T. Popoviciu, Sur quelques inegalités entre les fonction convexes (I), Comptes Rendus des séances de l’Académie des Sciences de Roumanie, 2 (1938), pp. 449-454 (in French).
1938 e -Popoviciu- Comptes Rendus des séances de l_Acad. des Sci. de Roumanie - Sur quelques inegali
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
112. ON SOME INEQUALITIES BETWEEN CONVEX FUNCTIONS
(FIRST NOTE)
By tiberiu popoviciu, Mc. AS r.
(Meeting of March 4, 1938).
Eithervarphi=varphi(x)\varphi=\varphi(x)a defined, uniform, continuous and convex function (of order I) in the closed interval ( 0,1 ). We assume thatvarphi(0)=0,varphi(1)=1quad0 <= varphi(x) <= 1\varphi(0)=0, \varphi(1)=1 \quad 0 \leqq \varphi(x) \leqq 1. It follows thatvarphi(x)\varphi(x)is a positive and increasing function for0 < x <= I0<x \leqq \mathrm{I}. The right derivativevarphi^(')(x)\varphi^{\prime}(x)exists, is increasing for0 <= x < I0 \leqq x<\mathrm{I}, but may not be bounded in (0,I0, \mathrm{I}).
Let us also consider a functionf=f(x)f=f(x), definite, uniform, continuous and non-concave of order0,1,dots,n0,1, \ldots, nin the meantime(0,1)^(1)(0,1)^{1}). We assume thatf(0)=a >= 0,f(I)=b <= I,a < bf(0)=a \geqq 0, f(\mathrm{I})=b \leqq \mathrm{I}, a<band we will designate by(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}the set of functions verifying all these properties. We see that(E_(a)^(b))_(n)sub(E_(a)^(b))_(n-1)\left(\mathrm{E}_{a}^{b}\right)_{n} \subset\left(\mathrm{E}_{a}^{b}\right)_{n-1}, SO(E_(a)^(b))_(n)sub(E_(a)^(b))_(o),n > 0\left(\mathrm{E}_{a}^{b}\right)_{n} \subset\left(\mathrm{E}_{a}^{b}\right)_{o}, n>0. In this work we
we will supposen > 0n>0. We will also indicate the results forn=0n=0, which are almost all known.
The problem we will examine in this work is the following: Given the functionvarphi\varphi, determine the maximum ofA_(varphi)(f)\mathrm{A}_{\varphi}(f)whenA(f)\mathrm{A}(f)is given andffruns through the whole(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}.
We asked
A=A(f)=int_(0)^(1)fdx,quadA_(varphi)=A_(varphi)(f)=int_(0)^(1)varphi(f)dx\mathrm{A}=\mathrm{A}(f)=\int_{0}^{1} f d x, \quad \mathrm{~A}_{\varphi}=\mathrm{A}_{\varphi}(f)=\int_{0}^{1} \varphi(f) d x
We will then make some applications, generalizing certain known results.
2. Let us call an elementary function of degreennany function whose(n-1)^("ème ")(n-1)^{\text {ème }}derivative is a polygonal line. Such a function is therefore of the form
P(x)=a_(o)+a_(1)x+a_(2)x^(2)+dots+a_(n)quadx^(n-1),0 <= x_(1) < x_(2) < dots < x_(m) < I\mathrm{P}(x)=a_{o}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} \quad x^{n-1}, 0 \leqslant x_{1}<x_{2}<\ldots<x_{m}<\mathrm{I}.
We assume thatc_(i)!=0,i=1,2,dots,mc_{i} \neq 0, i=1,2, \ldots, mand we will then say that the elementary functiong(x)g(x)is atmmvertices. We will say that the vertices are at the pointsx_(1),x_(2),dots,x_(m)x_{1}, x_{2}, \ldots, x_{m}. Ifx_(1)=0x_{1}=0there is a summit at the pointo^(2)o^{2}). For the elementary functiong(x)g(x)hasmmsummits belong to(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}it is necessary and sufficient that one has a_(o)=a,a_(r) >= 0,r=1,2,dots,n-1,c_(i) > 0,i=1,2,dots,m,P(1)+sum_(i=1)^(m)c_(i)=ba_{o}=a, a_{r} \geqq 0, r=1,2, \ldots, n-1, c_{i}>0, i=1,2, \ldots, m, \mathrm{P}(1)+\sum_{i=1}^{m} c_{i}=b.
In the following we only consider elementary functions belonging to(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}.
According to the previous definition, any polynomial of degreen-In-Iis an elementary function of degreennwith o vertices. A polynomial of effective degreennis an elementary function of degreennat . I vertex, the vertex being at point 0 .
Among the I-vertex functions we find the following
which shows us that it is the (generalized) arithmetic mean of a polynomial of degreenn-I and ofmmfunctions of the form (2).
