\right)}.
(36)
Consequently we get
Report issue for preceding element
‖ K ~ n ​ ( f ) ‖ p , μ ≤ e μ n + 1 ​ ( p − 1 ) p ​ ‖ f ‖ p , μ . \left\|\widetilde{K}_{n}\left(f\right)\right\|_{p,\mu}\leq e^{\frac{\mu}{n+1}\frac{\left(p-1\right)}{p}}\left\|f\right\|_{p,\mu}.
In view of this inequality, for all n ∈ ℕ n\in\mathbb{N} we can write
Report issue for preceding element
‖ K ~ n ‖ L p , μ , L p , μ ≤ e μ ​ ( p − 1 ) p . \left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}\leq e^{\mu\frac{\left(p-1\right)}{p}}.
Theorem 5.1 Report issue for preceding element
Let f ∈ L p , μ ​ [ 0 , 1 ] f\in L_{p,\mu}\left[0,1\right] for 1 ≤ p < ∞ . 1\leq p<\infty. Then we have
Report issue for preceding element
lim n → ∞ ‖ K ~ n ​ ( f ) − f ‖ p , μ = 0 . \lim_{n\rightarrow\infty}\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p,\mu}=0.
Proof Report issue for preceding element
From the Luzin theorem for a given ε > 0 \varepsilon>0 , there exists g ∈ C ​ [ 0 , 1 ] g\in C[0,1]
such that
Report issue for preceding element
‖ f − g ‖ p , μ < ε . \left\|f-g\right\|_{p,\mu}<\varepsilon.
On the other hand, since K ~ n ​ g \widetilde{K}_{n}g converges to g g uniformly on
[ 0 , 1 ] , \left[0,1\right], there exists an n 0 ∈ N n_{0}\in N such that, for n ≥ n 0 n\geq n_{0}
Report issue for preceding element
‖ K ~ n ​ ( g ) − g ‖ ∞ < ε . \left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{\infty}<\varepsilon.
In view of the above inequalities
Report issue for preceding element
‖ K ~ n ​ ( f ) − f ‖ p , μ \displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p,\mu}
≤ ‖ K ~ n ​ ( f ) − K ~ n ​ ( g ) ‖ p , μ + ‖ K ~ n ​ ( g ) − g ‖ ∞ + ‖ f − g ‖ p , μ \displaystyle\leq\left\|\widetilde{K}_{n}\left(f\right)-\widetilde{K}_{n}\left(g\right)\right\|_{p,\mu}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{\infty}+\left\|f-g\right\|_{p,\mu}
≤ ( ‖ K ~ n ‖ L p , μ , L p , μ + 1 ) ​ ‖ f − g ‖ p , μ + ‖ K ~ n ​ ( g ) − g ‖ ∞ \displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}+1\right)\left\|f-g\right\|_{p,\mu}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{\infty}
≤ ( ‖ K ~ n ‖ L p , μ , L p , μ + 2 ) ​ ε . \displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p,\mu},L_{p,\mu}}+2\right)\varepsilon.
for n ≥ n 0 . n\geq n_{0}. Thus, we have the desired result.
Report issue for preceding element
Now we want to give a quantitative approximation theorem for (8 ) in the
space L p ​ [ 0 , 1 ] . L_{p}\left[0,1\right]. To describe our results we will use the
following integral modulus of continuity defined by
Report issue for preceding element
ω ( f ; t ) L p = sup 0 ≤ h < t ∥ f ( ⋅ + h ) − f ( ⋅ ) ∥ L p ​ [ 0 , 1 ] . \omega\left(f;t\right)_{L_{p}}=\sup_{0\leq h<t}\left\|f\left(\cdot+h\right)-f\left(\cdot\right)\right\|_{L_{p}\left[0,1\right].}
∥ ⋅ ∥ L p \left\|\cdot\right\|_{L_{p}} denotes the usual L p L_{p} norm and the
corresponding K K -functionals is defined by
Report issue for preceding element
K p ​ ( f ; t ) := inf g ∈ A ​ C ​ [ 0 , 1 ] , g ′ ∈ L p { ‖ f − g ‖ L p + t ​ ‖ g ′ ‖ L p } , K_{p}\left(f;t\right):=\inf_{g\in AC\left[0,1\right],g^{{}^{\prime}}\in L_{p}}\left\{\left\|f-g\right\|_{L_{p}}+t\left\|g^{{}^{\prime}}\right\|_{L_{p}}\right\},
where A ​ C ​ [ 0 , 1 ] AC\left[0,1\right] indicates the set of all absolute continuous
functions on the interval [ 0 , 1 ] \left[0,1\right] . We know that K p ​ ( f ; t ) K_{p}\left(f;t\right) and ω ​ ( f ; t ) L p \omega\left(f;t\right)_{L_{p}} are equivalent (see
(Devore, , Theorem 2.1) ), i.e., there is a constant C C such that
Report issue for preceding element
C − 1 ​ ω ​ ( f ; t ) L p ≤ K p ​ ( f ; t ) ≤ C ​ ω ​ ( f ; t ) L p . C^{-1}\omega\left(f;t\right)_{L_{p}}\leq K_{p}\left(f;t\right)\leq C\omega\left(f;t\right)_{L_{p}}.
