Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Asupra unor ecuaţii funcţionale, Studii și cercetări științifice (Cluj), Seria I, tom. VI, nr. 34, pag. 37-49 (1955).

PDF

About this paper

Journal

Studii si Cercetari Matematice

Publisher Name

Academy of the Republic of S.R.

Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

On some functional equations

n+1n+1

f0(x),F1(x),,fn(x),f_{0}\left(x\right),F_{1}\left(x\right),\ldots,f_{n}\left(x\right),

It isIt is.

It isIt is can be foundn+1n+1 cand,and=0,1,,c_{i},i=0,1,\ldots, HAVEand=0ncandfand(x)=0\sum_{i=0}^{n}c_{i}f_{i}\left(x\right)=0, whatever it isxIt isx\in E.

It isIt is n+1n+1

V(f0,f1,,fnx1,x2,,xn+1)=fj1(xj)and,j=1,2,,n+1.V\binomial{f_{0},f_{1},\ldots,f_{n}}{x_{1},x_{2},\ldots,x_{n+1}}=\left\|f_{j-1}\left(x_{j}\right)\right\|_{i,j=1,2,\ldots,n+1}.

on the pointsxIt is,and=1,2,,n+1x\in E,i=1,2,\ldots,n+1 andand jj

V(1,x,x2,,xnx1,x2,,xn+1)=V(x1,x2,,xn+1)V\binomial{1,x,x^{2},\ldots,x^{n}}{x_{1},x_{2},\ldots,x_{n+1}}=V\left(x_{1},x_{2},\ldots,x_{n+1}\right)

x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1},

[x1,x2,,xn+1;f]=V(1,x,,xn1,fx1,x2,,xn+1)V(x1,x2,,xn+1)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]=\frac{V\binomial{1,x,\ldots,x^{n-1},f}{x_{1},x_{2},\ldots,x_{n+1}}}{V\left(x_{1},x_{2},\ldots,x_{n+1}\right)}

f(x)f\left(x\right) x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1}.

It isIt is

V(f0,f1,,fnx1,x2,,xn+1)=0V\binomial{f_{0},f_{1},\ldots,f_{n}}{x_{1},x_{2},\ldots,x_{n+1}}=0

xandIt is,and=1,2,,n+1x_{i}\in E,i=1,2,\ldots,n+1.

Forn=0n=0 true fornn and forn+1n+1

fand(x),and=0,1,,n1f_{i}\left(x\right),i=0,1,\ldots,n-1

existnnpuncture xandIt is,and=1,2,,nx_{i}\in E,i=1,2,\ldots,n,

V(f0,f1,,fn1x1,x2,,xn)0V\binomial{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{n}}\neq 0

But

V(f0,f1,,fnx1,x2,,xn,x)=0V\binomial{f_{0},f_{1},\ldots,f^{n}}{x_{1},x_{2},\ldots,x_{n},x}=0

whateverxIt isx\in E.

2. It isIt is It isIt is. n+1n+1puncturexand,and=1,2,,n+1x_{i},i=1,2,\ldots,n+1 It isIt is

V(f0,f1,,fnx1,x2,,xn+1)0.V\binomial{f_{0},f_{1},\ldots,f_{n}}{x_{1},x_{2},\ldots,x_{n+1}}\neq 0.

the distinct points x1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1} It isIt is. on the crowdIt isIt is.

any system ofn+1n+1 xand,and=1,2,,n+1x_{i},i=1,2,\ldots,n+1, n+1n+1 yand,and=1,2,,n+1y_{i},i=1,2,\ldots,n+1

yy, xand,and=1,2,,n+1x_{i},i=1,2,\ldots,n+1.

3. It isIt is [A,b]\left[a,b\right].

how many pointsx1,x2,,xn+1x_{1},x_{2},\ldots,x_{n+1} in order x1<x2<xn+1x_{1}<x_{2}<x_{n+1} find the points xand,xand",and=1,2,,n+1x_{i}^{\prime},x_{i}^{\prime\prime},i=1,2,\ldots,n+1 It isIt is

x1<x2<<xn+1,x1"<x2"<<xn+1"x_{1}^{\prime}<x_{2}^{\prime}<\ldots<x_{n+1}^{\prime},\ x_{1}^{\prime\prime}<x_{2}^{\prime\prime}<\ldots<x_{n+1}^{\prime\prime}

and

V(f0,f1,,fnx1,x2,,xn+1)>0,V(f0,f1,,fnx1",x2",,xn+1")0.V\binomial{f_{0},f_{1},\ldots,f_{n}}{x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{n+1}^{\prime}}>0,\ V\binomial{f_{0},f_{1},\ldots,f_{n}}{x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{n+1}^{\prime\prime}}\leq 0.

