## Abstract

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

## Authors

**Cristian Daniel Alecsa**

Babes-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania,

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

## Keywords

convex metric space; fixed point; iterative algorithm; rate of convergence; convex combination.

## Paper coordinates

C.-D. Alecsa, *On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces, *International Journal Of Nonlinear Analysis And Applications, 8 (2019) no. 1, pp. 353-388.

doi: 10.22075/ijnaa.2017.11144.1543

## About this paper

##### Journal

International Journal of Nonlinear Analysis and Applications

##### Publisher Name

##### Print ISSN

##### Online ISSN

2008-6822

google scholar link

[1] M. Abbas and T. Nazir, *A new faster iteration process applied to constrained minimization and feasibility problems*, Matematicki Vesnik 66 (2014) 223–234.

[2] R. Agarwal, D. O’Regan and D.R. Sahu, *Iterative construction of fixed points of nearly asymptotically nonexpansive mappings*, Journal of Nonlinear and Convex Analysis 8 (2007) 61–79.

[3] S. Akbulut and M. Ozdemir, *Picard iteration converges faster than Noor iteration for a class of quasi-contractive operators*, Chiang Mai J.Sci. 39 (2012) 688–692.

[4] V. Berinde, *Picard iteration converges faster than Man iteration for a class of quasi-contractive operators*, Fixed Point Theory Appl. 2014 (2004):1.

[5] M.R. Bridson and A. Haefliger, *Metric Spaces of Non-Positive Curvature*, Springer-Verlag, Berlin, Heidelberg, New York, 1999.

[6] H. Fukhar-ud-din and V. Berinde, *Iterative methods for the class of quasi-contractive type operators and comparsion of their rate of convergence in convex metric spaces*, Filomat 30 (2016) 223–230.

[7] K. Goebel and W. Kirk, *Iteration processes for nonexpansive mappings,* Topological Methods in Nonlinear Functional Analysis, Contemporary Mathematics 21, Amer. Math. Soc. Providence (1983), 115–123.

[8] F. Gursoy and V.Karakaya, *A Picard-S hybrid type iteration method for solving a differential equation with retarded argument*, http://arxiv.org/abs/1403.2546

[9] H.V. Machado, *A characterization of convex subsets of normed spaces,* Kodai Math. Sem. Rep. 25 (1973) 307–320.

[10] R. Chugh, P.Malik and V.Kumar, *On a new faster implicit fixed point iterative scheme in convex metric spaces*, J. Function Spaces (2015), Article ID 905834.

[11] W. Phuengrattana and S. Suantai, *Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach Spaces*, Thai J. Math. 11 (2013) 217–226.

[12] S. Reich and I. Safrir, *Nonexpansive iteration in hyperbolic* spaces, Nonlinear. Anal. 15 (1990) 537–558.

[13] W. Sintunavarat and A. Pitea, *On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis*, J. Nonlinear Science Appl. 9 (2016) 2553–2562.

[14] S. Suantai, *Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings*, J. Math. Anal. Appl. 311 (2005) 506–517.

[15] W. Takahashi, *A convexity in metric spaces and nonexpansive mappings*, Kodai Math. Sem. Rep. 22 (1970) 142–149.

[16] L.A. Talman, *Fixed points for condensing multifunctions in metric spaces with convex structure*, Kodai Math. Sem. Rep. 29 (1977) 62–70.

[17] T. Zamfirescu, *Fixed point theorems in metric spaces*, Arch. Math. (Basel), 23 (1972) 292–298.