(37)
For given f ∈ L p ​ [ 0 , 1 ] f\in L_{p}\left[0,1\right] , the Hardy-Littlewood maximum
function is defined by
Report issue for preceding element
M ​ ( f ; x ) = sup 0 ≤ t ≤ 1 t ≠ x ​ 1 t − x ​ ∫ x t | f ​ ( u ) | ​ 𝑑 u . M\left(f;x\right)=\underset{t\neq x}{\sup_{0\leq t\leq 1}}\frac{1}{t-x}\int_{x}^{t}\left|f\left(u\right)\right|du.
(38)
It is well known that (see Stein )
Report issue for preceding element
‖ M ​ ( f ) ‖ L p ≤ C p ​ ‖ f ‖ L p . \left\|M\left(f\right)\right\|_{L_{p}}\leq C_{p}\left\|f\right\|_{L_{p}}.
(39)
Also, as in (35 ), considering (36 ) we can write
Report issue for preceding element
| K ~ n ​ ( f ; x ) | p \displaystyle\left|\widetilde{K}_{n}\left(f;x\right)\right|^{p}
≤ max x ∈ [ 0 , 1 ] ( a n + 1 ′ ( x ) ) p − 1 ∑ k = 0 n p n , k ( a n + 1 ( x ) ) a n + 1 ′ ( x ) e μ ​ p ​ x ( n + 1 ) \displaystyle\leq\max_{x\in\left[0,1\right]}\left(a_{n+1}^{{}^{\prime}}\left(x\right)\right)^{p-1}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu px}\left(n+1\right)
⋅ ∫ k n + 1 k + 1 n + 1 e − μ ​ p ​ t | f ( t ) | p d t \displaystyle\quad\cdot\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu pt}\left|f\left(t\right)\right|^{p}dt
≤ e μ ​ p ​ e μ n + 1 ​ ( p − 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ ∫ k n + 1 k + 1 n + 1 | f ​ ( t ) | p ​ 𝑑 t . \displaystyle\leq e^{\mu p}e^{\frac{\mu}{n+1}\left(p-1\right)}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|f\left(t\right)\right|^{p}dt.
Integrating, we have
Report issue for preceding element
∫ 0 1 | K ~ n ​ ( f ; x ) | p ​ 𝑑 x \displaystyle\int_{0}^{1}\left|\widetilde{K}_{n}\left(f;x\right)\right|^{p}dx
≤ e μ ​ p ​ e μ n + 1 ​ ( p − 1 ) ​ ∑ k = 0 n ( ( n + 1 ) ​ ∫ 0 1 p n , k ​ ( a n + 1 ​ ( x ) ) ​ a n + 1 ′ ​ ( x ) ​ 𝑑 x ) \displaystyle\leq e^{\mu p}e^{\frac{\mu}{n+1}\left(p-1\right)}\sum\limits_{k=0}^{n}\left(\left(n+1\right)\int_{0}^{1}p_{n,k}\left(a_{n+1}\left(x\right)\right)a_{n+1}^{{}^{\prime}}\left(x\right)dx\right)
⋅ ∫ k n + 1 k + 1 n + 1 | f ( t ) | p d t \displaystyle\quad\cdot\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|f\left(t\right)\right|^{p}dt
≤ e μ ​ p ​ e μ n + 1 ​ ( p − 1 ) ​ ∑ k = 0 n ∫ k n + 1 k + 1 n + 1 | f ​ ( t ) | p ​ 𝑑 t \displaystyle\leq e^{\mu p}e^{\frac{\mu}{n+1}\left(p-1\right)}\sum\limits_{k=0}^{n}\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|f\left(t\right)\right|^{p}dt
and
Report issue for preceding element
‖ K ~ n ​ ( f ) ‖ p ≤ e μ ​ e μ n + 1 ​ ( p − 1 ) p ​ ‖ f ‖ p . \left\|\widetilde{K}_{n}\left(f\right)\right\|_{p}\leq e^{\mu}e^{\frac{\mu}{n+1}\frac{\left(p-1\right)}{p}}\left\|f\right\|_{p}.