xand=λxand"+(1λ)xand,and=1,2,,n+1x_{i}=\lambda x_{i}^{\prime\prime}+\left(1-\lambda\right)x_{i}^{\prime},i=1,2,\ldots,n+1, λ\lambdaforλ[0,1]\lambda\in\left[0,1\right], λ=0\lambda=0,

λ=1\lambda=1So there is aλ,0<λ<1\lambda,0<\lambda<1 suchλ\lambda xandx_{i}

h(x;f0,f1,,fn)=V(f0,f1,,fnx,x+h,x+2h,,x+nh)\bigtriangleup_{h}\left(x;f_{0},f_{1},\ldots,f_{n}\right)=V\binomial{f_{0},f_{1},\ldots,f_{n}}{x,x+h,x+2h,\ldots,x+nh}

xandx_{i} for anythingx,x+nh[A,b]x,x+nh\in\left[a,b\right].

for the functions(n2)\left(n-2\right)

f0(x)\displaystyle f_{0}\left(x\right) =(1+x)(2+x),f1(x)=1+x,f2,x(1x),x[21]\displaystyle=\left(1+x\right)\left(2+x\right),f_{1}\left(x\right)=1+x,\ f_{2},-x\left(1-x\right),\ \ \ \ \ \ \ \ \ \ \ \ x\in\left[-2-1\right]
f0(x)\displaystyle f_{0}\left(x\right) =f1(x)=f2(x)=0,x[1,1]\displaystyle=f_{1}\left(x\right)=f_{2}\left(x\right)=0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in\left[-1,1\right]
f0(x)\displaystyle f_{0}\left(x\right) =1x,f1(x)=x(1x),f2(x)=(1x)(2x),x[1,2]\displaystyle=1-x,\ f_{1}\left(x\right)=-x\left(1-x\right),\ f_{2}\left(x\right)=\left(1-x\right)\left(2-x\right),\ \ \ \ x\in\left[1,2\right]

[2,2]\left[-2,2\right] h(x;f0,f1,f2)=0\bigtriangleup_{h}\left(x;f_{0},f_{1},f_{2}\right)=0, whatever it is2x,x+2h2-2\leq x,x+2h\leq 2.

However, the functionsf0(x),f1(x),f2(x)f_{0}\left(x\right),f_{1}\left(x\right),f_{2}\left(x\right) [2,2]\left[-2,2\right]

5.

fand(x)=xand,and=0,1,,n1f_{i}\left(x\right)=x^{i}\ ,i=0,1,\ldots,n-1
1!2!,,(n1)!hn(n1)2and=0n(1)nand(nand)fn(x+andh).1!2!,\ldots,\left(n-1\right)!h^{\frac{n\left(n-1\right)}{2}}\sum_{i=0}^{n}\left(-1\right)^{ni}\binomial{n}{i}f_{n}\left(x+ih\right).
and=0n(1)nand(nand)f(x+andh)=0,x,x+nh[A,b]\sum_{i=0}^{n}\left(-1\right)^{ni}\binomial{n}{i}f\left(x+ih\right)=0,\ x,x+nh\in\left[a,b\right]

n1n-1. f(x)f\left(x\right) f(x)f\left(x\right) [A,b]\left[a,b\right].

on the interval [A,b]\left[a,b\right].

h(f0,f1,,fn1,f)=0,x,x+nh[A,b]\bigtriangleup_{h}\left(f_{0},f_{1},\ldots,f_{n-1},f\right)=0,\ \ x,x+nh\in\left[a,b\right]

6.

