## Abstract

In this note we introduce a compound operator depending on s parameters using binomial sequences.

We compute the values of this operator on the test functions, we give a convergence theorem and a representation of the remainder in the corresponding approximation formula.

We also mention some special cases of this operator.

## Authors

M. **Craciun**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

## Keywords

Compound linear and positive approximation operators; polynomial sequences of binomial type; integral representation of remainder.

## References

##### Cite this paper as:

M. Crăciun, *On compound operators depending on s parameters*, Rev. Anal. Numér. Théor. Approx., vol. 33 (2004) no. 1, pp.51-60.

## About this paper

##### Publisher Name

##### Paper on the journal website

##### Print ISSN

1222-9024

##### Online ISSN

2457-8126

##### Google Scholar Profile

[1] Agratini, O., *On simultaneous approximation by Stancu-Bernstein operators*, Approximation and Optimization, ICAOR Cluj-Napoca, vol. II, pp. 157–162, 1996.

[2] Agratini, O., *Binomial polynomials and their applications in approximation theory*, Conf. Semin. Mat. Univ. Bari, 281, pp. 1–22, 2001.

[3] Altomare, F. and Campiti, M., *Korovkin-type approximation theory and its applications*. Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff. de Gruyter Studies in Mathematics, 17. Walter de Gruyter & Co., Berlin, 1994.

[4] Brass, H., *Eine Verallgemeinerung der Bernsteinschen 0peratoren*, Abhandl. Math. Sem. Univ. Hamburg, 36, pp. 111–122, 1971.

[5] Craciun, M., *Approximation operators constructed by means of Sheffer sequences*, Rev. Anal. Numer. Theor. Approx., 30, no. 2, pp. 135–150, 2001.

[6] Craciun, M., *On an approximating operator and its Lipschitz constant*, Rev. Anal. Numer. Theor. Approx., 31, no. 1, pp. 55–60, 2002.

[7] Craciun, M., *On compound operators constructed with binomial and Sheffer sequences*, Rev. Anal. Numer. Theor. Approx., 32, no. 2, pp. 135–144, 2003.

[8] Di Bucchianico, A., *Polynomials of convolution type*, PhD thesis, University of Groningen, The Netherlands, 1991.

[9] Di Bucchianico, A., *Probabilistic and Analytical Aspects of the Umbral Calculus*, CWI Tract 119, 1997.

[10] Di Bucchianico, A. and Loeb, D.E., *A selected survey of umbral calculus*. Electron. J. Combin., 2, Dynamic Survey 3, 1995.

[11] Lupas, L. and Lupas, A. *Polynomials of binomial type and approximation operators*, Studia Univ. Babes-Bolyai, Mathematica, 32, 4, pp. 61–69, 1987.

[12] Lupas, A., *Approximation operators of binomial type*, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM vol. 132, Birkhauser Verlag, Basel, pp. 175–198, 1999.

[13] Manole, C., *Expansions in series of generalized Appell polynomials with applications to the approximation of functions*, PhD Thesis, “Babes-Bolyai” University, Cluj Napoca, 1984 (in Romanian).

[14] Manole, C., *Approximation operators of binomial type*, Univ. of Cluj-Napoca, Research Seminars, Seminar on numerical and statistical calculus, Preprint nr. 9, pp. 93 -98, 1987.

[15] Mihesan, V., *Lipschitz constants for operators of binomial type of a Lipschitz continuous function*. RoGer 2000—Bra¸sov, pp. 81–87, Schr.reihe Fachbereichs Math. Gerhard Mercator Univ., 485, Gerhard-Mercator-Univ., Duisburg, 2000.

[16] Mullin, R. and Rota, G.-C., *On the foundations of combinatorial theory III, Theory of binomial enumeration*, Graph Theory and its Applications, Academic Press, New York, 1970, pp. 167–213.

[17] Popoviciu, T., *Remarques sur les poynomes binomiaux*, Bul. Soc. Stiinte Cluj, 6, pp. 146–148, 1931.

[18] Roman, S., *The umbral calculus*, Pure and Applied Mathematics, 111, Academic Press, Inc., New York, 1984, X+193 pp.

[19] Rota, G.C., Kahaner, D. and Odlyzko, A., *Finite Operator Calculus*, J. Math. Anal. Appl., 42, pp. 685–760, 1973.

[20] Sablonniere, P. , *Positive Bernstein-Sheffer Operators*, J. Approx. Theory, 83, pp. 330–341, 1995.

[21] Stancu, D. D., *Approximation of functions by a new class of linear positive operators*, Rev. Roum. Math. Pures et Appl., 13, pp. 1173–1194, 1968.

[22] Stancu, D. D., *Use of probabilistic methods in the theory of uniform approximation of continuous functions*, Rev. Roumaine Math. Pures Appl., 14, pp. 673–691, 1969.

[23] Stancu, D. D., *Approximation properties of a class of linear positive operators*, Studia Univ. Babes-Bolyai, Cluj, 15, pp. 31–38, 1970.

[24] Stancu, D. D., *Approximation of functions by means of some new classes of positive linear operators*, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM vol. 16, Birkh¨auser-Verlag, Basel, pp. 187–203, 1972.

[25] Stancu, D. D., *Quadrature formulas constructed by using certain linear positive operators*, Numerical Integration, Proc. Conf. Oberwolfach, 1981 ISNM vol. 57, Birkh¨auserVerlag, Basel, pp. 241–251, 1982.

[26] Stancu, D. D., *Approximation of functions by means of a new generalized Bernstein operator*, Calcolo, 20, no. 2, pp. 211–229, 1983.

[27] Stancu, D. D., *A note on a multiparameter Bernstein-type approximating operator*, Mathematica (Cluj) 26(49), no. 2, pp. 153–157, 1984.

[28] Stancu, D. D., *Bivariate approximation by some Bernstein-type operators*, Proc. Colloq. Approx. Optim., Cluj-Napoca, pp. 25–34, 1984.

[29] Stancu, D. D., *Representation of remainders in approximation formulae by some discrete type linear positive operators*, Rendiconti del Circolo Matematico di Palermo, Suppl., 52, pp. 781–791, 1998.

[30] Stancu, D. D., *A note on the remainder in a polynomial approximation formula*. Studia Univ. Babes-Bolyai Math., 41, no. 2, pp. 95–101, 1996.

[31] Stancu, D. D., *On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu*, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 95 -105, 2001.

[32] Stancu, D. D., *On approximation of functions by means of compound poweroid operators*, Mathematical Analysis and Approximation Theory, Proceedings of ROGER 2002-Sibiu, pp. 259–272, 2002.

[33] Stancu, D. D., and Drane, J. W., *Approximation of functions by means of the poweroid operators S/α/m,r,s*, Trends in approximation theory (Nashville, TN, 2000), pp. 401–405, Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2001.

[34] Stancu, D. D. and Occorsio, M. R., *On approximation by binomial operators of Tiberiu Popoviciu type*, Rev. Anal. Numer. Theor. Approx., 27, no. 1, pp. 167–181, 1998.

[35] Stancu, D. D. and Simoncelli, A. C., *Compound poweroid operators of approximation*, Rendiconti del Circolo Matematico di Palermo, Suppl. 68, pp. 845–854, 2002.

[36] Stancu, D. D. and Vernescu, A., *Approximation of bivariate functions by means of a class of operators of Tiberiu Popoviciu type*, Mathematical Reports, Bucuresti, (1) 51, no. 3, pp. 411–419, 1999.