On the approximation of higher order convex functions (I)

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur l’approximation des fonctions convexes d’ordre supérieur (I), Mathematica, 10 (1935), pp. 49-54 (in French).

PDF

About this paper

Journal

Mathematica

Publisher Name

published by the Romanian Academy Publishing House

DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1935 e -Popoviciu- Mathematica - On the approximation of higher-order convex functions (I).pd
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE APPROXIMATION OF HIGHER-ORDER CONVEX FUNCTIONS.

ByTiberiu PopoviciuFormer student of the École Normale Supérieure

Received on March 20, 1934.
That is f ( x ) f ( x ) f(x)f(x)f(x)a function defined in the interval ( 0 , 1 ) ( 0 , 1 ) (0.1)(0.1)(0,1)
Let's define the expression [ x 1 , x 2 , , x n + 1 ; f ] x 1 , x 2 , , x n + 1 ; f [x_(1),x_(2),dots,x_(n+1);f]\left[x_{1}, x_{2}, \ldots, x_{n+1}; f\right][x1,x2,,xn+1;f]by the recurrence relation
[ x 1 , x 2 , , x n + 1 ; f ] = [ x 2 , x 3 , , x n + 1 ; f ] [ x 1 , x 2 , , x n ; f ] x n + 1 x 1 [ x 1 ; f ] = f ( x 1 ) . x 1 , x 2 , , x n + 1 ; f = x 2 , x 3 , , x n + 1 ; f x 1 , x 2 , , x n ; f x n + 1 x 1 x 1 ; f = f x 1 . {:[[x_(1),x_(2),dots,x_(n+1);f]=([x_(2),x_(3),dots,x_(n+1);f]-[x_(1),x_(2),dots,x_(n);f])/(x_(n+1)-x_(1))],[[x_(1);f]=f(x_(1)).]:}\begin{gathered} {\left[x_{1}, x_{2}, \ldots, x_{n+1}; f\right]=\frac{\left[x_{2}, x_{3}, \ldots, x_{n+1}; f\right]-\left[x_{1}, x_{2}, \ldots, x_{n}; f\right]}{x_{n+1}-x_{1}}} \\ {\left[x_{1}; f\right]=f\left(x_{1}\right) .} \end{gathered}[x1,x2,,xn+1;f]=[x2,x3,,xn+1;f][x1,x2,,xn;f]xn+1x1[x1;f]=f(x1).
The quotient [ x 1 , x 2 , x n + 1 ; f ] x 1 , x 2 , x n + 1 ; f [x_(1),x_(2),dotsx_(n+1);f]\left[x_{1}, x_{2}, \ldots x_{n+1}; f\right][x1,x2,xn+1;f]is the divided difference of order n n nnnof the function f ( x ) f ( x ) f(x)f(x)f(x)relative to the distinct points x 1 , x 2 , x n + 1 x 1 , x 2 , x n + 1 x_(1),x_(2),dotsx_(n+1)x_{1}, x_{2}, ... x_{n+1}x1,x2,xn+1. Either
lim [ In ( 0 , 1 ) ] x 1 , x 2 , , x n + 1 ; f ] |= Δ n [ f ] . lim ¯ [ In ( 0 , 1 ) ] x 1 , x 2 , , x n + 1 ; f |= Δ n [ f ] . {: bar(lim)_([dans(0,1)])|x_(1),x_(2),dots,x_(n+1);f]|=Delta_(n)[f].\left.\varlimsup_{[\operatorname{in}(0,1)]} \mid x_{1}, x_{2}, \ldots, x_{n+1}; f\right] \mid=\Delta_{n}[f] .lim[In(0,1)]x1,x2,,xn+1;f]|=Δn[f].