Let's considern+2n+2puncturex1,x2,,xn+2x_{1},x_{2},\ldots,x_{n+2} 2n+12n+1

f0(x1)f_{0}\left(x_{1}\right) f1(x1)f_{1}\left(x_{1}\right) \cdots fn1(x1)f_{n-1}\left(x_{1}\right) f(x1)f\left(x_{1}\right) f0(x1)f_{0}\left(x_{1}\right) f1(x1)f_{1}\left(x_{1}\right) \cdots fn1(x1)f_{n-1}\left(x_{1}\right)
f0(x2)f_{0}\left(x_{2}\right) f1(x2)f_{1}\left(x_{2}\right) \cdots fn1(x2)f_{n-1}\left(x_{2}\right) f(x2)f\left(x_{2}\right) 0 0 \cdots 0
f0(x3)f_{0}\left(x_{3}\right) f1(x3)f_{1}\left(x_{3}\right) \cdots fn1(x3)f_{n-1}\left(x_{3}\right) f(x3)f\left(x_{3}\right) 0 0 \cdots 0
\cdots \cdots
f0(xand1)f_{0}\left(x_{i-1}\right) f1(xand1)f_{1}\left(x_{i-1}\right) \cdots fn1(xand1)f_{n-1}\left(x_{i-1}\right) f(xand1)f\left(x_{i-1}\right) 0 0 \cdots 0
f0(xand)f_{0}\left(x_{i}\right) f1(xand)f_{1}\left(x_{i}\right) \cdots fn1(xand)f_{n-1}\left(x_{i}\right) f(xand)f\left(x_{i}\right) f0(xand)f_{0}\left(x_{i}\right) f1(xand)f_{1}\left(x_{i}\right) \cdots fn1(xand)f_{n-1}\left(x_{i}\right)
f0(xand+1)f_{0}\left(x_{i+1}\right) f1(xand+1)f_{1}\left(x_{i+1}\right) \cdots fn1(xand+1)f_{n-1}\left(x_{i+1}\right) f(xand+1)f\left(x_{i+1}\right) 0 0 \cdots 0
f0(xand+2)f_{0}\left(x_{i+2}\right) f1(xand+2)f_{1}\left(x_{i+2}\right) \cdots fn1(xand+2)f_{n-1}\left(x_{i+2}\right) f(xand+2)f\left(x_{i+2}\right) 0 0 \cdots 0
\cdots \cdots
f0(xn+1)f_{0}\left(x_{n+1}\right) f1(xn+1)f_{1}\left(x_{n+1}\right) \cdots fn1(xn+1)f_{n-1}\left(x_{n+1}\right) f(xn+1)f\left(x_{n+1}\right) 0 0 \cdots 0
f0(xn+2)f_{0}\left(x_{n+2}\right) f1(xn+2)f_{1}\left(x_{n+2}\right) \cdots fn(xn+2)f_{n}\left(x_{n+2}\right) f(xn+2)f\left(x_{n+2}\right) f0(xn+2)f_{0}\left(x_{n+2}\right) f1(xn+2)f_{1}\left(x_{n+2}\right) \cdots fn1(xn+2)f_{n-1}\left(x_{n+2}\right)
0 0 \cdots 0 0 f0(x2)f_{0}\left(x_{2}\right) f1(x2)f_{1}\left(x_{2}\right) \cdots fn1(x2)f_{n-1}\left(x_{2}\right)
0 0 \cdots 0 0 f0(x3)f_{0}\left(x_{3}\right) f1(x3)f_{1}\left(x_{3}\right) \cdots fn1(x3)f_{n-1}\left(x_{3}\right)
\cdots \cdots
0 0 \cdots 0 0 f0(xitand1)f_{0}\left(xli-1\right) f1(xand1)f_{1}\left(x_{i-1}\right) \cdots fn1(xand1)f_{n-1}\left(x_{i-1}\right)
0 0 \cdots 0 0 f0(xand+1)f_{0}\left(x_{i+1}\right) f??(xand+1)f_{??}\left(x_{i+1}\right) \cdots fn1(xand+1)f_{n-1}\left(x_{i+1}\right)
0 0 \cdots 0 0 f0(xand+2)f_{0}\left(x_{i+2}\right) f1(xand+2)f_{1}\left(x_{i+2}\right) \cdots fn1(xand+2)f_{n-1}\left(x_{i+2}\right)
\cdots \cdots
0 0 \cdots 0 0 f0(xn+1)f_{0}\left(x_{n+1}\right) f1(xn+1)f_{1}\left(x_{n+1}\right) \cdots fn1(xn+???)f_{n-1}\left(x_{n+???}\right)

2andn+12\leq i\leq n+1 and=2i=2andand=n+1i=n+1.