Consequently, for all n ∈ ℕ n\in\mathbb{N} we can write
Report issue for preceding element
‖ K ~ n ‖ L p , L p ≤ e μ ​ e μ ​ ( p − 1 ) p . \left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}\leq e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}.
(40)
Lemma 7 Report issue for preceding element
Let g ∈ A ​ C ​ [ 0 , 1 ] g\in AC[0,1] and g ′ ∈ L p ​ [ 0 , 1 ] , g^{{}^{\prime}}\in L_{p}[0,1],
p > 1 . p>1. Then we have
Report issue for preceding element
‖ K ~ n ​ ( g ) − g ‖ p ≤ α n , μ ​ ‖ g ‖ p + μ − 1 ​ ( β n , μ ) 1 / 2 ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ C p ​ ‖ g ′ ‖ p . \left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}\leq\alpha_{n,\mu}\left\|g\right\|_{p}+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}.
where α n , μ \alpha_{n,\mu} , β n , μ \beta_{n,\mu} are defined as in Lemma 4 and
C p C_{p} is defined in (39 ).
Report issue for preceding element
Proof Report issue for preceding element
Using the equality g ​ ( t ) = g ​ ( x ) + ∫ x t g ′ ​ ( u ) ​ 𝑑 u , g\left(t\right)=g\left(x\right)+\int_{x}^{t}g^{{}^{\prime}}\left(u\right)du, we can write
Report issue for preceding element
K ~ n ​ ( g ; x ) − g ​ ( x ) + g ​ ( x ) − g ​ ( x ) ​ K ~ n ​ ( e 0 ; x ) = \displaystyle\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)+g\left(x\right)-g\left(x\right)\widetilde{K}_{n}\left(e_{0};x\right)=
= a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ ( g ​ ( t ) − g ​ ( x ) ) ​ 𝑑 t \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\left(g\left(t\right)-g\left(x\right)\right)dt
= a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 e − μ ​ t ​ ∫ x t g ′ ​ ( u ) ​ 𝑑 u ​ 𝑑 t . \displaystyle=a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{-\mu t}\int_{x}^{t}g^{{}^{\prime}}\left(u\right)dudt.
Hence
Report issue for preceding element
| K ~ n ​ ( g ; x ) − g ​ ( x ) | ≤ \displaystyle\left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq
≤ max x ∈ [ 0 , 1 ] | K ~ n ​ ( e 0 ; x ) − 1 | ​ | g ​ ( x ) | \displaystyle\leq\max_{x\in\left[0,1\right]}\left|\widetilde{K}_{n}\left(e_{0};x\right)-1\right|\left|g\left(x\right)\right|
+ M ​ ( g ′ ; x ) ​ a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 | t − x | ​ 𝑑 t , \displaystyle\quad+M\left(g^{{}^{\prime}};x\right)a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|t-x\right|dt,
where
Report issue for preceding element
M ​ ( g ′ ; x ) = sup 0 ≤ t ≤ 1 x ≠ t ​ 1 t − x ​ ∫ x t | g ′ ​ ( u ) | ​ 𝑑 u M\left(g^{{}^{\prime}};x\right)=\underset{x\neq t}{\sup_{0\leq t\leq 1}}\frac{1}{t-x}\int_{x}^{t}\left|g^{{}^{\prime}}\left(u\right)\right|du
is defined as in (38 ). By Lagrange’s theorem for x ∈ ( 0 , 1 ) x\in\left(0,1\right) and t ∈ [ 0 , 1 ] , t\in\left[0,1\right], we get
Report issue for preceding element
μ ​ | t − x | ≤ | exp μ , x ( t ) | . \mu\left|t-x\right|\leq\left|\exp_{\mu,x}\left(t\right)\right|.