Δ n [ f ] Δ n [ f ] Delta_(n)[f]\Delta_{n}[f]Δn[f]is the nth boundary of f ( x ) f ( x ) f(x)f(x)f(x)In ( 0 , 1 ) ( 0 , 1 ) (0.1)(0.1)(0,1)
Let us consider the points
(1 )
x 1 < x 2 < . < x m x 1 < x 2 < . < x m x_(1) < x_(2) < dots. < x_(m)x_{1}<x_{2}<\ldots .<x_{m}x1<x2<.<xm
SO
v m = i = 1 m n 1 | [ x i + 1 , x i + 2 , , x i + n + 1 ; f ] [ x i , x i + 1 , , x i + n ; f ] | v m = i = 1 m n 1 x i + 1 , x i + 2 , , x i + n + 1 ; f x i , x i + 1 , , x i + n ; f v_(m)=sum_(i=1)^(mn-1)|[x_(i+1),x_(i+2),dots,x_(i+n+1);f]-[x_(i),x_(i+1),dots,x_(i+n);f]|v_{m}=\sum_{i=1}^{mn-1}\left|\left[x_{i+1}, x_{i+2}, \ldots, x_{i+n+1}; f\right]-\left[x_{i}, x_{i+1}, \ldots, x_{i+n}; f\right]\right|vm=i=1mn1|[xi+1,xi+2,,xi+n+1;f][xi,xi+1,,xi+n;f]|
is the nth variation of f ( x ) f ( x ) f(x)f(x)f(x)on points (1).
If we set
lim [ In ( 0 , 1 ) ] v m = n [ f ] lim ¯ [ In  ( 0 , 1 ) ] v m = n [ f ] bar(lim)_(["in "(0,1)])v_(m)=grad_(n)[f]\varlimsup_{[\text {dans }(0,1)]} v_{m}=\nabla_{n}[f]lim[In (0,1)]vm=n[f]
SO V n [ f ] V n [ f ] V_(n)[f]V_{n}[f]Vn[f]is the nth total variation of f ( x ) f ( x ) f(x)f(x)f(x)In ( 0 , 1 ) ( 0 , 1 ) (0.1)(0.1)(0,1).
Finally, we will say that the function f ( x ) f ( x ) f(x)f(x)f(x)is convex, non-concave, polynomial, non-convex or concave of order n n nnnIn ( 0 , 1 ) ( 0 , 1 ) (0.1)(0.1)(0,1)if its differences divided by order n + 1 n + 1 n+1n+1n+1on any group of n + 2 n + 2 n+2n+2n+2points ( 0 , 1 ) ( 0 , 1 ) (0.1)(0.1)(0,1)are > 0 , 0 , = 0 0 > 0 , 0 , = 0 0 > 0, >= 0, = 0 <= 0>0, \geq 0,=0 \leq 0>0,0,=00Or < 0 < 0 < 0<0<0.
These functions form the class of order functions n n nnnWe
will say that the function is of the class ( a , b , c , a , b , c , a,b,c,dotsa, b, c, \ldotshas,b,c,) if it possesses order properties a , b , c , a , b , c , a,b,c,dotsa, b, c, \ldotshas,b,c,of a specific convexity. For uniformity, we can call it an order function - 1 1 1\mathbf{1}1any function not changing sign ( 1 ).
  1. The polynomial
P n = P n ( x ; f ) = i = 0 n f ( i n ) ( n i ) x i ( 1 x ) n t P n = P n ( x ; f ) = i = 0 n f i n ( n i ) x i ( 1 x ) n t P_(n)=P_(n)(x;f)=sum_(i=0)^(n)f((i)/(n))*((n)/(i))x^(i)(1-x)^(n-t)\mathrm{P}_{n}=\mathrm{P}_{n}(x ; f)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) \cdot\binom{n}{i} x^{i}(1-x)^{n-t}Pn=Pn(x;f)=i=0nf(in)(ni)xi(1x)nt
is the MS Bernstein polynomial of degree n n nnnof the given function.
Let's simplify the notation.