n+1n+1

V(f0,f1,,fn1x2,x3,,xn+1)V(f0,f1,,fn1x1,x2,,xand1,xand+1,xand+2,,xn+2)=\displaystyle V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{2},x_{3},\ldots,x_{n+1}}V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{n+2}}=
|\displaystyle| =V(f0,f1,,fn1x2,x3,,xand1,xand+1,xand+2,,xn+2)V(f0,f1,,fn1,fx1,x2,,xn+1)+\displaystyle=V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{2},x_{3},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{n+2}}V\binom{f_{0},f_{1},\ldots,f_{n-1},f}{x_{1},x_{2},\ldots,x_{n+1}}+
+V(f0,f1,,fn1x1,x2,,xand1,xand+1,xand+2,,x???+1)V(f0,f1,,fn1,fx2,x3,,xn+2)\displaystyle+V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{???+1}}V\binom{f_{0},f_{1},\ldots,f_{n-1},f}{x_{2},x_{3},\ldots,x_{n+2}}

and=2i=2 orand=n+1i=n+1.

(xn+2x1)[x1,x2,,xand1,xand+1,xand+2,,xn+2;f]\displaystyle\left(x_{n+2}-x_{1}\right)\left[x_{1},x_{2},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots,x_{n+2};f\right]
=(xandx1)[x1,x2,,xn+1;f]+(xn+2xand)[x2,x3,,xn+2;f].\displaystyle=\left(x_{i}-x_{1}\right)\left[x_{1},x_{2},\ldots,x_{n+1};f\right]+\left(x_{n+2}-x_{i}\right)\left[x_{2},x_{3},\ldots,x_{n+2};f\right].

7. finite x1,x2,,xm(mn+1)x_{1},x_{2},\ldots,x_{m}\left(m\geq n+1\right) [A,b]\left[a,b\right]

V(f0,f1,,fn1,fnxand,xand+1,,xand+n)=0,and=1,2,,mnV\binom{f_{0},f_{1},\ldots,f_{n-1},f_{n}}{x_{i},x_{i+1},\ldots,x_{i+n}}=0,\ i=1,2,\ldots,m-n

f(x)f\left(x\right)

V(f0,f1,,fn1,fx1,x2,,xn+1)=0V\binom{f_{0},f_{1},\ldots,f_{n-1,}f}{x_{1},x_{2},\ldots,x_{n+1}}=0

x1,x2,,xn+1[A,b]x_{1},x_{2},\ldots,x_{n+1}\in\left[a,b\right]

pointsxx xRxSx_{r}-x_{s}

group ofn+1n+1 RANGE[A,b]\left[a,b\right].

f(x)f\left(x\right) [A,b]\left[a,b\right], any group ofn+1n+1

[A,b]\left[a,b\right],

f(x)=c0f0(x)+c1f1(x)++cn1fn1(x),f\left(x\right)=c_{0}f_{0}\left(x\right)+c_{1}f_{1}\left(x\right)+\cdots+c_{n-1}f_{n-1}\left(x\right),

wherecand,and=0,1,,n1c_{i},\ i=0,1,\ldots,n-1,

fornn\ x1,x2,,xnx_{1},x_{2},\ldots,x_{n} will variablexn+1=xx_{n+1}=x

1.

f0(x)=myx,f,(x)=Cartxf_{0}\left(x\right)=\sin x,\ f,\ \left(x\right)=\cos x

[A,b]\left[a,b\right]where0A<bπ,bA<π=π0\leq a<b\leq\pi,b-a<\pi=\allowbreak\pi.

f(x)2basketf(x+h)=f(x+2h)=0f\left(x\right)-2\cosh f\left(x+h\right)=f\left(x+2h\right)=0

c0myx+c1Cartxc_{0}\sin x+c_{1}\cos x.

2.

f0(x)=1,f(x)=myx,f2(x)=Cartxf_{0}\left(x\right)=1,\ f\left(x\right)=\sin x,\ f_{2}\left(x\right)=\cos x

[A,b]\left[a,b\right] 0A<b2π,bA<2π\leq a<b\leq 2\pi,\ b-a<2\pi.

f(x)f(x+3h)=(2basket+1)[f(x+h)f(x+2h)]f\left(x\right)-f\left(x+3h\right)=\left(2\cosh+1\right)\left[f\left(x+h\right)-f\left(x+2h\right)\right]

is therefore of the formc0+c1myx+c2Cartxc_{0}+c_{1}\sin x+c_{2}\cos x.

myx,Cartx,my2x,Cart2x,,mynx,Cartnx\sin x,\cos x,\sin 2x,\cos 2x,\ldots,\sin nx,\cos nx

or

1,myx,Cartx,my2x,Cart2x,,mynx,Cartnx.1,\sin x,\cos x,\sin 2x,\cos 2x,\ldots,\sin nx,\cos nx.