Considering (22 ) and using the above inequality with Cauchy-Schwarz
inequality, we get
Report issue for preceding element
| K ~ n ​ ( g ; x ) − g ​ ( x ) | ≤ \displaystyle\left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq
≤ α n , μ ​ | g ​ ( x ) | + μ − 1 ​ M ​ ( g ′ ; x ) ​ ( a n + 1 ′ ​ ( x ) ​ ( n + 1 ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 𝑑 t ) 1 / 2 \displaystyle\leq\alpha_{n,\mu}\left|g\left(x\right)\right|+\mu^{-1}M\left(g^{{}^{\prime}};x\right)\left(a_{n+1}^{{}^{\prime}}\left(x\right)\left(n+1\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}dt\right)^{1/2}
× ( a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 exp μ , x 2 ( t ) ​ 𝑑 t ) 1 / 2 \displaystyle\quad\times\left(a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\exp_{\mu,x}^{2}\left(t\right)dt\right)^{1/2}
≤ α n , μ ​ | g ​ ( x ) | \displaystyle\leq\alpha_{n,\mu}\left|g\left(x\right)\right|
+ μ − 1 ​ M ​ ( g ′ ; x ) ​ ( a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ) 1 / 2 \displaystyle\quad+\mu^{-1}M\left(g^{{}^{\prime}};x\right)\left(a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\right)^{1/2}
× ( a n + 1 ′ ​ ( x ) ​ e μ ​ x ​ ( n + 1 ) ​ ∑ k = 0 n p n , k ​ ( a n + 1 ​ ( x ) ) ​ ∫ k n + 1 k + 1 n + 1 exp μ , x 2 ( t ) ​ 𝑑 t ) 1 / 2 . \displaystyle\times\left(a_{n+1}^{{}^{\prime}}\left(x\right)e^{\mu x}\left(n+1\right)\sum\limits_{k=0}^{n}p_{n,k}\left(a_{n+1}\left(x\right)\right)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\exp_{\mu,x}^{2}\left(t\right)dt\right)^{1/2}.
Using (36 ) we have
Report issue for preceding element
| K ~ n ​ ( g ; x ) − g ​ ( x ) | ≤ α n , μ ​ | g ​ ( x ) | + μ − 1 ​ M ​ ( g ′ ; x ) ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ ( K ~ n ​ ( exp μ , x 2 ( t ) ; x ) ) 1 / 2 . \left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq\alpha_{n,\mu}\left|g\left(x\right)\right|+\mu^{-1}M\left(g^{{}^{\prime}};x\right)e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}\left(\widetilde{K}_{n}\left(\exp_{\mu,x}^{2}\left(t\right);x\right)\right)^{1/2}.
From (24 ) we can write
Report issue for preceding element
| K ~ n ​ ( g ; x ) − g ​ ( x ) | ≤ α n , μ ​ | g ​ ( x ) | + μ − 1 ​ M ​ ( g ′ ; x ) ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ ( β n , μ ) 1 / 2 . \left|\widetilde{K}_{n}\left(g;x\right)-g\left(x\right)\right|\leq\alpha_{n,\mu}\left|g\left(x\right)\right|+\mu^{-1}M\left(g^{{}^{\prime}};x\right)e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}\left(\beta_{n,\mu}\right)^{1/2}.
Considering (39 ), we get
Report issue for preceding element
‖ K ~ n ​ ( g ) − g ‖ p ≤ α n , μ ​ ‖ g ‖ p + μ − 1 ​ ( β n , μ ) 1 / 2 ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ C p ​ ‖ g ′ ‖ p . \left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}\leq\alpha_{n,\mu}\left\|g\right\|_{p}+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}.
Theorem 5.2 Report issue for preceding element
Let f ∈ L p ​ [ 0 , 1 ] , f\in L_{p}\left[0,1\right], p > 1 . p>1. Then we have
Report issue for preceding element
‖ K ~ n ​ ( f ) − f ‖ p ≤ α n , μ ​ ‖ f ‖ p + C ​ K ​ ω ​ ( f ; ( β n , μ ) 1 / 2 ) L p , \left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p}\leq\alpha_{n,\mu}\left\|f\right\|_{p}+CK\omega\left(f;\left(\beta_{n,\mu}\right)^{1/2}\right)_{L_{p}},
where K := max { e μ ​ e μ ​ ( p − 1 ) p + α n , μ + 1 , μ − 1 ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ C p } . K:=\max\left\{e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}+\alpha_{n,\mu}+1,\mu^{-1}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\right\}.