Δ k i [ i + k n , i + k 1 n , , i n ; f ] , i = 0 , 1 , , n k , k = 1 , 2 , Δ k i i + k n , i + k 1 n , , i n ; f , i = 0 , 1 , , n k , k = 1 , 2 , Delta_(k)^(i)◻[(i+k)/(n),(i+k-1)/(n),dots,(i)/(n);f],quad i=0,1,dots,n-k,k=1,2,dots\Delta_{k}^{i} \square\left[\frac{i+k}{n}, \frac{i+k-1}{n}, \ldots, \frac{i}{n} ; f\right], \quad i=0,1, \ldots, n-k, k=1,2, \ldotsΔki[i+kn,i+k1n,,in;f],i=0,1,,nk,k=1,2,
A simple calculation gives us
d P n d x = i = 0 n 1 Δ 1 i ( n 1 i ) x i ( 1 x i ) n 1 i d P n d x = i = 0 n 1 Δ 1 i ( n 1 i ) x i 1 x i n 1 i (dP_(n))/(dx)=sum_(i=0)^(n-1)Delta_(1)^(i)((n-1)/(i))x^(i)(1-x^(i))^(n-1-i)\frac{d \mathrm{P}_{n}}{d x}=\sum_{i=0}^{n-1} \Delta_{1}^{i}\binom{n-1}{i} x^{i}\left(1-x^{i}\right)^{n-1-i}dPndx=i=0n1Δ1i(n1i)xi(1xi)n1i
and in general
(2) d k P n d x k = k ! ( 1 1 n ) ( 1 2 n ) d k P n d x k = k ! 1 1 n 1 2 n (d^(k)P_(n))/(dx^(k))=k!(1-(1)/(n))(1-(2)/(n))dots\frac{d^{k} \mathrm{P}_{n}}{d x^{k}}=k!\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldotsdkPndxk=k!(11n)(12n)
( 1 k 1 n ) l = 0 n k Δ k i ( n k i ) x l ( 1 k ) n k 1 1 k 1 n l = 0 n k Δ k i ( n k i ) x l ( 1 k ) n k 1 dots(1-(k-1)/(n))sum_(l=0)^(n-k)Delta_(k)^(i)((n-k)/(i))x^(l)(1-k)^(n-k-1)\ldots\left(1-\frac{k-1}{n}\right) \sum_{l=0}^{n-k} \Delta_{k}^{i}\binom{n-k}{i} x^{l}(1-k)^{n-k-1}(1k1n)L=0nkΔki(nki)xL(1k)nk1
We have
Δ 0 [ P n ] Δ 0 [ f ] Δ 0 P n Δ 0 [ f ] Delta_(0)[P_(n)] <= Delta_(0)[f]\Delta_{0}\left[\mathrm{P}_{n}\right] \leq \Delta_{0}[f]Δ0[Pn]Δ0[f]
We know that ( 2 2 ^(2){ }^{2}2)
k ! Δ k [ P n ] = Δ 0 [ P n ( k ) ] k ! Δ k P n = Δ 0 P n ( k ) k!Delta_(k)[P_(n)]=Delta_(0)[P_(n)^((k))]k!\Delta_{k}\left[\mathrm{P}_{n}\right]=\Delta_{0}\left[\mathrm{P}_{n}^{(k)}\right]k!Δk[Pn]=Δ0[Pn(k)]
SO
Δ ˙ k [ P n ] ( 1 1 n ) ( 1 2 n ) ( 1 k 1 n ) Δ k [ f ] Δ ˙ k P n 1 1 n 1 2 n 1 k 1 n Δ k [ f ] Delta^(˙)_(k)[P_(n)] <= (1-(1)/(n))(1-(2)/(n))cdots(1-(k-1)/(n))*Delta_(k)[f]\dot{\Delta}_{k}\left[\mathrm{P}_{n}\right] \leq\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \cdot \Delta_{k}[f]Δ˙k[Pn](11n)(12n)(1k1n)Δk[f]
( 1 1 ^(1){ }^{1}1For more details, see our Thesis On Some Properties of Functions of One or Two Real Variables. Paris 1933
. 2 2 ^(2){ }^{2}2) See loc. cit. (1), p. 45.