9. f(x)f\left(x\right) [A,b]\left[a,b\right] [A,b]\left[a,b\right]

|f(x)|<M,x[A,b].\left|f\left(x\right)\right|<M,x\in\left[a,b\right].

function f(x)f\left(x\right) [A,b]\left[a,b\right]

x0x_{0} α1,α2,,αn1,n1\alpha_{1},\alpha_{2},\ldots,\alpha_{n-1},n-1 x0x_{0} [A,b]\left[a,b\right]

we

V(f0,f1,,fn2α1,α2,,αn1,x0)=λ0.V\binom{f_{0},f_{1},\ldots,f_{n-2}}{\alpha_{1},\alpha_{2},\ldots,\alpha_{n-1},x_{0}}=\lambda\neq 0.

V(f0,f1,,fn1x1,x2,,xA???)V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{1},x_{2},\ldots,x_{a\ ???}} x1,x2,,xnx_{1},x_{2},\ldots,x_{n}, ε\varepsilon μ<|λ|\mu<\left|\lambda\right|,,{}^{\text{,}} δ\delta x(x0δ,x0+δ),αand(αand+δ,)and=1,2,,n1x\in\left(x_{0}-\delta,x_{0}+\delta\right),\alpha_{i}^{\prime}\in\left(\alpha_{i}+\delta,\right)i=1,2,\ldots,n-1

|V(f0,f1,,fn1x,α1,α2,,αn1)|>μ\displaystyle\left|V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}\right|>\mu
|f(x0)||V(f0,f1,,fn1x0,α1,α2,,αn1)V(f0,f1,,fn1x,α1,α2,,αn1)|<με2\displaystyle\left|f\left(x_{0}\right)\right|\left|V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}-V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}\right|<\frac{\mu\varepsilon}{2}
|V(f0,f1,,fn1x,x0,α1,α´2,,αand1αand+1,αand+2",,αn1)|<με2(n1)M,and=1,2,,n1.\displaystyle\left|V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,x_{0},\alpha_{1}^{\prime},\acute{\alpha}_{2},\ldots,\alpha_{i-1}^{\prime}\alpha_{i+1},\alpha_{i+2}^{\prime\prime},\ldots,\alpha_{n-1}^{\prime}}\right|<\frac{\mu\varepsilon}{2\left(n-1\right)M},i=1,2,\ldots,n-1.

x(x0δ,x0+δ)x\in\left(x_{0}-\delta,x_{0}+\delta\right) αand\alpha_{i}^{\prime} α1,α2,,αn1,x0,x\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime},x_{0},x

V(f0,f1,,fn1,fα1,α2,,αn1,x0,x)=0V\binom{f_{0},f_{1},\ldots,f_{n-1},f}{\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime},x_{0},x}=0

from which we deduce

[f(x0)f(x)]V(f0,f1,,fn1x0,α1,α2,,αn1)=\displaystyle\left[f\left(x_{0}\right)-f\left(x\right)\right]V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}=
=f(x0)[V(f0,f1,,fn1x0,α1,α2,,αn1)V(f0,f1,,fn1x,α1,α2,,αn1)]+\displaystyle=f\left(x_{0}\right)\left[V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}-V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}\right]+
+and=1n1(1)andf(αand)V(f0,f1,,fn1x,x0,α1,α2,,αand1,αand+1,αand+2,,αn1)\displaystyle+\sum_{i=1}^{n-1}\left(-1\right)^{i}f\left(\alpha_{i}^{\prime}\right)V\binom{f_{0},f_{1},\ldots,f_{n-1}}{x,x_{0},\alpha_{1}^{\prime},\alpha_{2}^{\prime},\ldots,\alpha_{i-1}^{\prime},\alpha_{i+1}^{\prime},\alpha_{i+2}^{\prime},\ldots,\alpha_{n-1}^{\prime}}
|f(x0)f(x)|<1μμε2+(n1)Mμμε2(n1)M=ε\left|f\left(x_{0}\right)-f\left(x\right)\right|<\frac{1}{\mu}\cdot\frac{\mu\varepsilon}{2}+\frac{\left(n-1\right)M}{\mu}\cdot\frac{\mu\varepsilon}{2\left(n-1\right)M}=\varepsilon

|x0x|<δ\left|x_{0}-x\right|<\delta, f(x)f\left(x\right) x0x_{0}.

on the interval[A,b]\left[a,b\right], where cand,and=0,1,,n1c_{i},i=0,1,\ldots,n-1

f(x)f\left(x\right) [A,b]\left[a,b\right]. f(x)f\left(x\right)

10. F(x,y)F\left(x,y\right) xxandyy f(x)g(x)f\left(x\right)g\left(x\right), xx

yy.

