On some properties of K-monotone operators







Cite this paper as:

R. Precup, On some properties of K-monotone operators, Rev. Anal. Numér. Théor. Approx. 16, no. 1 (1987), 69-76.

About this paper


Anal. Numer. Theor. Approx.

Publisher Name

Academia Republicii S.R.

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar citations

MR: 89d:47119.


[1] Barbu, V.; Precupanu, Th. Convexity and optimization in Banach spaces. Revised edition. Translated from the Romanian. Editura Academiei, Bucharest; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. xi+316 pp. ISBN: 90-286-0018-3, MR0513634.

[2] Browder, Felix E. Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69 1963, pp. 862-874, MR0156116, https://doi.org/10.1090/s0002-9904-1963-11068-x

[3] Browder, Felix E. Problèmes nonlinéaires. (French) Séminaire de Mathématiques Supérieures, No. 15 (Été, 1965) Les Presses de l’Université de Montréal, Montreal, Que. 1966 153 pp., MR0250140.

[4] Browder, Felix E., Nonlinear maximal monotone operators in Banach space. Math. Ann. 175 1968, pp. 89-113, MR0223942, https://doi.org/10.1007/bf01418765

[5] Cristescu, Romulus Topological vector spaces. Translated from the Romanian by Mihaela Suliciu. Editura Academiei, Bucharest; Noordhoff International Publishing, Leyden, 1977. x+232 pp. ISBN: 90-286-0116-3 46-01, MR0454552.

[6] Fitzpatrick, P. M. Surjectivity results for non-linear mappings from a Banach space to its dual. Math. Ann. 204 (1973), pp. 177-188, MR0637098, https://doi.org/10.1007/bf01351586

[7] Jameson, G., Ordered Linear Spaces, Lecture Notes in Math., 141, Springer-Verlag, 1970, https://doi.org/10.1007/bfb0059132

[8] Kachurovskii, R. I., On monotone operators and convex functionals. (in Russian), Uspechi Mat. Nauk. 15, pp.213-215 (1960).

[9] Kato, Tosio Demicontinuity, hemicontinuity and monotonicity. Bull. Amer. Math. Soc. 70 1964 548-550, MR0163198, https://doi.org/10.1090/s0002-9904-1964-11194-0

[10] Kato, Tosio Demicontinuity, hemicontinuity and monotonicity. II. Bull. Amer. Math. Soc. 73 1967, pp. 886-889, MR0238135, https://doi.org/10.1090/s0002-9904-1967-11828-7

[11] Minty, George J. on a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 50 1963, pp. 1038-1041, MR0162159, https://doi.org/10.1073/pnas.50.6.1038

[12] Pascali, Dan; Sburlan, Silviu Nonlinear mappings of monotone type. Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. x+341 pp. ISBN: 90-286-0118-*, MR0531036.

[13] Peressini, Anthony L., Ordered topological vector spaces. Harper & Row, Publishers, New York-London 1967 x+228 pp., MR0227731.

[14] Precup, R., O generalizare a noţiunii de monotonie în sensul lui Minty-Browder, Sem. itin. ec. fucnt. aprox. convex., Cluj-Napoca, pp. 54-64 (1978).

[15] Precup, R., Monotonicity properties of the best approximation operators, Itinerant Seminar on funcitonal Equations, Approx. and Convexity, Cluj-Napoca, pp. 223-226 (1986).

[16] Precup, Radu A K-monotone best approximation operator which is neither monotone and (essentially) nor (O)-monotone. Anal. Numér. Théor. Approx. 15 (1986), no. 2, pp. 153-162, MR0889525.

[17] Rockafellar, R. T., Local boundedness of nonlinear, monotone operators. Michigan Math. J. 16 1969 397-407, MR0253014, https://doi.org/10.1307/mmj/1029000324

Related Posts