We can still write
Δ k [ P n ] Δ k [ f ] , k = 0 , 1 , Δ k [ P n ] < Δ k [ f ] , k > 1 , Δ k P n Δ k [ f ] , k = 0 , 1 , Δ k P n < Δ k [ f ] , k > 1 , Delta_(k)[P_(n)] <= Delta_(k)[f],quad k=0,1,quadDelta_(k)[P_(n)] < Delta_(k)[f],quad k > 1,\Delta_{k}\left[\mathrm{P}_{n}\right] \leq \Delta_{k}[f], \quad k=0,1, \quad \Delta_{k}\left[\mathrm{P}_{n}\right]<\Delta_{k}[f], \quad k>1,Δk[Pn]Δk[f],k=0,1,Δk[Pn]<Δk[f],k>1,
Therefore:
The kth bound of the polynomial P n ( x ; f ) P n ( x ; f ) P_(n)(x;f)P_{n}(x ; f)Pn(x;f)is at most equal to that of the function if k = 0 , 1 k = 0 , 1 k=0,1k=0,1k=0,1and is smaller if k < 1 k < 1 k < 1k<1k<12.
We can write again
d k P n d x k = k ! ( 1 1 n ) ( 1 2 n ) ( 1 k 1 n ) { Δ k n k + + ( n k ) i = 0 n k 1 [ Δ k i Δ k i + 1 ] ( n k 1 i ) x 1 t l ( 1 t ) n k i 1 d t d k P n d x k = k ! ( 1 1 n 1 2 n 1 k 1 n Δ k n k + + ( n k ) i = 0 n k 1 Δ k i Δ k i + 1 ( n k 1 i ) x 1 t l ( 1 t ) n k i 1 d t {:[(d^(k)P_(n))/(dx^(k))=k!(1-{:(1)/(n))(1-(2)/(n))cdots(1-(k-1)/(n))*{Delta_(k)^(n-k)+:}],[+(n-k)sum_(i=0)^(n-k-1)[Delta_(k)^(i)-Delta_(k)^(i+1)]((n-k-1)/(i))int_(x)^(1)t^(l)(1-t)^(n-k-i-1)dt]:}\begin{aligned} \frac{d^{k} \mathrm{P}_{n}}{d x^{k}}=k!(1- & \left.\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \cdot\left\{\Delta_{k}^{n-k}+\right. \\ & +(n-k) \sum_{i=0}^{n-k-1}\left[\Delta_{k}^{i}-\Delta_{k}^{i+1}\right]\binom{n-k-1}{i} \int_{x}^{1} t^{l}(1-t)^{n-k-i-1} d t \end{aligned}dkPndxk=k!(11n)(12n)(1k1n){Δknk++(nk)i=0nk1[ΔkiΔki+1](nk1i)x1tL(1t)nki1dt
and we deduce
V k [ P n ] V k [ f ] , k = 0 , 1 , V k [ P n ] < V k [ f ] , k > 1 V k P n V k [ f ] , k = 0 , 1 , V k P n < V k [ f ] , k > 1 V_(k)[P_(n)] <= V_(k)[f],quad k=0,1,quadV_(k)[P_(n)] < V_(k)[f],quad k > 1\mathrm{V}_{k}\left[\mathrm{P}_{n}\right] \leq \mathrm{V}_{k}[f], \quad k=0,1, \quad \mathrm{~V}_{k}\left[\mathrm{P}_{n}\right]<\mathrm{V}_{k}[f], \quad k>1Vk[Pn]Vk[f],k=0,1, Vk[Pn]<Vk[f],k>1
Therefore:
The kth total variation of the polynomial P n ( x ; f ) P n ( x ; f ) P_(n)(x;f)P_{n}(x ; f)Pn(x;f)is at most equal to that of the function if k = 0 , 1 k = 0 , 1 k=0,1k=0,1k=0,1and is smaller if k > 1 k > 1 k > 1k>1k>1.
We can express the two preceding properties by saying that the MS Bernstein polynomial preserves bounds and variations.
3. Formula (2) further shows us that whenever f ( x ) f ( x ) f(x)f(x)f(x)enjoys a specific convexity property (of order < n < n < n<n<n) the polynomial P n ( x ; f ) P n ( x ; f ) P_(n)(x;f)\mathrm{P}_{n}(x ; f)Pn(x;f)will have the same property. We assume here that convexity and polynomiality are special cases of non-concavity.