F(x,y)=and=1mfand(x)gand(y).F\left(x,y\right)=\sum_{i=1}^{m}f_{i}\left(x\right)g_{i}\left(y\right).

IfF(x,y)F\left(x,y\right)

1+jFxandyfand,j=0,1,,m=0\left\|\frac{\partial^{1+j}F}{\partial x^{i}\partial y^{f}}\right\|_{i^{\prime},j=0,1,\ldots,m}=0

F(x,y)F\left(x,y\right).

11. F(x,y)F\left(x,y\right) on a crowd It isEof points(x,y)\left(x,y\right) that xx

It isxE_{x}andIt isyE_{y}).

We will say thatmm degree m1>mm_{1}>m.

f1(x),f2(x),,jf_{1}\left(x\right),f_{2}\left(x\right),\ldots,j

It isxE_{x}

g1(y),g2(y),,g(y)g_{1}\left(y\right),g_{2}\left(y\right),\ldots,g\left(y\right)

It isyE_{y}.

functions onlyxx only byyyeffectively0.

is of the actual degreemm, R<mr<m.

find a numberRr mm Rr functionsφ1(x),φ2(x),,φR\varphi_{1}\left(x\right),\varphi_{2}\left(x\right),\ldots,\varphi_{r}

fand(x)=cand,1φ1(x)+xand,2φ2(x)++cand,RφR(x),and=1,2,,mf_{i}\left(x\right)=c_{i,1}\varphi_{1}\left(x\right)+x_{i,2}\varphi_{2}\left(x\right)+\cdots+c_{i,r}\varphi_{r}\left(x\right),\ \ i=1,2,\ldots,m

wherecand,jc_{i,j}

F(x,y)=and=1Rφand(x)ψand(y)F\left(x,y\right)=\sum_{i=1}^{r}\varphi_{i}\left(x\right)\psi_{i}\left(y\right)

where

ψand(y)=c1,andg1(y)++cm,andgm(y),and=1,2,,R.\psi_{i}\left(y\right)=c_{1,i}g_{1}\left(y\right)+\cdots+c_{m,i}g_{m}\left(y\right),\ i=1,2,\ldots,r.

12

D(x1,x2,,xm+1;Fy1,y2,,ym+1)=F(xand,yand)and,j=1,2,,m+1D\left(\begin{array}[c]{cc}x_{1},x_{2},\ldots,x_{m+1}&\\ &;F\\ y_{1},y_{2},\ldots,y_{m+1}&\end{array}\right)=\left\|F\left(x_{i},y_{i}\right)\right\|_{i,j=1,2,\ldots,m+1}

wherex1,x2,,xm+1x_{1},x_{2},\ldots,x_{m+1}arem+1m+1 It isxE_{x}andy1,y2,,ym+1m+1y_{1},y_{2},\ldots,y_{m+1}m+1 It isyE_{y}.

D(x1,x2,,xm+1y1,y2,,ym+1;F)=0D\left(\begin{tabular}[c]{l}$x_{1},x_{2},\ldots,x_{m+1}$\\ \\ $y_{1},y_{2},\ldots,y_{m+1}$\end{tabular};F\right)=0

onIt isE.

Any functionF(x,y)F\left(x,y\right) It isE mm.

function F(x,y)F\left(x,y\right) R,1Rm,Rr,1\leq r\leq m,rpuncturex1,x2,,xIt isxx_{1},x_{2},\ldots,x\in E_{x}andR\ rpuncturey1,y2,,yRIt isyy_{1},y_{2},\ldots,y_{r}\in E_{y}

D=D(x1,x2,,xR;Fy1,y2,,yR)0D=D\left(\begin{array}[c]{cc}x_{1},x_{2},\ldots,x_{r}&\\ &;F\\ y_{1},y_{2},\ldots,y_{r}&\end{array}\right)\neq 0

and

D(x1,x2,,xR,xy1,y2,,yR,y;F)=0D\left(\begin{array}[c]{c}x_{1},x_{2},\ldots,x_{r},x\\ \\ y_{1},y_{2},\ldots,y_{r},y\end{array};F\right)=0

whatever(x,y)It is\left(x,y\right)\in E. F(x,y)F\left(x,y\right)

IfRr effective Rr. Aand,jA_{i,j} DD.