Report issue for preceding element
Proof Report issue for preceding element
For g ∈ A ​ C ​ [ 0 , 1 ] , g ′ ∈ L p g\in AC\left[0,1\right],\ g^{\prime}\in L_{p} , we can write
Report issue for preceding element
‖ K ~ n ​ ( f ) − f ‖ p \displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p}
= ‖ K ~ n ​ ( f − g + g ) − f ‖ p \displaystyle=\left\|\widetilde{K}_{n}\left(f-g+g\right)-f\right\|_{p}
≤ ‖ K ~ n ​ ( f − g ) − ( f − g ) + ( K ~ n ​ ( g ) − g ) ‖ p \displaystyle\leq\left\|\widetilde{K}_{n}\left(f-g\right)-\left(f-g\right)+\left(\widetilde{K}_{n}\left(g\right)-g\right)\right\|_{p}
≤ ‖ K ~ n ​ ( f − g ) ‖ p + ‖ f − g ‖ p + ‖ K ~ n ​ ( g ) − g ‖ p \displaystyle\leq\left\|\widetilde{K}_{n}\left(f-g\right)\right\|_{p}+\left\|f-g\right\|_{p}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}
≤ ( ‖ K ~ n ‖ L p , L p + 1 ) ​ ‖ f − g ‖ p + ‖ K ~ n ​ ( g ) − g ‖ p \displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}+1\right)\left\|f-g\right\|_{p}+\left\|\widetilde{K}_{n}\left(g\right)-g\right\|_{p}
Using the fact that ‖ K ~ n ‖ L p , L p ≤ e μ ​ e μ ​ ( p − 1 ) p \left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}\leq e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}} (see (40 )) and
Lemma 7 , we get
Report issue for preceding element
‖ K ~ n ​ ( f ) − f ‖ p ≤ \displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p}\leq
≤ ( ‖ K ~ n ‖ L p , L p + 1 ) ​ ‖ f − g ‖ p + α n , μ ​ ‖ g ‖ p + μ − 1 ​ ( β n , μ ) 1 / 2 ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ C p ​ ‖ g ′ ‖ p \displaystyle\leq\left(\left\|\widetilde{K}_{n}\right\|_{L_{p},L_{p}}+1\right)\left\|f-g\right\|_{p}+\alpha_{n,\mu}\left\|g\right\|_{p}+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}
≤ ( e μ ​ e μ ​ ( p − 1 ) p + 1 ) ​ ‖ f − g ‖ p + α n , μ ​ ‖ f − g ‖ p + α n , μ ​ ‖ f ‖ p + \displaystyle\leq\left(e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}+1\right)\left\|f-g\right\|_{p}+\alpha_{n,\mu}\left\|f-g\right\|_{p}+\alpha_{n,\mu}\left\|f\right\|_{p}+
+ μ − 1 ​ ( β n , μ ) 1 / 2 ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ C p ​ ‖ g ′ ‖ p . \displaystyle\quad+\mu^{-1}\left(\beta_{n,\mu}\right)^{1/2}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\left\|g^{{}^{\prime}}\right\|_{p}.
Define max { e μ ​ e μ ​ ( p − 1 ) p + α n , μ + 1 , μ − 1 ​ e μ 2 ​ ( 2 + 1 n + 1 ) ​ C p } := K \max\left\{e^{\mu}e^{\mu\frac{\left(p-1\right)}{p}}+\alpha_{n,\mu}+1,\mu^{-1}e^{\frac{\mu}{2}\left(2+\frac{1}{n+1}\right)}C_{p}\right\}:=K , we have (see (5.3))
Report issue for preceding element
‖ K ~ n ​ ( f ) − f ‖ p \displaystyle\left\|\widetilde{K}_{n}\left(f\right)-f\right\|_{p}
≤ α n , μ ​ ‖ f ‖ p + K ​ ( ‖ f − g ‖ p + ( β n , μ ) 1 / 2 ​ ‖ g ′ ‖ p ) \displaystyle\leq\alpha_{n,\mu}\left\|f\right\|_{p}+K\left(\left\|f-g\right\|_{p}+\left(\beta_{n,\mu}\right)^{1/2}\left\|g^{{}^{\prime}}\right\|_{p}\right)
≤ α n , μ ​ ‖ f ‖ p + C ​ K ​ ω ​ ( f ; ( β n , μ ) 1 / 2 ) L p . \displaystyle\leq\alpha_{n,\mu}\left\|f\right\|_{p}+CK\omega\left(f;\left(\beta_{n,\mu}\right)^{1/2}\right)_{L_{p}}.
Acknowledgements. Report issue for preceding element We are grateful to the referee for very helpful comments and suggestions.