We express this property by saying that the Bernstein polynomial preserves the class of the function.
A property demonstrated in our cited work ( 3 3 ^(3){ }^{3}3) allows us to establish that
There exist polynomials of a given class in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)this class contains a finite number of arbitrarily chosen convexity or concavity conditions.
We finally know that if the function f ( x ) f ( x ) f(x)f(x)f(x)is continuous in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)the polynomial P n ( x ; f ) P n ( x ; f ) P_(n)(x;f)P_{n}(x ; f)Pn(x;f)tends uniformly towards f ( x ) f ( x ) f(x)f(x)f(x)throughout the entire interval for n n n rarr oon \rightarrow \inftyn( 4 4 ^(4){ }^{4}4). We therefore have the following property:
( 3 3 ^(3){ }^{3}3) See loc. cit. (1) p. 20.
(4) S. Bernstein Communications of the Soc. Math. of Karkow ser. 2, vol. 13 (1912) (Quotation from the book by Messrs. Pólya and Szegö „Aufgaben und Lehrsätze” t. I. p. 230). See also S. Wigert Arkiv för Mat. Astr. och, Physik t. 20, (1927), p, 1.
Any continuous function in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)is the limit of a sequence of polynomials preserving the bounds, variations, and class of the function, converging uniformly throughout the interval.
4. The order of the approximation by polynomials P n ( x ; f ) P n ( x ; f ) P_(n)(x;f)\mathrm{P}_{n}(x ; f)Pn(x;f)is easily obtained. Let us designate by ω ( δ ) ω ( δ ) omega(delta)\omega(\delta)ω(δ)the oscillation modulus of the function f ( x ) ( 5 ) f ( x ) ( 5 ) f(x)(5)f(x)(5)f(x)(5)We have
(3) | f ( x ) P n ( x ; f ) | i = 0 n | f ( x ) f ( i n ) | ( n i ) x t ( 1 x ) n t f ( x ) P n ( x ; f ) i = 0 n f ( x ) f i n ( n i ) x t ( 1 x ) n t |f(x)-P_(n)(x;f)| <= sum_(i=0)^(n)|f(x)-f((i)/(n))|((n)/(i))x^(t)(1-x)^(n-t) <=\left|f(x)-\mathrm{P}_{n}(x ; f)\right| \leq \sum_{i=0}^{n}\left|f(x)-f\left(\frac{i}{n}\right)\right|\binom{n}{i} x^{t}(1-x)^{n-t} \leq|f(x)Pn(x;f)|i=0n|f(x)f(in)|(ni)xt(1x)nt
i = 0 n ω ( | x i n | ) ( n i ) x i ( 1 x ) n i < < ( 1 δ i = 0 n | x i n | ( n i ) x i ( 1 x ) n i + 1 ) ω ( δ ) i = 0 n ω x i n ( n i ) x i ( 1 x ) n i < < 1 δ i = 0 n x i n ( n i ) x i ( 1 x ) n i + 1 ω ( δ ) {:[ <= sum_(i=0)^(n)omega(|x-(i)/(n)|)((n)/(i))x^(i)(1-x)^(n-i) < ],[ < ((1)/(delta)sum_(i=0)^(n)|x-(i)/(n)|((n)/(i))x^(i)(1-x)^(n-i)+1)omega(delta)]:}\begin{aligned} \leq \sum_{i=0}^{n} \omega & \left(\left|x-\frac{i}{n}\right|\right)\binom{n}{i} x^{i}(1-x)^{n-i}< \\ & <\left(\frac{1}{\delta} \sum_{i=0}^{n}\left|x-\frac{i}{n}\right|\binom{n}{i} x^{i}(1-x)^{n-i}+1\right) \omega(\delta) \end{aligned}i=0nω(|xin|)(ni)xi(1x)ni<<(1δi=0n|xin|(ni)xi(1x)ni+1)ω(δ)