F(x,y)=and=1Rfand(x)gand(y)F\left(x,y\right)=\sum_{i=1}^{r}f_{i}\left(x\right)g_{i}\left(y\right)

where, for example

fand(x)=F(x,yand),gand(y)=1DS=1R(1)S+RandF(xS,y)AS,and,and=1,2,,Rf_{i}\left(x\right)=F\left(x,y_{i}\right),g_{i}\left(y\right)=\frac{1}{D}\sum_{s=1}^{r}\left(-1\right)^{s+r-i}F\left(x_{s},y\right)A_{s,i},\ i=1,2,\ldots,r

fand(x)f_{i}\left(x\right) gand(y)g_{i}\left(y\right)

IfIt isxE_{x} m+1m+1 It isyE_{y} m+1m+1 any functionF(x,y)F\left(x,y\right) It isE mm.

13. A quasi-polynomial mm mand<mm_{i}<m.

mm m1m-1.

D(x1,x2,,xmy1,y2,,ymj???;F)=V(f1,f2,,fmx1,x2,,xm)V(g1,g2,,gmy1,y2,,ym).D\left(\begin{array}[c]{c}x_{1},x_{2},\ldots,x_{m}\\ \\ y_{1},y_{2},\ldots,y_{mj???}\end{array};F\right)=V\binom{f_{1},f_{2},\ldots,f_{m}}{x_{1},x_{2},\ldots,x_{m}}V\binom{g_{1},g_{2},\ldots,g_{m}}{y_{1},y_{2},\ldots,y_{m}}.

pointsxandx_{i} yandy_{i}

Actual condition mm It isxE_{x} It isyE_{y}.

14. It isE R(Axb,cyd)R\left(a\leq x\leq b,c\leq y\leq d\right).

We can consider functionsF(x,y)F\left(x,y\right)

D(x1,x2,,xmy1,y2,,yn;F)0D\left(\begin{tabular}[c]{l}$x_{1},x_{2},\ldots,x_{m}$\\ \\ $y_{1},y_{2},\ldots,y_{n}$\end{tabular};F\right)\neq 0

x1,x2,,xm[A,b]x_{1},x_{2},\ldots,x_{m}\in\left[a,b\right] y1,y2,,y[c,d]y_{1},y_{2},\ldots,y\in\left[c,d\right]

F(x,y)F\left(x,y\right) withxx yy x1<x2<<xm,y1<y2<<ymx_{1}<x_{2}<\ldots<x_{m},y_{1}<y_{2}<\ldots<y_{m},

we note that fory1,and=1,2,,my_{1},i=1,2,\ldots,m and forxand,and=1,2,,mx_{i},i=1,2,\ldots,m

D(x,x+h,x+2h,,x+mhy,y+k,y+2k,,y+mk;F)=0D\left(\begin{array}[c]{c}x,x+h,x+2h,\ldots,x+mh\\ \\ y,y+k,y+2k,\ldots,y+mk\end{array};F\right)=0

wherex,y,h,kx,y,h,k that Ax,x+mhb,cy,y+mkda\leq x,x+mh\leq b,c\leq y,y+mk\leq dandmm

If the functionF(x,y)F\left(x,y\right) x,yx,y onRR mm.

yyandkk,

D(x1,x2,,xm+1y,y+k,,y+mk;F)=0D\left(\begin{tabular}[c]{l}$x_{1},x_{2},\ldots,x_{m+1}$\\ \\ $y,y+k,\ldots,y+mk$\end{tabular};F\right)=0

whateverxand[A,b],and=1,2,,m+1x_{i}\in\left[a,b\right],i=1,2,\ldots,m+1.