Any function of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}is the limit of a uniformly convergent sequence of elementary functions of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}. This property can also be specified in the following way. Ifffbelongs to(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}, the derivativesf^('),f^(''),dots,f^((n-1))f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}exist foro <= x < I\mathrm{o} \leqq x<\mathrm{I}. The functionffis then the limit of a uniformly convergent sequence of elementary functions of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}, these functions all having the same first termP(x)=a+xf^(')(0)+(x^(2))/(2!)f^('')(0)+dots+(x^(n-1))/((n-1)!)f^((n-1))(0)P(x)=a+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots+\frac{x^{n-1}}{(n-1)!} f^{(n-1)}(0). Moreover, we can assume that the value of the integralAAis the same for all these functions.
These considerations apply, in particular, to the functionvarphi\varphi, which belongs to(E_(0)^(1))_(1)\left(\mathrm{E}_{0}^{1}\right)_{1}, and serve to establish the following assertions with complete rigor.
3. Letvarphi\varphigiven andg(x)g(x)an elementary function of(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}havingm > 1m>1vertices and given by formula (I). Let us construct the function.
and determine the constantsc,muc, \muso that we haveg^(**)(I)=bg^{*}(\mathrm{I})=b,A(g^(**))=A(g)\mathrm{A}\left(g^{*}\right)=\mathrm{A}(g). We find thatc=c_(m-1)+c_(m)c=c_{m-1}+c_{m}Andmu=(c_(m-1)x_(m-1)+c_(m)x_(m))/(c_(m-1)+c_(m))\mu=\frac{c_{m-1} x_{m-1}+c_{m} x_{m}}{c_{m-1}+c_{m}}, SOx_(m-1) < mu < x_(m),c > 0x_{m-1}<\mu<x_{m}, c>0Andg^(**)g^{*}is indeed an elementary function of degreennhasm-1m-1summits belonging to(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}.
There is a numbermu^('),mu < mu^(') < I\mu^{\prime}, \mu<\mu^{\prime}<Isuch that we have
(3)quadg^(**)(x) <= g(x)\quad g^{*}(x) \leqq g(x)following thatx <= mu^(')x \leqq \mu^{\prime}, Forx_(m-1) < x < I^(4)x_{m-1}<x<I^{4})
Ifg(x_(m-1)) < lambda < bg\left(x_{m-1}\right)<\lambda<b, we have
Avarphi_(lambda)(g^(**))-Avarphi_(lambda)(g)=int_(i^(**))^(1)g^(**)dx-int_(t)^(1)gdx+lambda(t^(**)-t)\mathrm{A} \varphi_{\lambda}\left(g^{*}\right)-\mathrm{A} \varphi_{\lambda}(g)=\int_{i^{*}}^{1} g^{*} d x-\int_{t}^{1} g d x+\lambda\left(t^{*}-t\right)
Orlambda=g(t)=g^(**)(t^(**))\lambda=g(t)=g^{*}\left(t^{*}\right)and property (3) shows us that this function oflambda\lambdacancels out forlambda=g(x_(m-1))\lambda=g\left(x_{m-1}\right)Andlambda=b\lambda=b, is increasing forg(x_(m-1)) < lambda < g(mu^('))g\left(x_{m-1}\right)<\lambda<g\left(\mu^{\prime}\right)and decreasing forg(mu^(')) < lambda < bg\left(\mu^{\prime}\right)<\lambda<b. It therefore follows that
We now propose to demonstrate thatA_(varphi)(g^(**))>>A_(varphi)(g)\mathrm{A}_{\varphi}\left(g^{*}\right)> >\mathrm{A}_{\varphi}(g). The inequality with the sign>=\geqqresults from (4), but it is a matter of proving that equality is not possible.
Consider the non-decreasing and non-concave function,
Phi_(epsi)(x)={[varphi(x)","," dans "(0","I-epsi)],[varphi(I-epsi)+(x-I+epsi)varphi(I-epsi)","," dans "(I-epsi","I)","]:}\Phi_{\varepsilon}(x)=\left\{\begin{array}{lr}
\varphi(x), & \text { dans }(0, \mathrm{I}-\varepsilon) \\
\varphi(\mathrm{I}-\varepsilon)+(x-\mathrm{I}+\varepsilon) \varphi(\mathrm{I}-\varepsilon), & \text { dans }(\mathrm{I}-\varepsilon, \mathrm{I}),
\end{array}\right.
Orepsi\varepsilonis a fairly small positive number andvarphi^(')\varphi^{\prime}is the right derivative ofvarphi\varphi. We have
{:(5)Phi_(z)(x)=int_(0)^(1)varphi_(t)(x)dPhi_(epsi)^(')(t)+alpha x:}\begin{equation*}
\Phi_{z}(x)=\int_{0}^{1} \varphi_{t}(x) d \Phi_{\varepsilon}^{\prime}(t)+\alpha x \tag{5}
\end{equation*}
the integral being Stieltjes andalpha\alphaa constant of no importance to us^(5){ }^{5}).