But in the meantime ( j n , j + 1 n ) j n , j + 1 n ((j)/(n),(j+1)/(n))\left(\frac{j}{n}, \frac{j+1}{n}\right)(In,I+1n)We have
i = 0 n | x i n | ( n i ) x i ( 1 x ) n i = 2 ( n 1 j ) x j + 1 ( 1 x ) n 1 2 ( n 1 j ) ( j n , j + 1 n ) x j + 1 ( 1 x ) n 1 = 2 ( n 1 i ) ( 1 + 1 ) j + 1 ( n j ) n j ( n + 1 ) n + 1 i = 0 n x i n n i x i ( 1 x ) n i = 2 ( n 1 j ) x j + 1 ( 1 x ) n 1 2 ( n 1 j ) j n , j + 1 n x j + 1 ( 1 x ) n 1 = 2 ( n 1 i ) ( 1 + 1 ) j + 1 ( n j ) n j ( n + 1 ) n + 1 {:[sum_(i=0)^(n)|x-(i)/(n)|((n)/(i))x^(i)(1-x)^(n-i)=2((n-1)/(j))x^(j+1)(1-x)^(n-1) <= ],[ <= 2((n-1)/(j))_(((j)/(n),(j+1)/(n)))x^(j+1)(1-x)^(n-1)=2((n-1)/(i))((1+1)^(j+1)(n-j)^(n-j))/((n+1)^(n+1))]:}\begin{aligned} & \sum_{i=0}^{n}\left|x-\frac{i}{n}\right|\left(\frac{n}{i}\right) x^{i}(1-x)^{n-i}=2\binom{n-1}{j} x^{j+1}(1-x)^{n-1} \leq \\ & \leq 2\binom{n-1}{j}_{\left(\frac{j}{n}, \frac{j+1}{n}\right)} x^{j+1}(1-x)^{n-1}=2\binom{n-1}{i} \frac{(1+1)^{j+1}(n-j)^{n-j}}{(n+1)^{n+1}} \end{aligned}i=0n|xin|(ni)xi(1x)ni=2(n1I)xI+1(1x)n12(n1I)(In,I+1n)xI+1(1x)n1=2(n1i)(1+1)I+1(nI)nI(n+1)n+1
and we deduce
max . ( 0 , 1 ) i = 0 n | x i n | ( n i ) x i ( 1 x ) n i = M n = { 2 ( n 1 n 2 ) ( n 2 + 1 ) n 2 + 1 ( n 2 ) n 2 n + 1 ) n + 1 , x pair 1 2 n ( n 1 n 1 2 ) , n impair. max . ( 0 , 1 ) i = 0 n x i n ( n i ) x i ( 1 x ) n i = M n = 2 ( n 1 n 2 ) n 2 + 1 n 2 + 1 n 2 n 2 n + 1 ) n + 1 , x  pair  1 2 n ( n 1 n 1 2 ) , n  impair.  max._((0,1))sum_(i=0)^(n)|x-(i)/(n)|((n)/(i))xi(1-x)^(n-i)=M_(n)={[2((n-1)/((n)/(2)))(((n)/(2)+1)^((n)/(2)+1)((n)/(2))^((n)/(2)))/(n+1)^(n+1))","x" pair "],[(1)/(2^(n))((n-1)/((n-1)/(2)))","n" impair. "]:}\operatorname{max.}_{(0,1)} \sum_{i=0}^{n}\left|x-\frac{i}{n}\right|\binom{n}{i} x i(1-x)^{n-i}=\mathrm{M}_{n}=\left\{\begin{array}{r}2\binom{n-1}{\frac{n}{2}} \frac{\left(\frac{n}{2}+1\right)^{\frac{n}{2}+1}\left(\frac{n}{2}\right)^{\frac{n}{2}}}{n+1)^{n+1}}, x \text { pair } \\ \frac{1}{2^{n}}\binom{n-1}{\frac{n-1}{2}}, n \text { impair. }\end{array}\right.max.(0,1)i=0n|xin|(ni)xi(1x)ni=Mn={2(n1n2)(n2+1)n2+1(n2)n2n+1)n+1,x peer 12n(n1n12),n odd. 