WEfand(x)=F(x,y+andk),and=1,2,,m,f(x)=F(x,y)f_{i}\left(x\right)=F\left(x,y+ik\right),\ i=1,2,\ldots,m,\ f\left(x\right)=F\left(x,y\right). the pointsx1,x2,,xm+1x_{1},x_{2},\ldots,x_{m+1}and we put fand(y)=F(xand,y),and=1,2,,m,f(y)=F(x,y)f_{i}\left(y\right)=F\left(x_{i},y\right),\ i=1,2,\ldots,m,f\left(y\right)=F\left(x,y\right),

D(x1,x2,,xm+1y1,y2,,ym+1;F)=0D\left(\begin{array}[c]{c}x_{1},x_{2},\ldots,x_{m+1}\\ \\ y_{1},y_{2},\ldots,y_{m+1}\end{array};F\right)=0

whateverxand[A,b],yand[c,d],and=1,2,,m+1x_{i}\in\left[a,b\right],y_{i}\in\left[c,d\right],i=1,2,\ldots,m+1.

15. symmetricalxxandyy.

fand(x)=Aand,1g1(x)+Aand,2g2(x)++Aand,mgm(x),and=1,2,,mf_{i}\left(x\right)=a_{i,1}g_{1}\left(x\right)+a_{i,2}g_{2}\left(x\right)+\cdots+a_{i,m}g_{m}\left(x\right),\ i=1,2,\ldots,m

whereAand,ja_{i,j} Aand,j=Aj,anda_{i,j}=a_{j,i}.

linear setit ise(so thatIt isx=It isy=it isE_{x}=E_{y}=e) mm

(with Aandj=Aj,anda\,ij=a\,j,i)

independent onit ise. mm x1,x2,,xmit isx_{1},x_{2},\ldots,x_{m}\in e

V=V(g1,g1,,gmx1,x2,,xm)0.V^{\ast}=V\binom{g_{1},g_{1},\ldots,g_{m}}{x_{1},x_{2},\ldots,x_{m}}\neq 0.

allows us to write

and=1mfand(x)gand(xk)=and=12mfand(xk)gand(x),k=1,2,,m\sum_{i=1}^{m}f_{i}\left(x\right)g_{i}\left(x_{k}\right)=\sum_{i=12}^{m}f_{i}\left(x_{k}\right)g_{i}\left(x\right),\ k=1,2,\ldots,m

fand(x)f_{i}\left(x\right) we show thatAand,j=Aj,anda_{i,j}=a_{j,i}.

andj1,2,,m(Aand,jAj,and)[gand(x)gand(y)gand(x)gj(y)]=0.\sum_{i\neq j}^{1,2,\ldots,m}\left(a_{i,j}-a_{j,i}\right)\left[g_{i}\left(x\right)g_{i}\left(y\right)-g_{i}\left(x\right)g_{j}\left(y\right)\right]=0.

From himxxandyy xxx_{x}andxitx_{l} (m2)\binom{m}{2} (m2)\binom{m}{2} Aand,jAj,anda_{i,j}-a_{j,i}.

of the determinantVV^{\ast}. is a power of VV^{\ast}( Vm+1V^{\ast m+1})..\

It results thatAand,jAj,and=0,and,j=1,2,,ma_{i,j}-a_{j,i}=0,\ i,j=1,2,\ldots,m,

factorAand,ja_{i,j} 0effectivelymm, with the determinantAand,j\left\|a_{i,j}\right\| of0.

effective degreeR<mr<m amounts ofRr only byxx yy.

of two variablesx,yx,y, φ1(x),φ2(x),,φR(x),φ1(y),φ2(y),,φR(y)\varphi_{1}\left(x\right),\varphi_{2}\left(x\right),\ldots,\varphi_{r}\left(x\right),\varphi_{1}\left(y\right),\varphi_{2}\left(y\right),\ldots,\varphi_{r}\left(y\right), whereRr φand(x)\varphi_{i}\left(x\right)

References

  • [1] LJ Magnus, ”Über die Relaitonen der Functionsen welche der GleichungF1yφ1x+F2yφ2x++Fnyφnx=F1xφ1y+F2xφ2y++FnxφnyF_{1}y\varphi_{1}x+F_{2}y\varphi_{2}x+\cdots+F_{n}y\varphi_{n}x=F_{1}x\varphi_{1}y+F_{2}x\varphi_{2}y+\cdots+F_{n}x\varphi_{n}ygenugthung",Journalf.die Reine u,angew.Math.,5, 365-373(1830).
  • [2] Tiberiu Popoviciu, "On bounded solutions and measurable solutions of certain functional equations", Mathematica, 14, 47-106 (1938).
  • [3] C. Stephanos, "Sur une catégorie d'équations équationelles" Rendic. Jack. Mat. Palermo, 18, 360-363 (1904).
1955

Related Posts