Abstract
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Keywords
Scanned paper: on the journal website.
Latex version of the paper.
Cite this paper as:
I. Păvăloiu, On computational complexity in solving equations by interpolation methods, Rev. Anal. Numér. Théor. Approx., 24 (1995) no. 1, pp. 201-214.
About this paper
Publisher Name
paper on journal website
Print ISSN
1222-9024
Online ISSN
2457-8126
References
[1] Brent, R., Winograd, S. and Wolfe, Ph., Optimal Iterative Processes for Root-Finding. Numer. Math. 20(5) (1973), pp. 327-341.
[2] Casulli, V. and Trigiante, D., Sui procedimenti Iterativi Compositi. Calcolo, XIII. IV (1976), pp. 403-420.
[3] Coman, Gh., Some practical Approximation Methods for Nonlinear
Equations. Mathematica Revue d’Analyse Num'{e}rique et de Th'{e}orie de l’Approximation, 11, 1-2 (1982), pp. 41-48.
[4] Kacewitcz, B., An Integral-Interpolation Iterative Method for the Soltuion of Scalar Equations, Numer. Math. 26 (4), (1976), pp. 355-365.
[5] Kung, H.T. and Traub, J.F., Optimal Order and Efficiency for Iterations With Two Evaluations. SIAM, Numer Anal. 13, 1, (1976), pp. 84-99.
[6] Ostrowski, M.A., Soltuion of Equations and Systems of Equations. Academic Press. New York and London (1960).
[7] Păvăloiu I., The Soltuion of the Equations by Interpolation (Romanian) Ed. Dacia Cluj-Napoca (1981).
[8] Păvăloiu I., Optimal Problems Concerning Interpolation Methods of Solution of Equations. Publications de L’Institut Mathematique Beograd. 52, (66), (1992), pp. 113-126.
[9] Traub, J.F., Iterative Methods for the Solution of Equations. Prentice-Hall, New York (1964).
[10] Traub, J.F., Theory of Optimal algorithms, Preprint. Department of Computer Science Carnegie-Mellon University (1973), pp. 1-22.
[11] Traub, J.F. and Wozniakowski, H., Optimal Radius of Convergence of Interpolatory Iterations for Operator Equations, Aequationes Mathematicae, 21 (1980), pp. 159-172.
[12] Turowicz, A.B., Sur les derivees d’ordre suprieur d’une fonction inverse, Ann. Polon Math.8 (1960), pp. 265-269.