It is immediately apparent that
n 1 2 M n 1 2 π n 1 2 M n 1 2 π n^((1)/(2))M_(n)rarr(1)/(sqrt(2pi))n^{\frac{1}{2}} M_{n} \rightarrow \frac{1}{\sqrt{2 \pi}}n12Mn12π
And
( 2 n 1 ) 1 2 M 2 n + 1 > ( 2 n + 1 ) 1 2 M 2 n + 1 ( 2 n 1 ) 1 2 M 2 n + 1 > ( 2 n + 1 ) 1 2 M 2 n + 1 (2n-1)^((1)/(2))M_(2n+1) > (2n+1)^((1)/(2))M_(2n+1)(2 n-1)^{\frac{1}{2}} M_{2 n+1}>(2 n+1)^{\frac{1}{2}} M_{2 n+1}(2n1)12M2n+1>(2n+1)12M2n+1
"Lessons on the Approximation of Functions of a Real Variable" p. 7.
độoù
M 1 = 1 2 , M 2 n + 1 3 4 2 n + 1 n = 1 , 2 , M 1 = 1 2 , M 2 n + 1 3 4 2 n + 1 n = 1 , 2 , M_(1)=(1)/(2),M_(2n+1) <= (sqrt3)/(4sqrt(2n+1))quad n=1,2,dots\mathrm{M}_{1}=\frac{1}{2}, \mathrm{M}_{2 n+1} \leq \frac{\sqrt{3}}{4 \sqrt{2 n+1}} \quad n=1,2, \ldotsM1=12,M2n+1342n+1n=1,2,
If n n nnnis even ( n 2 n 2 n >= 2n \geq 2n2) it is easily established that
M n < M n + 1 n + 2 n 3 4 n + 1 n + 2 n 1 2 n . M n < M n + 1 n + 2 n 3 4 n + 1 n + 2 n 1 2 n . M_(n) < M_(n+1)sqrt((n+2)/(n)) <= (sqrt3)/(4sqrt(n+1))sqrt((n+2)/(n)) <= (1)/(2sqrtn).\mathrm{M}_{n}<\mathrm{M}_{n+1} \sqrt{\frac{n+2}{n}} \leq \frac{\sqrt{3}}{4 \sqrt{n+1}} \sqrt{\frac{n+2}{n}} \leq \frac{1}{2 \sqrt{n}} .Mn<Mn+1n+2n34n+1n+2n12n.
So whatever n n nnn
M n 1 2 n M n 1 2 n M_(n) <= (1)/(2sqrtn)\mathrm{M}_{n} \leq \frac{1}{2 \sqrt{n}}Mn12n
Doing δ = 1 n δ = 1 n delta=(1)/(sqrtn)\delta=\frac{1}{\sqrt{n}}δ=1nin formula (3) we have
| f ( x ) P n ( x ; f ) | < 3 2 ω ( 1 n ) dans ( 0 , 1 ) ( 6 ) f ( x ) P n ( x ; f ) < 3 2 ω 1 n  dans  ( 0 , 1 ) ( 6 ) |f(x)-P_(n)(x;f)| < (3)/(2)omega((1)/(sqrtn))quad" dans "(0,1)(6)\left|f(x)-\mathrm{P}_{n}(x ; f)\right|<\frac{3}{2} \omega\left(\frac{1}{\sqrt{n}}\right) \quad \text { dans }(0,1)(6)|f(x)Pn(x;f)|<32ω(1n) In (0,1)(6)
The approximation is generally indeed on the order of ω ( 1 n ) ω 1 n omega((1)/(sqrtn))\omega\left(\frac{1}{\sqrt{n}}\right)ω(1n)Let the function f ( x ) = | 1 2 x | f ( x ) = 1 2 x f(x)=|(1)/(2)-x|f(x)=\left|\frac{1}{2}-x\right|f(x)=|12x|. In this case we have ω ( δ ) = δ ω ( δ ) = δ omega(delta)=delta\omega(\delta)=\deltaω(δ)=δFor δ 1 2 δ 1 2 delta <= (1)/(2)\delta \leq \frac{1}{2}δ12And