It can be easily demonstrated that
A_(Phi Sigma)(g^(**))-A_(Phi epsi)(g)=int_(0)^(1){(A)varphi_(l)(g^(**))-Apsi_(t)(g)}dPhi_(epsi)^(')(t)\mathrm{A}_{\Phi \Sigma}\left(g^{*}\right)-\mathrm{A}_{\Phi \varepsilon}(g)=\int_{0}^{1}\left\{\mathrm{~A} \varphi_{l}\left(g^{*}\right)-\mathrm{A} \psi_{t}(g)\right\} d \Phi_{\varepsilon}^{\prime}(t)
This formula is analogous to that given for non-convex functions by Messrs. W. Blascke and G. Pick, see: „Distanzschätzungen im Funktionenraum II". Math. Ann. Bd. 77 (1916) p. 277-300. The introduction of the functionPhi_(epsi)\boldsymbol{\Phi}_{\varepsilon}is only necessary ifb=1b=1. It may happen in fact that the right derivative ofvarphi(x)\varphi(x)is not of bounded variation.
which results from the fact that the integral ofStie1tjesS t i e 1 t j e sof the second member exists.
From this formula and the definition ofPhi_(epsi)\Phi_{\varepsilon}it follows thatA_(Phi)(g^(**))\mathrm{A}_{\Phi}\left(g^{*}\right)--APhi_(epsi)(g)\mathrm{A} \Phi_{\varepsilon}(g)is positive and does not decrease whenepsi\varepsilondecreases. We have therefore
Now consider a functionffof(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}. Let the elementary function of degreennat the summit h(x)=a+xf^(')(o)+(x^(2))/(2!)f^('')(o)+dots+(x^(n-1))/((n-I)!)f^((n-1))(o)+d[(x-rho+|x-rho|)/(2(I-rho))]^(n)h(x)=a+x f^{\prime}(\mathrm{o})+\frac{x^{2}}{2!} f^{\prime \prime}(\mathrm{o})+\ldots+\frac{x^{n-1}}{(n-\mathrm{I})!} f^{(n-1)}(\mathrm{o})+d\left[\frac{x-\rho+|x-\rho|}{2(\mathrm{I}-\rho)}\right]^{n}
Ord,rhod, \rhoare completely determined by the conditionsh(I)=bh(I)=b,A(h)=A(f).h(x)\mathrm{A}(h)=\mathrm{A}(f) . h(x)belongs to(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}and we haveA_(varphi)(h) >= A_(varphi)(f)\mathrm{A}_{\varphi}(h) \geqq \mathrm{A}_{\varphi}(f)We propose to demonstrate that equality is only possible ifh=fh=f.
The functionAvarphi_(i)(h)-Avarphi_(t)(f)\mathrm{A} \varphi_{i}(h)-\mathrm{A} \varphi_{t}(f)is continuous inttand is>= 0\geqq 0.
It is easily demonstrated that ifffdoes not reduce to an elementary function of degreennat o or I vertex, this function is not identically zero. We therefore haveA_(Phi widehat(epsi))(h)-A_(Phi widehat(epsi))(f) > 0\mathrm{A}_{\Phi \widehat{\varepsilon}}(h)-\mathrm{A}_{\Phi \widehat{\varepsilon}}(f)>0, at least forepsi\varepsilonquite small. The requested property results as above.
So finally:
If the functionvarphi\varphiand the numberA(f)\mathrm{A}(f)are given, the maximum ofA_(varphi)(f)\mathrm{A}_{\varphi}(f)In(E_(a)^(b))_(n)\left(\mathrm{E}_{a}^{b}\right)_{n}can only be achieved for an elementary function of degreennat most I summit.
In the casen=1n=1the functionh(x)h(x)is completely determined by the value of the integral A . We therefore have the following property:
Ifvarphi\varphiis given and f is a continuous, non-decreasing, non-concave function in(O,I)(\mathrm{O}, \mathrm{I}), we have
{:(6)int_(0)^(1)varphi(f)dx <= (b+a-2(A))/(b-a)varphi(a)+(2((A)-a))/((b-a)^(2))int_(a)^(b)varphi(x)dx","quadA=int_(0)^(1)fdx:}\begin{equation*}
\int_{0}^{1} \varphi(f) d x \leqq \frac{b+a-2 \mathrm{~A}}{b-a} \varphi(a)+\frac{2(\mathrm{~A}-a)}{(b-a)^{2}} \int_{a}^{b} \varphi(x) d x, \quad \mathrm{~A}=\int_{0}^{1} f d x \tag{6}
\end{equation*}
We also say that such a function is (n+1n+1)-times monotonous.
We have already considered such functions in a previous work, see: Tiberiu Popoviciu, „On the extension of convex functions of higher order". Bull. Math. Soc. Roum. Sc., t. 36 (1934), pp. 75-108.
In the casem=2m=2, we obviously have
The position of the pointmu^(')\mu^{\prime}in the meantime (mu,r\mu, \mathrm{r}) depends on the values ​​ofc_(m-1),c_(m)c_{m-1}, c_{m}. In particular, ifn=1n=1we always havemu < mu^(') < x_(m)\mu<\mu^{\prime}<x_{m}.