P 2 n + 1 ( 1 2 ; f ) f ( 1 2 ) = 1 2 2 n + 1 ( 2 n n ) n > 1 P 2 n + 1 1 2 ; f f 1 2 = 1 2 2 n + 1 ( 2 n n ) n > 1 P_(2n+1)((1)/(2);f)-f((1)/(2))=(1)/(2^(2n+1))((2n)/(n))quad n > 1\mathrm{P}_{2 n+1}\left(\frac{1}{2} ; f\right)-f\left(\frac{1}{2}\right)=\frac{1}{2^{2 n+1}}\binom{2 n}{n} \quad n>1P2n+1(12;f)f(12)=122n+1(2nn)n>1
from where
max . | f ( x ) P 2 n + 1 ( x ; f ) | 1 2 π 1 2 n + 1 = 1 2 π ω ( 1 2 n + 1 ) ( 7 ) max . f ( x ) P 2 n + 1 ( x ; f ) 1 2 π 1 2 n + 1 = 1 2 π ω 1 2 n + 1 ( 7 ) max.|f(x)-P_(2n+1)(x;f)| >= (1)/(sqrt(2pi))*(1)/(sqrt(2n+1))=(1)/(sqrt(2pi))^(omega)((1)/(sqrt(2n+1)))^((7))\operatorname{max.}\left|f(x)-\mathrm{P}_{2 n+1}(x ; f)\right| \geq \frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{2 n+1}}=\frac{1}{\sqrt{2 \pi}}{ }^{\omega}\left(\frac{1}{\sqrt{2 n+1}}\right){ }^{(7)}max.|f(x)P2n+1(x;f)|12π12n+1=12πω(12n+1)(7).
( 6 6 ^(6){ }^{6}6The demonstration given in the aforementioned book by Messrs. Pólya and Szegö shows me that
| f ( x ) P n ( x ; f ) | < ω ( 1 4 n ) + Δ 0 [ f ] 2 n f ( x ) P n ( x ; f ) < ω 1 4 n + Δ 0 [ f ] 2 n |f(x)-P_(n)(x;f)| < omega((1)/((4)/(sqrtn)))+(Delta_(0)[f])/(2sqrtn)\left|f(x)-\mathrm{P}_{n}(x ; f)\right|<\omega\left(\frac{1}{\frac{4}{\sqrt{n}}}\right)+\frac{\Delta_{0}[f]}{2 \sqrt{n}}|f(x)Pn(x;f)|<ω(14n)+Δ0[f]2n
If the function satisfies an ordinary Lipschitz condition, then
| t ( x ) P n ( x ; f ) | < 3 2 Δ 1 [ f ] n . t ( x ) P n ( x ; f ) < 3 2 Δ 1 [ f ] n . |t(x)-P_(n)(x;f)| < (3)/(2)(Delta_(1)[f])/(sqrtn).\left|t(x)-P_{n}(x ; f)\right|<\frac{3}{2} \frac{\Delta_{1}[f]}{\sqrt{n}} .|t(x)Pn(x;f)|<32Δ1[f]n.
Mr. Wigert only provides an approximation.
3 2 Δ 0 [ f ] Δ 1 [ f ] 2 3 1 n 3 . 3 2 Δ 0 [ f ] Δ 1 [ f ] 2 3 1 n 3 . (3)/(2)root(3)(Delta_(0)[f]*Delta_(1)[f]^(2))*(1)/(root(3)(n)).\frac{3}{2} \sqrt[3]{\Delta_{0}[f] \cdot \Delta_{1}[f]^{2}} \cdot \frac{1}{\sqrt[3]{n}} .32Δ0[f]Δ1[f]231n3.
(7) We have assumed that the function is defined in the interval ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)solely to simplify the presentation. We could have considered functions-

  1. (5) For the properties of ω ( δ ) ω ( δ ) omega(delta)\omega(\delta)ω(δ)see for example C H C H C_(H)\mathrm{C}_{\mathrm{H}}CH. of the Chick Valley
1935

Related Posts